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Abstract

Multi-view clustering (MVC) based on non-negative matrix factorization (NMF)
and its variants have attracted much attention due to their advantages in clustering
interpretability. However, existing NMF-based multi-view clustering methods
perform NMF on each view respectively and ignore the impact of between-view.
Thus, they can’t well exploit the within-view spatial structure and between-view
complementary information. To resolve this issue, we present orthogonal non-
negative tensor factorization (Orth-NTF) and develop a novel multi-view clustering
based on Orth-NTF with one-side orthogonal constraint. Our model directly
performs Orth-NTF on the 3rd-order tensor which is composed of anchor graphs of
views. Thus, our model directly considers the between-view relationship. Moreover,
we use the tensor Schatten p-norm regularization as a rank approximation of the
3rd-order tensor which characterizes the cluster structure of multi-view data and
exploits the between-view complementary information. In addition, we provide an
optimization algorithm for the proposed method and prove mathematically that the
algorithm always converges to the stationary KKT point. Extensive experiments on
various benchmark datasets indicate that our proposed method is able to achieve
satisfactory clustering performance.

1 Introduction

As one of the most typical methods in unsupervised learning, clustering has a wide scope of ap-
plication [26; 4; 1] to assign data to different clusters according to the information describing
the objects and their relationships. Non-negative matrix factorization (NMF) [19] is one of the
representative methods of clustering, which is proved to be equivalent to K-means clustering [7].
Despite the widespread use of NMF, there are some drawbacks that have prompted some variants of
NMF [8; 5; 27; 9; 3].

In particular, the one-side G-orthogonal NMF [8] can guarantee the uniqueness of the solution of
matrix factorization and has excellent clustering interpretation. Also, Ding et al.proposed the semi-
NMF [9]. The data matrix and one of the factor matrices are unconstrained, which allows semi-NMF
to be more suitable for applications where the input data is mixed with positive and negative numbers.
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Although the above methods can achieve outstanding clustering performance, they are all single-view
clustering methods and cannot be adopted straightforwardly for multi-view clustering.

Multi-view clustering tends to achieve superior performance compared to traditional single-view
clustering owing to the capability to leverage the complementary information embedded in the
different views. Considering the superiority of MVC and NMF, lots of NMF-based multi-view
clustering methods have been proposed [13; 28; 23; 33; 15; 29; 14; 37]. The NMF-based multi-view
clustering methods can save time and space because it is unnecessary to construct affinity graphs
while graph-based methods have to. However, usually, they decompose the original data matrix
directly, which leads to a dramatic reduction in the efficiency of the algorithm when the dimension of
the original data is huge.

Inspired by the idea of anchor graph. the above issues can be solve by carrying out NMF on the
anchor graph [37]. Due to the fact that the dimension of the anchor graph is considerably smaller than
the original affinity graph, it follows that the clustering efficiency can be improved. However, as is
well-known, there exist two ways of NMF-based multi-view clustering methods. One is to integrate
different views first and then implement the NMF on the integrated matrix; the other is to perform
the NMF on different views separately and then integrate the result from each view. Both ways are
essentially applications of NMF on a single view, and both need to reduce the multi-view data into
matrices in the process, which causes the loss of the original spatial information.

To fix the aforesaid issues, we proposed a novel multi-view clustering based on Orth-NTF with
one-side orthogonal constraint. Specifically, Non-negative Matrix Factorization (NMF) is tailored
primarily for second-order matrices. When processing third-order tensors, there’s a need to first
transform the tensor into a matrix before applying NMF. This step can lead to a loss of inherent spatial
structural information from the third-order tensor. In contrast, Non-negative Tensor Factorization
(NTF) sidesteps this issue. NTF directly decomposes third-order tensors. This ensures that the NTF
not only acknowledges the relationships between the views but also harnesses the complementary
information they offer. Fig 1 delineates the distinction between traditional NMF-based clustering
techniques and our NTF-based approach. Furthermore, by incorporating an orthogonal constraint,
our model offers distinct physical interpretability for clustering. This suggests that each row of
the indicator matrix contains a single non-zero element, and the position of this element directly
corresponds to the label of the respective sample. A large number of experiments have shown that
our methods have excellent clustering performance.

The main contributions are summarized below:

• We introduce orthogonal non-negative tensor factorization, which considers the between-
view relationship directly. Also, we use tensor Schatten p-norm regularization to characterize
the cluster structure of multi-view data and can exploit the complementary information of
between views.

• We regard the anchor graph obtained from the original data as the input of the non-negative
matrix factorization, which reduces the complexity of our proposed algorithm considerably.

• We provide an optimization algorithm for the proposed method and prove it always converges
to the KKT stationary point mathematically. The effectiveness of its application on tensorial
G-orthogonal non-negative matrix factorization is demonstrated by extensive experiments.

2 Related work

In recent years, multi-view clustering (MVC) has received increasing attention due to its excellent
clustering performance. Also, non-negative matrix factorization (NMF) is an efficient technique in
single-view clustering, which can generate excellent clustering results that are easy to interpret, and
many NMF-based variants have been proposed. Therefore, multi-view clustering-based NMF and its
variants have attracted tremendous interest recently.

As the first investigation of the multi-view clustering method based on joint NMF, multiNMF [23]
implements NMF at each view and pushes the different clustering results of each view to a consensus.
It provides a new viewpoint for the subsequent NMF-based MVC methods. Influenced by multiNMF,
He et al.proposed a multi-view clustering method combining NMF with similarity [15]. It implements
NMF on each view as in multiNMF. In addition, it sets a weight for a different view and introduces
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Figure 1: Comparison between traditional
NMF-based multi-view clustering method (left)
and Orth-NTF (right).
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Figure 2: 3rd-order tensor construction process.

a similarity matrix of data points to extract consistent information from different views. To better
detect the geometric structure of inner-view space, Wang et al. [33] introduced graph regularization
into the NMF-based multi-view clustering method to improve clustering performance. Considering
the above work, Wang et al. [29] proposed a graph regularization multi-view clustering method based
on concept factorization (CF). CF is a variant of NMF and it is suitable for handling data containing
negative.

As the size of data grows, lots of methods to accelerate matrix factorization are presented. Wang et
al. [28] proposed a fast non-negative matrix triple factorization method. It constrains the factor matrix
of NMF to a clustering indicator matrix, thereby avoiding the post-processing of the factor matrix.
Inspired by the work of Wang, Han et al. [14] constrained the intermediate factor matrix in the triple
factorization to a diagonal matrix, reducing the number of matrix multiplications in the solution
process. Another idea to deal with large-scale multi-view data is to introduce anchor graphs, since
the number of anchor points is much smaller than the number of original data, multi-view clustering
methods based on anchor graphs tend to reduce the computational complexity and thus are able to
deal with large-scale data [22; 17; 21]. Considering that previous NMF-based multi-view clustering
methods are performed directly on the original data, Yang et al. [37] introduced an anchor graph as
the input of G-orthogonal NMF. The efficiency of matrix factorization is indeed improved due to the
introduction of anchor graph.

Despite the fact that existing NMF-based multi-view clustering methods can perform the clustering
tasks excellently, they apply NMF to each view independently. Subsequently, they combine the
low-dimensional representations from different perspectives to arrive at a unified shared representa-
tion. This approach often overlooks the interrelationships between the views, which are crucial for
clustering.

3 Notations

We introduce the notations used throughout this paper. We use bold calligraphy letters for 3rd-order
tensors, H ∈ Rn1×n2×n3 , bold upper case letters for matrices, H, bold lower case letters for vectors,
h, and lower case letters such as hijk for the entries of H. Moreover, the i-th frontal slice of H is
H(i). H is the discrete Fourier transform (DFT) of H along the third dimension, H = fft(H, [ ], 3).
Thus, H = ifft(H, [ ], 3). The trace and transpose of matrix H are expressed as tr(H) and HT. The
F-norm of H is denoted by ∥H∥F .

Definition 1 (t-product [18]). Suppose A ∈ Rn1×m×n3 and B ∈ Rm×n2×n3 , the t-product A ∗B ∈
Rn1×n2×n3 is given by

A ∗B = ifft(bdiag(AB), [ ], 3),

where A = bdiag(A) and it denotes the block diagonal matrix. The blocks of A are frontal slices of
A.
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Definition 2. [12] Given H ∈ Rn1×n2×n3 , h = min(n1, n2), the tensor Schatten p-norm of H is
defined as

∥H∥Sp⃝ =

(
n3∑
i=1

∥∥∥H(i)
∥∥∥p

Sp⃝

) 1
p

=

(
n3∑
i=1

h∑
j=1

σj

(
H(i)

)p) 1
p

, (1)

where, 0 < p ⩽ 1, σj(H
(i)
) denotes the j-th singular value of H(i)

.

It should be pointed out that for 0 < p ⩽ 1 when p is appropriately chosen, the Schatten p-norm
provides quite effective improvements for a tighter approximation of the rank function [39; 36].

4 Methodology

4.1 Motivation and Objective

Non-negative matrix factorization (NMF) was initially presented as a dimensionality reduction
method, and it is commonly employed as an efficient latent feature learning technique recently.
Generally speaking, given a non-negative matrix X, the target of NMF is to decompose X into two
non-negative matrices,

X ≈ HGT (2)
where X ∈ Rn×p

+ , H ∈ Rn×k
+ and G ∈ Rp×k

+ . Rn×p
+ means n-by-p matrices with elements are all

nonnegative. n and k means the number of samples and the number of clusters, respectively.

In order to approximate the matrix before and after factorization, ℓ2-norm and F-norm are frequently
adopted as the objective function for the NMF. Considering that F-norm can make the model
optimization easier, we use F-norm to construct the objective function.

With the extensive use of NMF, more and more variants of NMF have emerged, among which are
G-orthogonal NMF [8] and Semi-NMF [9]. By imposing an orthogonality constraint on one of the
factor matrices in NMF, we obtain the objective function of the one-side orthogonal NMF,

min
H⩾0,G⩾0

∥∥X−HGT
∥∥2
F
, s.t. HTH = I. (3)

If we relax the nonnegative constraint on one of the factor matrices in the NMF and the input matrix
X can also be mixed positive and negative, then we can get Semi-NMF. Semi-NMF can be adapted
to process input data that has mixed symbols. For G-orthogonal NMF and Semi-NMF, Ding et al. [8]
presented the following lemma:
Lemma 1. G-orthogonal NMF and Semi-NMF are all relaxation of K-means clustering, and the
main advantages of G-orthogonal NMF are (1) Uniqueness of the solution; (2) Excellent clustering
interpretability.

Taking into account the one-side orthogonal NMF, we relax the nonnegative constraints on X and G.
Moreover, inspired by FMCNOF [37], we construct the anchor graph S obtained from the original
data X as the input of matrix factorization. Compared with the original data, the number of anchors is
much smaller, therefore, by adopting the anchor graph constructed by anchors and original data points
as the input of matrix factorization, we can reduce the computational complexity of the algorithm
effectively.

min
H⩾0

∥∥S−HGT
∥∥2
F
, s.t. HTH = I, (4)

where S ∈ Rn×m, H ∈ Rn×k and G ∈ Rm×k, m is the number of anchors and we consider H as
the cluster indicator matrix for clustering rows as described in [8]. We will introduce the details of
anchor selection and the construction of the anchor graph in the appendix.

As described in the previous section, the existing NMF-based multi-view clustering methods are
essentially a matrix factorization on a single view combined with the integration of multiple views.
It causes the loss of the original spatial structure of the multi-view data. We extend NMF to the
3rd-order tensor, which can process the multi-view data directly and can also take full advantage
of the original spatial structure of the multi-view data. The objective function of tensorial one-side
orthogonal non-negative matrix factorization is written in the following form:

min
H⩾0

∥∥∥S −H ∗ GT
∥∥∥2
F
, s.t. HT ∗H = I, (5)
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The 3rd-order tensor construction process is illustrated in Fig 2.

In order to better exploit the complementary information and spatial structure between different
views, we get inspiration from the excellent performance of the tensor Schatten p-norm [12; 38]. We
introduce tensor Schatten p-norm regularization on the tensorial form of the cluster indicator matrix.
Our objective function is formulated as follows:

min
∥∥∥S −H ∗ GT

∥∥∥2
F
+ λ∥H∥pSp⃝ s.t. H ⩾ 0,HT ∗H = I (6)

where 0 < p ⩽ 1, λ is the hyperparameter of the Schatten p-norm term.
Remark 1. The regularizer in the proposed objective (6) is used to explore the complementary
information embedded in inter-views cluster assignment matrices H(v) (v = 1, 2, · · · , V ). Fig. 2
shows the construction of tensor H, it can be seen that the k-th frontal slice ∆(k) describes the
similarity between N sample points and the k-th cluster in different views. The idea cluster assignment
matrix H(v) should satisfy that the relationship between N data points and the k-th cluster is
consistent in different views. Since different views usually show different cluster structures, we
impose tensor Schatten p-norm minimization [12] constraint on H, which can make sure each ∆(k)

has spatial low-rank structure. Thus ∆(k) can well characterize the complementary information
embedded in inter-views.

4.2 Optimization

Inspired by Augmented Lagrange Multiplier (ALM), we introduce two auxiliary variables Q and J
and let H = Q, H = J , respectively, where Q ⩾ 0. Then, we rewrite the model as the following
unconstrained problem:

minL(Q,H,G,J )

= min
Q⩾0,HT∗H=I

∥∥∥S −H ∗ GT
∥∥∥2
F
+ λ∥J ∥pSp⃝ +

µ

2

∥∥∥∥H−Q+
Y1

µ

∥∥∥∥2
F

+
ρ

2

∥∥∥∥H−J +
Y2

ρ

∥∥∥∥2
F

,

(7)
where Y1, Y2 represent Lagrange multipliers and µ, ρ are the penalty parameters. The optimization
process can therefore be separated into four steps:

•Solve G with fixed Q,H,J . (7) becomes:

min
∥∥∥S −H ∗ GT

∥∥∥2
F

(8)

After being implemented with discrete Fourier transform (DFT) along the third dimension. the
equivalent representation of (8) in the frequency domain becomes:

min

V∑
v=1

∥∥∥S(v) −H(v)
(G(v)

)T
∥∥∥2
F
, (9)

where G = fft(G, [ ], 3), and the others in the same way.

Let Φ =
∥∥∥S(v) −H(v)

(G(v)
)T
∥∥∥2
F

, we can obviously get the following equation:

Φ = tr
(
(S(v)

)TS(v)
)
− 2tr

(
(H(v)

)TS(v)G(v)
)
+ tr

(
(G(v)

)TG(v)
)
. (10)

Setting the derivative ∂Φ/∂G(v)
= 0 gives 2G(v) − 2(S(v)

)TH(v)
= 0. So the solution of (9) is:

G(v)
= (S(v)

)TH(v)
(11)

•Solve H with fixed Q,G,J . (7) becomes:

min
HT∗H=I

∥∥∥S −H ∗ GT
∥∥∥2
F
+

µ

2

∥∥∥∥H−Q+
Y1

µ

∥∥∥∥2
F

+
ρ

2

∥∥∥∥H−J +
Y2

ρ

∥∥∥∥2
F

(12)
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And (12) is equivalent to the following in the frequency domain:

min
(H(v)

)TH(v)
=I

V∑
v=1

∥∥∥S(v) −H(v)
(G(v)

)T
∥∥∥2
F

+

V∑
v=1

µ

2

∥∥∥∥∥H(v) −Q(v)
+

Y(v)

1

µ

∥∥∥∥∥
2

F

+

V∑
v=1

ρ

2

∥∥∥∥∥H(v) −J (v)
+

Y(v)

2

ρ

∥∥∥∥∥
2

F

,

(13)

where H = fft(H, [ ], 3), and the others in the same way.

And (13) can be reduced to:

min
(H(v)

)TH(v)
=I

−2tr
(
G(v)

(H(v)
)TS(v)

)
− µtr

(
(H(v)

)TW(v)

1

)
− ρtr

(
(H(v)

)TW(v)

2

)
(14)

where W(v)

1 = Q(v) − Y(v)
1

µ and W(v)

2 = J (v) − Y(v)
2

ρ .

and it also can be reduced to:

max
(H(v)

)TH(v)
=I

tr
(
(H(v)

)TB(v)
)

(15)

where B(v)
= 2S(v)G(v)

+ µW(v)

1 + ρW(v)

2 .

To solve (15), we introduce the following Theorem:

Theorem 1. Given G and P, where G(G)T = I and P has the singular value decomposition
P = ΛS(V)T, then the optimal solution of

max
G(G)T=I

tr(GP) (16)

is G∗ = V[I,0](Λ)T.

Proof. From the SVD P = ΛS(V)T and together with (16), it is evident that

tr(GP) = tr(GΛS(V)T) = tr(S(V)TGΛ) = tr(SH) =
∑
i

siihii, (17)

where H = (V)TGΛ, sii and hii are the (i, i) elements of S and H, respectively. It can be easily
verified that H(H)T = I, where I is an identity matrix. Therefore −1 ⩽ hii ⩽ 1 and sii ⩾ 0, Thus
we have:

tr(GP) =
∑
i

siihii ⩽
∑
i

sii. (18)

The equality holds when H is an identity matrix. tr(GP) reaches the maximum when H = [I,0].

So the solution of (15) is:
H(v)

= Λ
(v)

(V
(v)

)T (19)

where Λ
(v)

and V
(v)

can be obtained by SVD B(v)
= Λ

(v)
X(V

(v)
)T

•Solve Q with fixed H,G,J . (7) becomes:

min
Q⩾0

µ

2

∥∥∥∥H−Q+
Y1

µ

∥∥∥∥2
F

(20)

(20) is obviously equivalent to:

min
Q⩾0

µ

2

∥∥∥∥Q− (H+
Y1

µ
)

∥∥∥∥2
F

(21)
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According to [37], the solution of (21) is:

Q =

(
H+

Y1

µ

)
+

(22)

•Solve J with fixed Q,H,G. (7) becomes:

minλ∥J ∥pSp⃝ +
ρ

2

∥∥∥∥H−J +
Y2

ρ

∥∥∥∥2
F

, (23)

after completing the square regarding J , we can deduce

J ∗ = argmin
1

2

∥∥∥∥H+
Y2

ρ
−J

∥∥∥∥2
F

+
λ

ρ
∥J ∥pSp⃝, (24)

which has a closed-form solution as Lemma 2 [12]:
Lemma 2. Let Z ∈ Rn1×n2×n3 have a t-SVD Z = U ∗ S ∗ VT, then the optimal solution for

min
X

1
2 ∥X − Z∥

2
F + τ ∥X∥pSp⃝ . (25)

is X ∗ = Γτ (Z) = U ∗ ifft(Pτ (Z)) ∗ VT, where Pτ (Z) is an f-diagonal 3rd-order tensor, whose
diagonal elements can be found by using the GST algorithm introduced in [12].

Now the solution of (24) is:

J ∗ = Γλ
ρ
(H+

Y2

ρ
). (26)

Finally, the optimization procedure for Multi-View Clustering via Orthogonal non-negative Tensor
Factorization (Orth-NTF) is outlined in Algorithm 1.

Algorithm 1 Multi-View Clustering via Orthogonal non-negative Tensor Factorization
(Orth-NTF)
Input: Data matrices {X(v)}V

v=1 ∈ RN×dv ; anchors numbers m; cluster number K.
Output: Cluster labels Y of each data points.
Initialize: µ = 10−5, ρ = 10−5, η = 1.6, Y1 = 0, Y2 = 0, Q(v) is identity matrix;

1: Compute graph matrix S(v) of each views;
2: while not condition do
3: Update G(v) by solving (11);
4: Update H(v) by solving (19);
5: Update Q(v) by solving (22);
6: Update J by using (24);
7: Update Y1, Y2, µ and ρ: Y1 = Y1 + µ(H − Q), Y2 = Y2 + µ(H − J ), µ = min(ηµ, 1013),

ρ = min(ηρ, 1013);
8: end while
9: Calculate the K clusters by using

H =
∑V

v=1 H(v)/V ;
10: return Clustering result (The position of the largest element in each row of the indicator matrix is the label of the

corresponding sample).

4.3 Convergence Analysis

Theorem 2. [Convergence Analysis of Algorithm 1] Let Pk = {Qk,Hk,Gk,J k,Y2,k,Y1,k}, 1 ≤
k <∞ in (7) be a sequence generated by Algorithm 1, then

1. Pk is bounded with the assumption limk→0 max{µk, ρk}(H̄(v)
k+1 − H̄

(v)
k ) = 0;

2. Any accumulation point of Pk is a stationary KKT point of (7).

The proof will be provided in the appendix and we need to mention that the KKT conditions
can be used to determine the stop conditions for Algorithm 1, which are ∥Qk − Hk∥∞ ≤ ε,
∥Qk −J k∥∞ ≤ ε.

7



Table 1: Multi-view datasets used in our experiments
#Dataset #Samples #View #Class #Feature

MSRC 210 5 7 24, 576, 512, 256, 254
HandWritten4 2000 4 10 76, 216, 47, 6

Mnist4 4000 3 4 30, 9, 30
Reuters 18758 5 6 21531, 24892, 34251, 15506, 11547

Noisy MNIST 50000 2 10 784, 784

4.4 Complexity Analysis

For Orth-NTF, the storage requirements for G, H, Q, J , Y1 and Y2 have complexities ofO(V (m+
k)n),O(V (n+k)k),O(V nk),O(V nk),O(V nk),O(V nk) andO(V nk), respectively. Combining
these, the total storage complexity for Orth-NTF is O(V nm+ vk2 + 6V nk).

For the computational complexity, the process of constructing S has a computational complexity
of O(V nmd+ V nm log(m)). When updating the four variables, G, H, Q and J , their respective
computational complexities are O(V nmd + V nm log(m)), O(V m2k + V mk2), O(V nk) and
O(2V nk log(V k) + V 2kn). Given that m, n, k and V are relatively small constants, the primary
computational cost associated with updating the variables stands at O(V nkm+ V m2k). Summing
it all up, the overall computational complexity of our proposed method is O(V nmd+ V m2k).

(a) MSRC (b) HandWritten4 (c) Mnist4 (d) AWA

Figure 3: Convergence experiments on MSRC, HandWritten4, Mnist4 and AWA.

5 Experiments

In this section, we demonstrate the performance of our proposed method through extensive experi-
ments. It is compared with plenty of state-of-art multi-view clustering algorithms on some multi-view
datasets. We evaluate the clustering performance by applying 7 metrics used widely, i.e., 1) ACC; 2)
NMI; 3) Purity; 4) PRE; 5) REC; 6) F-score; and 7) ARI. The higher the value the better the clustering
results for all metrics mentioned above. Detailed experimental configurations and hyper-parameters
on each dataset are in the appendix.

5.1 Datasets and Compared Baselines Methods

The following multi-view datasets are selected to examine our proposed method. The details of
the datasets are shown in Table 1. MSRC [34]; HandWritten4 [10]; Mnist4 [6]; AWA [11];
Reuters [2]; Noisy MNIST [32]; We choose the following 8 state-of-art multi-view clustering algo-
rithms to compare with our proposed methods: AMGL [25]; MVGL [40]; CSMSC [24]; GMC [30];
LMVSC [17]; SMSC [16]; SFMC [21] FMCNOF[37]; FPMVS-CAG [31]; ETLMSC [35];
MSC-BG [38];

5.2 Experiments Result

The clustering performances are listed in Table 2 and Table 3. They contain four medium-scale
datasets and two large-scale datasets. The corresponding experimental configurations and descriptions
are included in the appendix. It is clear that our algorithm outperforms the other baseline algorithms
on most of the datasets.

This advantage may stem from the fact that our model directly factorizes the tensorized anchor
graph—comprised of anchor graphs from various views—into the product of two non-negative
tensors, one being an index tensor. As a result, our model effectively captures both the spatial
structural information and the complementary data present in the anchor graphs from different

8



Table 2: Clustering performance on MSRC, HandWritten4, Mnist4 and AWA. (The best result is in
bold, and the second-best result is underlined.)

Dataset MSRC
Metrics ACC NMI Purity PER REC F-score ARI

AMGL [25] (IJCAI’ 16) 0.751±0.000 0.704±0.000 0.789±0.000 0.621±0.000 0.744±0.000 0.674±0.000 0.615±0.000
MVGL [40] (TCYB’ 17) 0.690±0.000 0.663±0.000 0.733±0.000 0.466±0.000 0.715±0.000 0.564±0.000 0.476±0.000
CSMSC [24] (AAAI’ 18) 0.758±0.007 0.735±0.010 0.793±0.008 0.736±0.014 0.673±0.008 0.703±0.010 0.653±0.012
GMC [30] (TKDE’ 19) 0.895±0.000 0.809±0.000 0.895±0.000 0.788±0.000 0.814±0.000 0.801±0.000 0.768±0.000

LMVSC [17] (AAAI’ 20) 0.814±0.000 0.717±0.000 0.814±0.000 0.676±0.000 0.692±0.000 0.684±0.000 0.632±0.000
SMSC [16] (Inf Fusion’ 20) 0.766±0.000 0.717±0.000 0.804±0.000 0.672±0.000 0.718±0.000 0.694±0.000 0.643±0.000

FMCNOF [37] (TIP’ 21) 0.440±0.039 0.345±0.046 0.449±0.042 0.290±0.036 0.606±0.074 0.395±0.036 0.249±0.051
FPMVS-CAG [31] (TIP’ 21) 0.786±0.000 0.686±0.000 0.786±0.000 0.684±0.000 0.642±0.000 0.731±0.000 0.629±0.000

SFMC [21] (TPAMI’ 22) 0.810±0.000 0.721±0.000 0.810±0.000 0.657±0.000 0.782±0.000 0.714±0.000 0.663±0.000
ETLMSC [35] (TIP’ 19) 0.962±0.000 0.937±0.000 0.962±0.000 0.926±0.000 0.931±0.000 0.928±0.000 0.917±0.000
MSC-BG [38] (TIP’ 22) 0.981±0.000 0.960±0.000 0.981±0.000 0.961±0.000 0.963±0.000 0.962±0.000 0.956±0.000

ours 0.990±0.000 0.978±0.000 0.990±0.000 0.980±0.000 0.981±0.000 0.981±0.000 0.978±0.000

Dataset HandWritten4
Metrics ACC NMI Purity PER REC F-score ARI

AMGL [25] (IJCAI’ 16) 0.704±0.000 0.762±0.000 0.732±0.000 0.591±0.000 0.781±0.000 0.670±0.000 0.628±0.000
MVGL [40] (TCYB’ 17) 0.811±0.000 0.809±0.000 0.831±0.000 0.721±0.000 0.826±0.000 0.770±0.000 0.743±0.000
CSMSC [24] (AAAI’ 18) 0.806±0.001 0.793±0.001 0.867±0.001 0.778±0.001 0.743±0.001 0.760±0.001 0.733±0.001
GMC [30] (TKDE’ 19) 0.861±0.000 0.859±0.000 0.861±0.000 0.799±0.000 0.855±0.000 0.826±0.000 0.806±0.000

LMVSC [17] (AAAI’ 20) 0.904±0.000 0.831±0.000 0.904±0.000 0.819±0.000 0.825±0.000 0.822±0.000 0.802±0.000
SMSC [16] (Inf Fusion’ 20) 0.742±0.000 0.781±0.000 0.759±0.000 0.675±0.000 0.767±0.000 0.717±0.000 0.685±0.000

FMCNOF [37] (TIP’ 21) 0.385±0.092 0.370±0.092 0.386±0.093 0.254±0.077 0.688±0.101 0.360±0.070 0.250±0.097
FPMVS-CAG [31] (TIP’ 21) 0.744±0.000 0.753±0.000 0.744±0.000 0.681±0.000 0.636±0.000 0.762±0.000 0.642±0.000

SFMC [21] (TPAMI’ 22) 0.853±0.000 0.871±0.000 0.873±0.000 0.775±0.000 0.910±0.000 0.837±0.000 0.817±0.000
ETLMSC [35] (TIP’ 19) 0.938±0.001 0.893±0.001 0.938±0.001 0.886±0.001 0.890±0.001 0.888±0.001 0.876±0.001
MSC-BG [38] (TIP’ 22) 0.889±0.000 0.922±0.000 0.889±0.000 0.871±0.000 0.893±0.000 0.882±0.000 0.869±0.000

ours 0.985±0.000 0.969±0.000 0.985±0.000 0.970±0.000 0.970±0.000 0.970±0.000 0.966±0.000
Dataset Mnist4
Metrics ACC NMI Purity PER REC F-score ARI

AMGL [25] (IJCAI’ 16) 0.921±0.000 0.806±0.000 0.921±0.000 0.854±0.000 0.862±0.000 0.858±0.000 0.810±0.000
MVGL [40] (TCYB’ 17) 0.919±0.000 0.803±0.000 0.919±0.000 0.851±0.000 0.860±0.000 0.856±0.000 0.807±0.000
CSMSC [24] (AAAI’ 18) 0.641±0.000 0.601±0.010 0.728±0.008 0.607±0.014 0.767±0.008 0.677±0.010 0.553±0.012
GMC [30] (TKDE’ 19) 0.920±0.000 0.807±0.000 0.920±0.000 0.853±0.000 0.861±0.000 0.857±0.000 0.809±0.000

LMVSC [17] (AAAI’ 20) 0.892±0.000 0.726±0.000 0.892±0.000 0.808±0.000 0.812±0.000 0.810±0.000 0.747±0.000
SMSC [16] (Inf Fusion’ 20) 0.909±0.000 0.774±0.000 0.909±0.000 0.834±0.000 0.841±0.000 0.837±0.000 0.783±0.000

FMCNOF [37] (TIP’ 21) 0.697±0.119 0.490±0.102 0.711±0.096 0.558±0.118 0.683±0.073 0.611±0.095 0.460±0.145
FPMVS-CAG [31] (TIP’ 21) 0.885±0.000 0.715±0.000 0.885±0.000 0.800±0.000 0.795±0.000 0.815±0.000 0.733±0.000

SFMC [21] (TPAMI’ 22) 0.916±0.000 0.797±0.000 0.916±0.000 0.846±0.000 0.855±0.000 0.850±0.000 0.800±0.000
ETLMSC [35] (TIP’ 19) 0.934±0.000 0.847±0.000 0.934±0.000 0.878±0.000 0.885±0.000 0.881±0.000 0.842±0.000
MSC-BG [38] (TIP’ 22) 0.938±0.000 0.861±0.000 0.938±0.000 0.884±0.000 0.891±0.000 0.888±0.000 0.850±0.000

ours 0.977±0.000 0.926±0.000 0.977±0.000 0.955±0.000 0.956±0.000 0.955±0.000 0.941±0.000

Dataset AWA
Metrics ACC NMI Purity PER REC F-score ARI

MVGL [40] (TCYB’ 17) 0.061±0.000 0.070±0.000 0.065±0.000 0.020±0.000 0.843±0.000 0.040±0.000 0.002±0.000
CSMSC [24] (AAAI’ 18) 0.113±0.000 0.175±0.002 0.119±0.001 0.051±0.001 0.054±0.000 0.053±0.001 0.033±0.001
GMC [30] (TKDE’ 19) 0.028±0.000 0.030±0.000 0.039±0.000 0.020±0.000 0.915±0.000 0.039±0.000 0.001±0.000

LMVSC [17] (AAAI’ 20) 0.105±0.000 0.171±0.000 0.114±0.000 0.041±0.000 0.065±0.000 0.051±0.000 0.027±0.000
FMCNOF [37] (TIP’ 21) 0.035±0.008 0.018±0.011 0.035±0.008 0.021±0.001 0.688±0.227 0.040±0.002 0.002±0.003

FPMVS-CAG [31] (TIP’ 21) 0.106±0.000 0.183±0.000 0.111±0.000 0.069±0.000 0.047±0.000 0.142±0.000 0.042±0.000
SFMC [21] (TPAMI’ 22) 0.042±0.000 0.044±0.000 0.049±0.000 0.023±0.000 0.592±0.000 0.044±0.000 0.006±0.000
ETLMSC [35] (TIP’ 19) 0.631±0.000 0.783±0.000 0.656±0.000 0.498±0.000 0.580±0.000 0.536±0.000 0.526±0.000
MSC-BG [38] (TIP’ 22) 0.493±0.000 0.550±0.000 0.511±0.000 0.059±0.000 0.494±0.000 0.105±0.000 0.073±0.000

ours 0.646±0.000 0.815±0.000 0.670±0.000 0.534±0.000 0.574±0.000 0.553±0.000 0.543±0.000

perspectives. Additionally, with orthogonal and non-negative constraints in place, our model offers
clear interpretability for clustering. This means that each row of the indicator matrix for every view
contains a single non-zero element, with its position indicating the label of the associated sample.
Consequently, our model can immediately provide the label without necessitating any post-processing,
a step which other methods still require.

5.3 Ablation Experiments

We do some ablation experiments on orthogonal constraint and Schatten p-norm on four datasets as
shown in Table 4. It can be found that, tensor Schatten p-norm regularization is overall superior to
orthogonal constraint. The reason is that tensor Schatten p-norm regularization effectively charac-
terizes both the complementary information and spatial structure information of index matrices of
different views. Compared to orthogonal and tensor Schatten p-norm constraints, Joint constraints
have great contribution for clustering.

5.4 Experiments of convergence

We optimize the objective function iteratively by introducing two auxiliary variables Q and J . We
test the convergence of our algorithm by checking the difference between H and the two auxiliary
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Table 3: Clustering results and running time (sec.) on Reuters and NoisyMNIST. (“OM" means out
of memory and “-" means the algorithm takes more than three hours to calculate.)

Dataset Reuters Dataset Noisy MNIST
Metrics ACC NMI Purity Time Metrics ACC NMI Purity Time

AMGL [25] (IJCAI’ 16) OM OM OM OM AMGL [25] (IJCAI’ 16) OM OM OM OM
MVGL [40] (TCYB’ 17) OM OM OM OM MVGL [40] (TCYB’ 17) OM OM OM OM
CSMSC [24] (AAAI’ 18) OM OM OM OM CSMSC [24] (AAAI’ 18) OM OM OM OM
GMC [30] (TKDE’ 19) - - - - GMC [30] (TKDE’ 19) - - - -

LMVSC [17] (AAAI’ 20) 0.587±0.000 0.335±0.000 0.616±0.000 150.51 LMVSC [17] (AAAI’ 20) 0.388±0.000 0.344±0.000 0.434±0.000 151.14
SMSC [16] (Inf Fusion’ 20) OM OM OM OM SMSC [16] (Inf Fusion’ 20) OM OM OM OM

FMCNOF [37] (TIP’ 21) 0.343±0.007 0.125±0.037 0.358±0.052 186.45 FMCNOF [37] (TIP’ 21) 0.333±0.038 0.237±0.032 0.340±0.032 192.60
FPMVS-CAG [31] (TIP’ 21) 0.576±0.000 0.359±0.000 0.637±0.000 2252.20 FPMVS-CAG [31] (TIP’ 21) 0.554±0.000 0.513±0.000 0.567±0.000 2258.06

SFMC [21] (TPAMI’ 22) 0.602±0.000 0.354±0.000 0.552±0.000 494.68 SFMC [21] (TPAMI’ 22) 0.699±0.000 0.681±0.000 0.727±0.000 495.90
ETLMSC [35] (TIP’ 19) OM OM OM OM ETLMSC [35] (TIP’ 19) OM OM OM OM
MSC-BG [38] (TIP’22) 0.640±0.000 0.484±0.000 0.686±0.000 462.33 MSC-BG [38] (TIP’22) OM OM OM OM

ours 0.694±0.000 0.686±0.000 0.809±0.000 557.09 ours 0.701±0.000 0.729±0.000 0.747±0.000 563.66

Table 4: Ablation experiments on MSRC, HandWritten4, Mnist4 and AWA. (Corth and CSp represent
the orthogonal constraint and the tensor Schatten p-norm regularization, respectively.)

Situations MSRC HandWritten4

Corth CSp ACC NMI Purity ACC NMI Purity

✘ ✘ 0.776 0.653 0.776 0.559 0.572 0.581
✔ ✘ 0.785 0.659 0.785 0.594 0.621 0.615
✘ ✔ 0.886 0.819 0.886 0.725 0.741 0.725
✔ ✔ 0.990 0.987 0.990 0.985 0.969 0.985

Situations Mnist4 AWA

Corth CSp ACC NMI Purity ACC NMI Purity

✘ ✘ 0.898 0.750 0.898 0.020 0.020 0.020
✔ ✘ 0.905 0.759 0.905 0.092 0.147 0.097
✘ ✔ 0.912 0.789 0.912 0.212 0.125 0.213
✔ ✔ 0.977 0.926 0.977 0.646 0.815 0.670

variables. The result of the experiment is shown in Fig 7. It is evident that when the iteration reaches
around 80, the difference decreases significantly until it is about zero finally. When the number of
iteration increases, the clustering metric (such as ACC) overall improves gradually and tends to be
constant with the convergence of the algorithm. It also indicates that our method has good clustering
performances.

More experiments can be found in the appendix.

6 Conclusion

We are concerned in this paper with multi-view clustering based on semi-non-negative tensor fac-
torization (Orth-NTF) with one-side orthogonal constraint. Our proposed model extends NMF to
Orth-NTF so that the spatial structure information of the multi-view data can be utilized to improve
the clustering performance. In addition, the complementary information embedded in different
views is fully leveraged by imposing the tensor Schatten p-norm composed of cluster indicator
matrices. To diminish the computational complexity, we adopt anchor graphs instead of the original
multi-view data. Also, we provide an optimization algorithm for the proposed method and validate
the effectiveness of this approach in extensive experiments on different datasets.
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A Proof of Convergence

A.1 Proof of the 1st part

Lemma 3 (Proposition 6.2 of [20]). Suppose F : Rn1×n2 → R is represented as F (X) = f ◦ σ(X),
where X ∈ Rn1×n2 with SVD X = Udiag(σ1, . . . , σn)V

T, n = min(n1, n2), and f is differentiable.
The gradient of F (X) at X is

∂F (X)

∂X
= Udiag(θ)V T, (27)

where θ = ∂f(y)
∂y |y=σ(X).

To minimize Q̄(v) at step k + 1 in (21) in the main body, the optimal Q̄(v)
k+1 needs to satisfy the

first-order optimal condition

Q̄(v)
k+1 = H̄(v)

k +
Ȳ1,k

µk
.

By using the updating rule Ȳ(v)
1,k+1 = Ȳ(v)

1,k + µk(H̄
(v)
k − Q̄(v)

k ), we have

Ȳ(v)
1,k+1

µk
+ (Q̄(v)

k − Q̄(v)
k+1) = 0.

According to our assumption limk→0 µk(Q̄
(v)
k+1 − Q̄(v)

k ) = 0, we know Y1,k+1 is bounded.

To minimize J at step k+1 in (24) in the main body, the optimal Jk+1 needs to satisfy the first-order
optimal condition

λ∇J ∥J k+1∥pSp⃝ + ρk(J k+1 −Hk+1 −
1

ρk
Y2,k) = 0.

Recall that when 0 < p < 1, in order to overcome the singularity of (|η|p)′ = pη/|η|2−p near η = 0,
we consider for 0 < ϵ≪ 1 the approximation

∂|η|p ≈ pη

max{ϵ2−p, |η|2−p}
.

Letting J (i)
= U (i)

diag
(
σj(J

(i)
)
)
V(i)H

, then it follows from Lemma 3 that

∂∥J (i)∥pSp⃝

∂J (i)
= U (i)

diag

(
pσj(J

(i)
)

max{ϵ2−p, |σj(J
(i)
)|2−p}

)
V(i)H

.

And then one can obtain

pσj(J
(i)
)

max{ϵ2−p, |σj(J
(i)
)|2−p}

≤ p

ϵ1−p

=⇒

∥∥∥∥∥∥∂∥J
(i)∥pSp⃝

∂J (i)

∥∥∥∥∥∥
2

F

≤
n∑

i=1

p2

ϵ2(1−p)
.

So
∂∥J ∥p

Sp⃝
∂J is bounded.

Let us denote F̃V = 1√
V
FV , FV is the discrete Fourier transform matrix of size V × V , FH

V denotes

its conjugate transpose. For J = J ×3 F̃V and using the chain rule in matrix calculus, one can
obtain that

∇J ∥J ∥pSp⃝ =
∂∥J ∥pSp⃝

∂J
×3 F̃

H
V

is bounded.
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And it follows that

Y1,k+1 = Y2,k + ρk(Hk+1 −J k+1)

=⇒ λ∇J ∥J k+1∥pSp⃝ = Y2,k+1,

thus Y2,k+1 appears to be bounded.

Moreover, by using the updating rule Y1 = Y1 + µ(H −Q), Y2 = Y2 + ρ(H − J ), we can
deduce (i = 1, 2)

L(Qk+1,Gk+1,Hk+1,J k+1;Yi,k) (28)
≤ L(Qk,Gk,Hk,J k;Yi,k)

= L(Qk,Gk,Hk,J k;Yi,k−1)

+
ρk + ρk−1

2ρ2k−1

∥Y2,k −Y2,k−1∥2F +
∥Y2,k∥2F

2ρk
− ∥Y2,k−1∥2F

2ρk−1

+
µk + µk−1

2µ2
k−1

∥Y1,k −Y1,k−1∥2F +
∥Y1,k∥2F

2µk
− ∥Y1,k−1∥2F

2µk−1
.

Thus, summing two sides of (28) from k = 1 to n, we have

L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n)

≤L(Q1,G1,H1,J 1;Yi,0))

+
∥Y2,n∥2F

2ρn
− ∥Y2,0∥2F

2ρ0
+

n∑
k=1

(
ρk + ρk−1

2ρ2k−1

∥Y2,k −Y2,k−1∥2F
)

+
∥Y1,n∥2F

2µn
− ∥Y1,0∥2F

2µ0
+

n∑
k=1

(
µk + µk−1

2µ2
k−1

∥Y1,k −Y1,k−1∥2F
)
.

(29)

Observe that
∞∑
k=1

ρk + ρk−1

2ρ2k−1

<∞,

∞∑
k=1

µk + µk−1

2µ2
k−1

<∞,

we have the right-hand side of (29) is finite and thus L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n) is bounded.
Notice from (7) in the main body

L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n)

=

V∑
v=1

∥∥∥S̄(v) − H̄(v)
n+1(Ḡ

(v)
n+1)

T
∥∥∥2
F

+ λ∥J n+1∥pSp⃝ +
ρn
2
∥Hn+1 −J n+1 +

Y2,n

ρn
∥2F

+
µn

2

V∑
v=1

∥H̄(v)
n+1 − Q̄(v)

n+1 +
Ȳ(v)

1,n+1

µn
∥2F , (30)

and each term of (30) is nonnegative, following from the boundedness of
L(Qn+1,Gn+1,Hn+1,J n+1;Yi,n), we can deduce each term of (30) is bounded. And
∥J n+1∥pSp⃝ being bounded implies that all singular values of J n+1 are bounded and hence
∥J n+1∥2F (the sum of squares of singular values) is bounded. Therefore, the sequence {J k} is
bounded.

Because

Y1,k+1 = Y1,k + µk(Qk −Hk) =⇒Hk = Qk +
Y1,k+1 −Y1,k

µk
,

and in light of the boundedness of Qk,Y1,k, it is clear that Hk is also bounded.

And from (8) in the main body, it is evident that ∥Ḡ(v)
k ∥2F ≤ ∥(S̄

(v)
)T∥2F ∥H̄

(v)
k ∥2F , so Ḡ(v)

k is also
bounded. So Gk is bounded.
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A.2 Proof of the 2nd part

From Weierstrass-Bolzano theorem, there exists at least one accumulation point of the sequence
Pk. We denote one of the points P∗ = {H∗,Q∗,G∗,J ∗,Y∗

1,Y
∗
2}. Without loss of generality, we

assume {Pk}+∞
k=1 converge to P ∗.

Note that from the updating rule for Y1, we have

Y1,k+1 = Y1,k + µk(Hk −Qk) =⇒Q∗ = H∗.

Note that from the updating rule for Y2, we have

Y2,k+1 = Y2,k + ρk(Hk −J k) =⇒ J ∗ = H∗.

In the Ḡ(v)-subproblem (8) in the main body, we have

Ḡ(v)
k = (S̄(v)

)TH̄(v)
k =⇒ Ḡ(v)∗

= (S̄(v)
)TH̄(v)∗

.

In the J -subproblem (24) in the main body, we have

λ∇J ∥J k+1∥pSp⃝ = Y2,k =⇒ Y∗
1 = λ∇J ∥J ∗∥pSp⃝.

Therefore, one can see that the sequences H∗,Q∗,G∗,J ∗,Y∗
1,Y

∗
2 satisfy the KKT conditions of

the Lagrange function (7) in the main body.

B Anchor Selection And Graph Construction

Inspired by [21], we adopt directly alternate sampling (DAS) to select anchors.

First of all, with the given data matrices {X(v)}Vv=1, we concatenate the data matrix of each view
along the feature dimension. The connected feature matrix X ∈ Rn×d can be represented as
X = [X(1);X(2); · · · ;X(v)], where d is the sum of the number of features in each view. Let θi
represent the i-th sample of the d-dimensional features, which can be calculated as

θi =

dT∑
j=1

Tra(Xij), (31)

where dT =
∑V

v=1 dv, and Tra(·) represents the transformation of the raw features. Specifically,
if the features are negative, we process the features of each dimension by subtracting the minimum
value in each dimension. Then we obtain the score vector θ = [θ1, θ2, · · · , θn] ∈ Rn. We choose the
point where the maximum score is located as the anchor. The position of the largest score is

Index = argmax
i

θi. (32)

Then the 1st anchor of the v-th view is b(v)1 = x
(v)
Index.

After that, let θIndex be the score of the anchor selected from the last round, then we normalize the
score of each sample by:

θi ←
θi

maxθ
, (i = 1, 2, · · · , n) (33)

Then the score θi can be updated as

θi ← θi × (1− θi). (34)

Finally, we repeat (32) - (34) m times to select m anchors. After selecting m anchors, we construct
an anchor graph of each view S(v), in the same way, as [21].
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C More Details of the Experiments

C.1 Experimental Configurations

The Reuters and NoisyMNIST are implemented on a standard Windows 10 Server with
two Intel (R) Xeon (R) Gold 6230 CPUs 2.1 GHz and 128 GB RAM, MATLAB R2020a.
The MSRC, HandWritten4, Mnist4 and AWA are implemented on a laptop computer with
an Inter Core i5-8300H CPU and 16 GB RAM, using Matlab R2018b. Codes are available:
https://github.com/xdjingli/Orth-NTF.

We repeated the all methods 20 times independently and showed the averages with the corresponding
standard deviations. The specific hype-parameters on each dataset are as follows:

• MSRC: anchor rate = 0.7, p = 0.5, λ = 100.
• HandWritten4: anchor rate = 1.0, p = 0.1, λ = 1180.
• Mnist4: anchor rate = 0.6, p = 0.1, λ = 5000.
• AWA: anchor rate = 1.0, p = 0.5, λ = 1000.
• Reuters: anchor rate = 0.005 (anchor number = 100), p = 0.4, λ = 1209800.
• NoisyMnist: anchor rate = 0.03, p = 0.1, λ = 200000.

C.2 Impact for Parameters

In our proposed algorithm, the number of anchors, the value of p from the tensor Schatten p-norm,
and the value of λ are variable parameters. In this section we take 4 datasets: MSRC, HandWritten4,
Mnist4, and AWA as examples to analyze the effect of these variable parameters.

Effect of the number of anchors. We changed the anchor rate from 0.1 to 1.0 with step size 0.1.
The changes of clustering results and algorithm running time along with the anchor rate were tested
on MSRC, HandWritten4, Mnist4 and AWA, as shown in Fig 4 and Fig 5. When the anchor rate were
0.7, 1.0, 0.6 and 1.0, the best clustering results were obtained on MSRC, HandWritten4, Mnist4 and
AWA, respectively. The time required for clustering is approximately linearly related to the increase
of anchor rate.

Effect of the value of p. We set the value of p to be 0.1 to 1.0 with a step of 0.1. We obtained the
results of ACC, NMI, and Purity in experiments with different values of p as shown in Fig 6. The
best clustering results are obtained on MSRC, HandWritten4, Mnist4 and AWA when the values of p
are 0.5, 0.2, 0.1, and 0.5, respectively. It indicates that tensor Schatten pnorm can take advantage
of the low-rank of views which helps mine the complementary information of different views. This
helps get better clustering results.

Effect of the value of λ. To determine the value of λ, we initially approximate its range using the
magnitude of the tensor Schatten p-norm regularization, followed by a more detailed fine-tuning
within that range. The impact of varying parameter combinations on the method’s performance can
be seen in Fig 7. This figure highlights the clustering performance across different pairings of p and
λ.

(a)MSRC (b)HandWritten4 (c)Mnist4 (d)AWA

Figure 4: Clustering results with different anchor rate on MSRC, HandWritten4, Mnist4 and AWA.
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(a)MSRC (b)HandWritten4 (c)Mnist4 (d)AWA

Figure 5: Time (sec.) with different number of anchors on MSRC, HandWritten4, Mnist4 and AWA.

(a)MSRC (b)HandWritten4 (c)Mnist4 (d)AWA

Figure 6: The influence of p on clustering results on MSRC, HandWritten4, Mnist4 and AWA.

(a) MSRC (b) HandWritten4 (c) Mnist4 (d) AWA

Figure 7: The influence of λ and p on clustering results on MSRC, HandWritten4, Mnist4 and AWA.
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