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A Appendix1

In this appendix, we first provide the implementation details of our proposed E2PNet and corre-2

sponding datasets preprocessing (see Sec. A.1). Subsequentially, the details of evaluation metrics3

used for evaluating the generalization of the EP2T module are presented (see Sec. A.2). Finally,4

we analyze the changes in registration precision under different network settings (see Sec. A.3)and5

report additional quantitative on other vision-based methods (Event-to-Image Reconstruction, Flow6

Estimation).7

A.1 Implementation Details8

In this section, we first present the implementation details of our proposed Event-Points-to-Tensor9

(EP2T) module (see Sec. A.1.1). Based on EP2T, we introduce the training strategy of E2PNet and10

the detailed construction method of event-to-point cloud registration (E2P) dataset (see Sec. A.1.211

and Sec. A.1.3). Finally, we introduce the dataset used for generalization experiments (see Sec.12

A.1.4).13

A.1.1 Architecture of EP2T14

LA and STA. In the Local Aggregation module (LA), after selecting the neighborhood of each15

aggregation center, we calculate the spatio-temporal distance between each center and the corre-16

sponding neighborhood points. For each neighborhood, we use a block consisting of three 2D17

convolutional with kernel size = 1 ∗ 1 and batch normalization layers to extract local aggregation18

distance information. The output dimensions of each layer in the block are (16, 32, 64), and a ReLU19

activation function is added after the last normalization layer.20

Subsequently, the features of the aggregation centers will be sent to the Spatio-temporal Separated21

Attention module (STA). In STA, we use two different attention mechanisms to jointly extract global22

features [1]. Specifically, we use three different 1D convolution with output channel = 64 and kernel23

size = 1 to obtain the query matrix, key matrix, and value matrix. To prevent paying too much24

attention to a certain dimension, we use the multi-head attention (Head = 4) mechanism to learn25

different attention patterns. The difference between self-attention and cross-attention is whether to26

use another domain to calculate the key matrix.27

Tensorized Representation. After the LA, STA and FP (Feature Propagation) modules, each event28

point is embedded with high-dimensional (64 channels) spatio-temporal features fFP(êi) . To convert29

point-based features into grid-shaped features, we pioneered the combination of 3D point cloud30

learning-based and hand-crafted-based methods. Specifically, we separately superimpose the features31

of each channel to obtain a gridded feature tensor consisting of 64 channels. After that, we perform32
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channel max pooling on all feature points to obtain the global features fG(êi) of each point. Finally33

we first use three different yet complementary event tensorization methods [2, 3, 4] to convert the34

set of fG(êi) into different types of 2D grid-shaped sparse feature tensors, and concatenate them to35

produce the final tensorized feature map. Specific tensorization methods are as follows:36

Sum of Features [2] separately superimpose the features of each channel to obtain a gridded feature37

tensor consisting of 64 channel. The feature value on each polarity and channel can be obtained by38

formula (1)39

FSF (h,w,c) =

N∑
i=1

pi ∗ kb (h− hi) ∗ kb (w − wi) ∗ f c
FP(êi) (1)

where polarity p ∈ {−1, 1}, channel c ∈ [1, 64], events ei = (hi, wi, ti, pi) and kb(x) = max(0, 1−40

|x|) is the bilinear sampling kernel, here we use it as an indicator function. Finally, we normalize41

them to get a set of grid-shaped feature tensors with shape 64 ∗H ∗W .42

Event counting [2] separates the positive and negative (pi represents the polarity) events and handles43

them separately. The feature value on each polarity channel can be obtained by formula (2)44

FEC (h,w,p) =

N∑
i=1

kb (h− hi) ∗ kb (w − wi) ∗ kb (p− pi) ∗ fG(êi) (2)

where p ∈ {−1, 1}, events ei = (hi, wi, ti, pi) and kb(x) = max(0, 1− |x|) is the bilinear sampling45

kernel, here we use it as an indicator function. FEC superimposes all the features on the same pixel46

position. Finally, we normalize them to get a set of grid-shaped feature tensors with shape 2 ∗H ∗W .47

Event stacking [3] divides event clouds into B blocks (B=3 in EP2T) equally in time dimension.48

Given a set of N input events {ei}i∈[1,N ] , the events are arranged in the order of appearance time ti,49

i.e. in ascending order of the value of ti. N events are re-divided into B blocks according to time ti,50

the time range of each event stream is
[
(b−1)∗∆t

B , b∗∆t
B

]
, where b ∈ [1, B] and ∆t = tN − t1. The51

calculation method of each blocks is as follow:52

FES(h,w,b) =

N∑
i=1

pi ∗ kb (h− hi) ∗ kb (w − wi) ∗ fG(êi)) (3)

where kb(x) = max(0, 1 − |x|). Finally, we normalize FES to get a set of grid-shaped feature53

tensors with shape 3 ∗H ∗W . Our modification to the method described in the paper [3] involves54

multiplying the event eigenvalues by their corresponding positive and negative polarities, and then55

accumulating them, rather than determining the overall eigenvalue sign solely based on the polarity of56

the latest event. Positive and negative events can cancel each other out, which aligns with the concept57

of event polarity as defined by brightness change direction.58

Event spatio-temporal Voxelization [4] not only divides the event point clouds into B blocks (B=3 in59

EP2T) according to time but also takes the time distance between each event points and the sampling60

points as one of the weights of feature aggregation.61

FEV (h,w,b,p) =

N∑
i=1

kb (h− hi) ∗ kb (w − wi) ∗ kb (b− b∗i ) ∗ kb (p− pi) ∗ fG(êi)) (4)

where b ∈ [1, 3], p ∈ {−1, 1}, b∗i = B∗(ti−t1)
tn−ti

and kb(x) = max(0, 1− |x|). Finally, we normalize62

FEV to get a set of grid-shaped feature tensors with shape 2 ∗ 3 ∗H ∗W . This method not only63

encodes the spatial distribution information of events, but also contains the order in which the events64

are triggered, giving more granular weights to the spatio-temporal features embedding clouds. In65

general, combining the above three event tensorization representation methods, we jointly construct a66

sparse tensor with multiple horizons through the coordinate and embedding feature information of67

the event clouds.68
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A.1.2 Training strategy of E2PNet69

Our proposed E2PNet is trained with two strategies (tensor-based and point-based). The tensor-based70

training strategy is straightforward. After we use EP2T to encode event data into a grid-shaped71

tensor, we directly modify the number of input channels (75 in event-based method, 3 for the original72

RGB-based method) in the baseline to fit the feature channels of EP2T. Specifically, in DeepI2P73

[5], we replace the number of input channels of the first layer in the backbone (resnet34) in the74

image branch. In LCD [6], we replace the first convolutnatbibion layer of the image branch in the75

encoder part. As for the point-based strategy, we add a channel max-pooling layer across the feature76

dimension to obtain global features equivalent to the number of channels. To ensure the number of77

input channels in subsequent networks is the same as tensor-based methods, we add a linear layer78

with output channel = 64 after channel max-pooling. Finally, in both image brach, we replace the79

whole encoder backbone of DeepI2P and the encoder part of LCD with this global feature. Other80

settings remain unchanged in the original paper [5, 6].81

A.1.3 Datasets Preprocessing for E2PNet82

Since there is no dataset for the E2P task, we propose to use multi-sensor SLAM datasets to construct83

the registration relationship GT between event cameras and 3D point clouds. We select MVSEC [7]84

and VECtor [8] as these datasets use LiDAR, traditional cameras and event cameras simultaneously,85

and have good calibration. With these calibration parameters and pose GT, we can establish the GT86

matching relationship between events (images) and point clouds for E2P tasks through the camera87

projection model. (see Eq. 5).88

Z

(
u
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1

)
=

(
fx 0 cx
0 fy cy
0 0 1

)(
X
Y
Z

)
= KPc = KTcwPw (5)

where K is the internal parameter of the camera. We first use LiDAR mapping algorithm [9] to89

construct the complete point cloud map Pw, and then use GT pose Tcw to transform the point cloud90

map into the camera coordinate system to obtain Pc.91

Since the event camera has the same optical lens principle as the traditional camera, we can obtain92

the point cloud within the viewing frustum of the event camera through the camera projection model93

(Eq. 5). However, camera projection for all point clouds is computationally expensive. Equivalently,94

we construct a camera model in the world coordinate system and use this camera model to construct95

a quadrangular viewing frustum. By applying four sets of plane equations, we can filter the range96

of point cloud coordinates effectively. Each screening operation significantly reduces the number97

of point clouds that require future calculations. Experimental results show that the calculation time98

is reduced by more than half when selecting points in the quadrilateral viewing frustum compared99

with projecting all points and performing visibility filtering. The detailed experimental setup in two100

different datasets is as follows:101

MVSEC [7] is a well-known event-based dataset. MVSEC provide data on various motion mode102

(carried on a handheld rig, flown by a hexacopter, driven on top of a car and mounted on a motorcycle)103

in various scenarios. Since only indoor scenes provide high-precision pose and high-quality point104

cloud data, we only use indoor scene data for E2P tasks. We use the indoor-x and indoor-y sequences105

for training and testing respectively, where x ∈ [1, 3] and y = 4. This experimental setup would106

generate a total number of 20,400 event (image) and point cloud pairs with the corresponding pose107

for training and 1,610 pairs for testing. In addition, each point cloud is augmented by adding random108

rotation (up to 0.5 degrees) and translation (up to 0.01 m).109

VECtor [8] is the first event-based SLAM benchmark dataset captured by a full hardware-110

synchronized sensor suite. We use the VECtor dataset mainly to test the E2P effect in large-scale111

indoor scenarios. The VECtor dataset contains three different scenes of campus building interiors,112

each captured by two different motion modalities. We use the units-dolly, units-scooter, corridors-113

dolly and corridors-walk sequences for training, and the school-dolly and school-scooter sequences114

for evaluation. This experimental setup would generate 3,025 pairs for training and 1,544 pairs for115

testing. It is worth noting that our experimental setup uses completely different scenarios when116

training and testing, which will verify the generalization of our EP2T method to new scenarios. The117

same data augmentation method as MVSEC is also used.118
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A.1.4 Datasets Preprocessing for Generalization Experiments119

MVSEC [7] is also evaluated for optical flow estimation. However, the optical flow GT is sparse120

due to using the pose and depth map provided by LiDAR. Follow [2, 3], we use the outdoor-day-2121

sequence (more than 12K grayscale frames) for training and test it on the outdoor-day-1 sequences.122

During training, we randomly select a processing window that spans 1/45 second, from which we123

extract all events and the optical flow GT. However, the training data will be discarded if the number124

of events in the window less than 10,000. It should be noted that the starting position of the processing125

window is chosen randomly, so it may not be aligned with the timestamp of the optical flow GT.126

To address this special condition, an interpolation operation may be necessary. For event-to-image127

reconstruction, we use the same sequence as flow estimation for training and testing.128

ECD [10] contains a set of the asynchronous event stream, intensity images at about 24Hz, GT129

camera poses from a motion-capture system with sub-millimeter precision at 200Hz. As introduced130

in BTEB [11], we use the same sequences cut for testing. Unlike the MVSEC dataset, since BTEB131

does not require GT reconstructed images as a supervisory signal, we randomly but continuously132

sample the entire event sequence (N = 8,192) during training. During testing, we extract all events133

between image frames, and after random sampling, we use these sparse event data to reconstruct an134

image.135

N-Caltech101 and N-CARS [12, 13] are two large public datasets for event-based classification.136

N-Caltech101 is an event camera version of the Caltech101 [12] dataset, which was created by137

moving an event camera that focused on an LCD monitor displaying the original Caltech101 data.138

Following the example of the original paper [12], we randomly select 15 samples from each class139

for testing. In N-CARS dataset, an event camera was mounted behind the windshield of a moving140

car during collection, and each sample contains 59,249 events. The whole dataset comprises 12,336141

car samples and 11,693 background samples, which divided 7,939 cars and 7,482 backgrounds for142

training and others for testing. Similarly, we sample 8,192 events from a large number of events in143

each sample.144

A.2 Evaluation Metrics145

In order to evaluate the generalization of our proposed EP2T module, we employ multiple evaluation146

metrics [2, 14, 15]to compare the results of different tasks.147

Flow Estimation. Average end-point error (AEE [2]) denotes the distance between the end-points148

of the predicted (Y ′) and the GT (Y ) flow vectors:149

AEE =
∑
x,y

∥∥∥∥( u(x, y)Y′

v(x, y)Y′

)
−
(

u(x, y)Y
v(x, y)Y

)∥∥∥∥
2

(6)

where u, v represent the horizontal and vertical optical flow value respectively. Follow [2, 3], we150

limit the computation of AEE to pixels in which at least one event was observed. In addition to151

pixel-level evaluation, we also perform a global outlier ratio analysis. Our experiments regard pixels152

with AEE > 3 as outliers.153

Outlier =

∑H×W
i=1 1 (AEEi > 3)

H ×W
× 100% (7)

where H and W denotes the solution of the flow image, 1(·) is the indicator function, which equals 1154

if the AEE of pixel i is greater than 3, and 0 otherwise.155

Event-to-Image Reconstruction. Mean squared error (MSE) is a classic evaluation metric to156

compare the distance of two different images. Unlike AEE (defined in Eq. 6), the reconstruction task157

is to evaluate all pixels of the image (regardless of whether event exists).158

MSE =
1

n

H×W∑
i=1

∥∥∥Y⃗i − Y⃗ ′
i

∥∥∥
2

(8)

where Y is the GT grayscale image and Y ′ is the reconstructed image by event-based methods.159

Similarly, in addition to pixel-level evaluation, reconstruction tasks often focus on the semantic160
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Table 1: Registration performance (DeepI2P as baseline in MVSEC-E2P dataset) under different
sampling methods.

Method Uniform Random Farthest Point Sampling [17] Voxel Surface Event Sampling [18]

RE(°)(↓) 5.127 12.215 6.521 8.622 5.095
TE(m)(↓) 0.164 4.200 0.249 0.212 0.166

Time(ms)(↓) 1.1 0.3 796 8 421

similarity (LPIPS [15]) and structural similarity (SSIM [14]) between the reconstructed image and161

the GT image to prevent perceptual differences. LPIPS is an image quality evaluation index based on162

deep learning, which measures the semantic similarity between two images, defined as follows:163

LPIPS =
1

N

N∑
i=1

Dnet (Y
′
i , Yi) (9)

where Dnet represents the distance or difference metric between image patches computed by a164

pre-trained deep network (AlexNet [16] in experiments) , N is the number of patch while the patch165

size is 32× 32. SSIM measures how similar two images are in terms of structure, brightness, and166

contrast, detailed defined below:167

SSIM =
(2µY ′µY + C1) (2σY ′Y + C2)

(µ2
Y ′ + µ2

Y + C1) (σ2
Y ′ + σ2

Y + C2)

C1, C2 = (k1L)
2, (k2L)

2

(10)

where µ denotes the mean of pixel values, σ denotes the standard deviation of pixel values, and σY ′Y168

indicates the covariance between pixel values of two images. C1 and C2 are constants for stable169

calculations, L is the dynamic range of pixel values (255 in common) and k1 = 0.01, k2 = 0.03.170

Object Recognition. Accuracy is a commonly used evaluation metric for classification model per-171

formance, which is used to measure the proportion of samples correctly classified by the classification172

model in the prediction process. The simple definition is as follows:173

Accuracy =
M
N

× 100% (11)

where M indicates the number of samples correctly classified by the classification model in the174

prediction, N represents the total number of predicted samples.175

A.3 Additional Results176

The impacts of sampling methods on performance. To better demonstrate the performance177

of E2P under different aggregation centers, we further report the results under different sampling178

methods. As shown in Tab. 1, we compare the performance between Uniform Sampling (US),179

Random Sampling (RS), Farthest Point Sampling (FPS [17]), Voxel Sampling (VS) and Surface180

Event Sampling (SES [18]). For a fair comparison, we choose DeepI2P as the baseline and evaluate181

in MVSEC-E2P dataset. Experiments show that the simple uniform sampling method used in EP2T182

is relatively excellent regarding time efficiency, only slightly slower than the spatio-temporal random183

sampling method. In addition, because uniform sampling overcomes the inhomogeneity of local184

redundancy and global sparseness of event data, the registration precision also shows good potential,185

which is comparable to the learning-based event surface sampling method.186

Qualitative examples. Here, we provide visualizations in Fig. 1 and Fig. 2 to present the effect187

of our EP2T module under different vision-based tasks (optical flow estimation, event-to-image188

reconstruction). Specifically, we demonstrate the event-to-image reconstruction effect of the EP2T189

module on the ECD [10] dataset with BTEB [11] as the baseline. As the limitation we described, it190

would be unwise to take all events between image frames for reconstruction like most frameworks but191

randomly sample 8,192 events. From qualitative experiments, it can be seen that even if the sampling192

operation reduces global information, our framework still maintains good reconstruction performance193

(see Fig. 1). Similarly, we also demonstrated the optical flow estimation effect of the cGAN [19]194

network as a baseline under the MVSEC [7] dataset. Dense optical flow denotes flow with all pixels,195

while sparse optical flow denotes masked flow at the pixels with events (see Fig. 2).196

5



Event GT imageReconstruced

Figure 1: Example of event-to-image reconstruction.
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Figure 2: Example of optical flow estimation.
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