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A Proof of Convergence

A.1 Proof of the 1st part

Lemma 1 (Proposition 6.2 of [1]). Suppose F : Rn1×n2 → R is represented as F (X) = f ◦ σ(X),
where X ∈ Rn1×n2 with SVD X = Udiag(σ1, . . . , σn)V

T, n = min(n1, n2), and f is differentiable.
The gradient of F (X) at X is

∂F (X)

∂X
= Udiag(θ)V T, (1)

where θ = ∂f(y)
∂y |y=σ(X).

To minimize Q̄(v) at step k + 1 in (21) in the main body, the optimal Q̄(v)
k+1 needs to satisfy the

first-order optimal condition

Q̄(v)
k+1 = H̄(v)

k +
Ȳ1,k

µk
.

By using the updating rule Ȳ(v)
1,k+1 = Ȳ(v)

1,k + µk(H̄
(v)
k − Q̄(v)

k ), we have

Ȳ(v)
1,k+1

µk
+ (Q̄(v)

k − Q̄(v)
k+1) = 0.

According to our assumption limk→0 µk(Q̄
(v)
k+1 − Q̄(v)

k ) = 0, we know Y1,k+1 is bounded.

To minimize J at step k+1 in (24) in the main body, the optimal Jk+1 needs to satisfy the first-order
optimal condition

λ∇J ∥J k+1∥pSp⃝ + ρk(J k+1 −Hk+1 −
1

ρk
Y2,k) = 0.

Recall that when 0 < p < 1, in order to overcome the singularity of (|η|p)′ = pη/|η|2−p near η = 0,
we consider for 0 < ϵ≪ 1 the approximation

∂|η|p ≈ pη

max{ϵ2−p, |η|2−p}
.
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Letting J (i)
= U (i)

diag
(
σj(J

(i)
)
)
V(i)H

, then it follows from Lemma 1 that

∂∥J (i)∥pSp⃝

∂J (i)
= U (i)

diag

(
pσj(J

(i)
)

max{ϵ2−p, |σj(J
(i)
)|2−p}

)
V(i)H

.

And then one can obtain

pσj(J
(i)
)

max{ϵ2−p, |σj(J
(i)
)|2−p}

≤ p

ϵ1−p

=⇒

∥∥∥∥∥∥∂∥J
(i)∥pSp⃝

∂J (i)

∥∥∥∥∥∥
2

F

≤
n∑

i=1

p2

ϵ2(1−p)
.

So
∂∥J ∥p

Sp⃝
∂J is bounded.

Let us denote F̃V = 1√
V
FV , FV is the discrete Fourier transform matrix of size V × V , FH

V denotes

its conjugate transpose. For J = J ×3 F̃V and using the chain rule in matrix calculus, one can
obtain that

∇J ∥J ∥pSp⃝ =
∂∥J ∥pSp⃝

∂J
×3 F̃

H
V

is bounded.

And it follows that

Y1,k+1 = Y2,k + ρk(Hk+1 −J k+1)

=⇒ λ∇J ∥J k+1∥pSp⃝ = Y2,k+1,

thus Y2,k+1 appears to be bounded.

Moreover, by using the updating rule Y1 = Y1 + µ(H −Q), Y2 = Y2 + ρ(H − J ), we can
deduce (i = 1, 2)

L(Qk+1,Gk+1,Hk+1,J k+1;Yi,k) (2)
≤ L(Qk,Gk,Hk,J k;Yi,k)

= L(Qk,Gk,Hk,J k;Yi,k−1)

+
ρk + ρk−1

2ρ2k−1

∥Y2,k −Y2,k−1∥2F +
∥Y2,k∥2F

2ρk
− ∥Y2,k−1∥2F

2ρk−1

+
µk + µk−1

2µ2
k−1

∥Y1,k −Y1,k−1∥2F +
∥Y1,k∥2F

2µk
− ∥Y1,k−1∥2F

2µk−1
.

Thus, summing two sides of (2) from k = 1 to n, we have

L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n)

≤L(Q1,G1,H1,J 1;Yi,0))

+
∥Y2,n∥2F

2ρn
− ∥Y2,0∥2F

2ρ0
+

n∑
k=1

(
ρk + ρk−1

2ρ2k−1

∥Y2,k −Y2,k−1∥2F
)

+
∥Y1,n∥2F

2µn
− ∥Y1,0∥2F

2µ0
+

n∑
k=1

(
µk + µk−1

2µ2
k−1

∥Y1,k −Y1,k−1∥2F
)
.

(3)

Observe that
∞∑
k=1

ρk + ρk−1

2ρ2k−1

<∞,

∞∑
k=1

µk + µk−1

2µ2
k−1

<∞,
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we have the right-hand side of (3) is finite and thus L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n) is bounded.
Notice from (7) in the main body

L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n)

=

V∑
v=1

∥∥∥S̄(v) − H̄(v)
n+1(Ḡ

(v)
n+1)

T
∥∥∥2
F

+ λ∥J n+1∥pSp⃝ +
ρn
2
∥Hn+1 −J n+1 +

Y2,n

ρn
∥2F

+
µn

2

V∑
v=1

∥H̄(v)
n+1 − Q̄(v)

n+1 +
Ȳ(v)

1,n+1

µn
∥2F , (4)

and each term of (4) is nonnegative, following from the boundedness of
L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n), we can deduce each term of (4) is bounded. And
∥J n+1∥pSp⃝ being bounded implies that all singular values of J n+1 are bounded and hence
∥J n+1∥2F (the sum of squares of singular values) is bounded. Therefore, the sequence {J k} is
bounded.

Because
Y1,k+1 = Y1,k + µk(Qk −Hk) =⇒Hk = Qk +

Y1,k+1 −Y1,k

µk
,

and in light of the boundedness of Qk,Y1,k, it is clear that Hk is also bounded.

And from (8) in the main body, it is evident that ∥Ḡ(v)
k ∥2F ≤ ∥(S̄

(v)
)T∥2F ∥H̄

(v)
k ∥2F , so Ḡ(v)

k is also
bounded. So Gk is bounded.

A.2 Proof of the 2nd part

From Weierstrass-Bolzano theorem, there exists at least one accumulation point of the sequence
Pk. We denote one of the points P∗ = {H∗,Q∗,G∗,J ∗,Y∗

1,Y
∗
2}. Without loss of generality, we

assume {Pk}+∞
k=1 converge to P ∗.

Note that from the updating rule for Y1, we have
Y1,k+1 = Y1,k + µk(Hk −Qk) =⇒Q∗ = H∗.

Note that from the updating rule for Y2, we have
Y2,k+1 = Y2,k + ρk(Hk −J k) =⇒ J ∗ = H∗.

In the Ḡ(v)-subproblem (8) in the main body, we have

Ḡ(v)
k = (S̄(v)

)TH̄(v)
k =⇒ Ḡ(v)∗

= (S̄(v)
)TH̄(v)∗

.

In the J -subproblem (24) in the main body, we have
λ∇J ∥J k+1∥pSp⃝ = Y2,k =⇒ Y∗

1 = λ∇J ∥J ∗∥pSp⃝.

Therefore, one can see that the sequences H∗,Q∗,G∗,J ∗,Y∗
1,Y

∗
2 satisfy the KKT conditions of

the Lagrange function (7) in the main body.

B Anchor Selection And Graph Construction

Inspired by [2], we adopt directly alternate sampling (DAS) to select anchors.

First of all, with the given data matrices {X(v)}Vv=1, we concatenate the data matrix of each view
along the feature dimension. The connected feature matrix X ∈ Rn×d can be represented as
X = [X(1);X(2); · · · ;X(v)], where d is the sum of the number of features in each view. Let θi
represent the i-th sample of the d-dimensional features, which can be calculated as

θi =

dT∑
j=1

Tra(Xij), (5)
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where dT =
∑V

v=1 dv, and Tra(·) represents the transformation of the raw features. Specifically,
if the features are negative, we process the features of each dimension by subtracting the minimum
value in each dimension. Then we obtain the score vector θ = [θ1, θ2, · · · , θn] ∈ Rn. We choose the
point where the maximum score is located as the anchor. The position of the largest score is

Index = argmax
i

θi. (6)

Then the 1st anchor of the v-th view is b(v)1 = x
(v)
Index.

After that, let θIndex be the score of the anchor selected from the last round, then we normalize the
score of each sample by:

θi ←
θi

maxθ
, (i = 1, 2, · · · , n) (7)

Then the score θi can be updated as

θi ← θi × (1− θi). (8)

Finally, we repeat (6) - (8) m times to select m anchors. After selecting m anchors, we construct an
anchor graph of each view S(v), in the same way, as [2].

C More Details of the Experiments

C.1 Experimental Configurations

The Reuters and NoisyMNIST are implemented on a standard Windows 10 Server with
two Intel (R) Xeon (R) Gold 6230 CPUs 2.1 GHz and 128 GB RAM, MATLAB R2020a.
The MSRC, HandWritten4, Mnist4 and AWA are implemented on a laptop computer with
an Inter Core i5-8300H CPU and 16 GB RAM, using Matlab R2018b. Codes are available:
https://github.com/xdjingli/Orth-NTF.

We repeated the all methods 20 times independently and showed the averages with the corresponding
standard deviations. The specific hype-parameters on each dataset are as follows:

• MSRC: anchor rate = 0.7, p = 0.5, λ = 100.
• HandWritten4: anchor rate = 1.0, p = 0.1, λ = 1180.
• Mnist4: anchor rate = 0.6, p = 0.1, λ = 5000.
• AWA: anchor rate = 1.0, p = 0.5, λ = 1000.
• Reuters: anchor rate = 0.005 (anchor number = 100), p = 0.4, λ = 1209800.
• NoisyMnist: anchor rate = 0.03, p = 0.1, λ = 200000.

C.2 Impact for Parameters

In our proposed algorithm, the number of anchors, the value of p from the tensor Schatten p-norm,
and the value of λ are variable parameters. In this section we take 4 datasets: MSRC, HandWritten4,
Mnist4, and AWA as examples to analyze the effect of these variable parameters.

Effect of the number of anchors. We changed the anchor rate from 0.1 to 1.0 with step size 0.1.
The changes of clustering results and algorithm running time along with the anchor rate were tested
on MSRC, HandWritten4, Mnist4 and AWA, as shown in Fig 1 and Fig 2. When the anchor rate were
0.7, 1.0, 0.6 and 1.0, the best clustering results were obtained on MSRC, HandWritten4, Mnist4 and
AWA, respectively. The time required for clustering is approximately linearly related to the increase
of anchor rate.

Effect of the value of p. We set the value of p to be 0.1 to 1.0 with a step of 0.1. We obtained the
results of ACC, NMI, and Purity in experiments with different values of p as shown in Fig 3. The
best clustering results are obtained on MSRC, HandWritten4, Mnist4 and AWA when the values of p
are 0.5, 0.2, 0.1, and 0.5, respectively. It indicates that tensor Schatten pnorm can take advantage
of the low-rank of views which helps mine the complementary information of different views. This
helps get better clustering results.
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Effect of the value of λ. To determine the value of λ, we initially approximate its range using the
magnitude of the tensor Schatten p-norm regularization, followed by a more detailed fine-tuning
within that range. The impact of varying parameter combinations on the method’s performance can
be seen in Fig 4. This figure highlights the clustering performance across different pairings of p and
λ.

(a)MSRC (b)HandWritten4 (c)Mnist4 (d)AWA

Figure 1: Clustering results with different anchor rate on MSRC, HandWritten4, Mnist4 and AWA.

(a)MSRC (b)HandWritten4 (c)Mnist4 (d)AWA

Figure 2: Time (sec.) with different number of anchors on MSRC, HandWritten4, Mnist4 and AWA.

(a)MSRC (b)HandWritten4 (c)Mnist4 (d)AWA

Figure 3: The influence of p on clustering results on MSRC, HandWritten4, Mnist4 and AWA.
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(a) MSRC (b) HandWritten4 (c) Mnist4 (d) AWA

Figure 4: The influence of λ and p on clustering results on MSRC, HandWritten4, Mnist4 and AWA.
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