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Abstract

Large scale field-phenotyping approaches have the potential to solve important
questions about the relationship of plant genotype to plant phenotype. Computa-
tional approaches to measuring the phenotype (the observable plant features) are
required to address the problem at a large scale, but machine learning approaches to
extract phenotypes from sensor data struggle without access to (a) sufficiently large,
organized multi-sensor datasets, (b) field trials that have a large scale and significant
number of genotypes, (c) full genetic sequencing of those phenotypes, and (d)
datasets sufficiently organized so that algorithm centered researchers can directly
address the real biological problems. Here, we present SG×P , a novel benchmark
dataset from a large-scale field trial consisting of the complete genotype of over
300 sorghum varieties, and time sequences of imagery from several field plots
growing each variety, taken with RGB and laser 3D scanner imaging. To lower
the barrier to entry and facilitate further developments, we provide a set of well
organized, multi-sensor imagery and corresponding genomic data. We implement
baseline deep learning based phenotyping approaches to create baseline results
for individual sensors and multi-sensor fusion for detecting genetic mutations
with known impacts. We also provide and support an open-ended challenge by
identifying thousands of genetic mutations whose phenotypic impacts are currently
unknown. A web interface for machine learning researchers and practitioners to
share approaches, visualizations and hypotheses supports engagement with plant
biologists to further the understanding of the sorghum genotype×phenotype rela-
tionship. The full dataset, leaderboard (including baseline results) and discussion
forums can be found at http://sorghumsnpbenchmark.com.

1 Introduction
A plant’s phenome is defined by its physical and biochemical characteristics, and is the result

of the interaction of its genome and its environment. Finding large scale associations between
genetic data and measured phenotypes in realistic conditions has the potential to transform real world
agricultural systems, by enabling knowledge-driven breeding to improve crop output or performance.
This is especially important as there is an ever increasing need for crops that are, for example, more
capable of feeding the world, more drought tolerant or otherwise resistant to climate change, or less in
need of energy intensive inputs like synthetic fertilizers. In this work we promote research in this area
by creating benchmark datasets with large scale, multimodal imagery and genetic data from hundreds
of sorghum crop variants grown in real-world field conditions. Sorghum is immensely important for
both food and energy purposes, as it is used extensively as a grain crop and as a source of biofuel, and
has proven to be productive in a variety of environments and resilient to an ever changing climate.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

http://sorghumsnpbenchmark.com


Better understanding the relationship between sorghum genotypes and their expressed phenotypes
has the potential to significantly impact the use of sorghum in food and energy production systems.

Plant breeding pipelines classically measure plant features that are thought to be important, and
then breed new varieties from those that had desirable features. Features may include appearance,
structure and biochemistry (e.g. how much starch is in the stem). Here, our focus is on physical char-
acteristics that are observable from visual imaging modalities. These characteristics, or phenotypes,
include things like leaf shape, leaf counts, stalk height, width, and tillering (the count of how many
stalks one plant produces). Tools like PlantCV [17] define explicit approaches to measuring these
phenotypes under specific, typically indoor, imaging conditions. Learning based approaches to plant
phenotyping are improving over time, and new tools like Segment Anything [26], suggest that deep
learning advances can also improve classic computer vision approaches to estimating these features.

When there are very large datasets, modern deep learning offers an approach for automatically
discovering features that best support learning tasks, rather than defining a priori the most relevant
features to then measure. Dubbed “Latent Space Phenotyping” [18, 54], this data driven approach
uses deep learning to compute features optimized to help solve a learning problem, and then explores
the use of that learned feature space as a digital phenotype. The output feature vector produced by
such a model is a by-product of the deep learning network finding feature abstractions to correctly
predict data labels. If the prediction task is complex enough, the learned features will, ideally,
reflect semantically interesting phenotypes that are in the data, and perhaps even phenotypes, or
combinations of phenotypes, that are not already known to be relevant.

Our contribution is the Sorghum Genotype × Phenotype (SG×P) Benchmark, a large scale,
multimodal benchmark to support discovery of genotype×phenotype relationships. It consists of:

• carefully organized RGB and 3D imagery from a large field site growing over 300 different
sorghum varieties and genetic data derived from full genome sequencing of those varieties,

• benchmarks focused on the classification of images based on a small number of single
nucleotide polymorphisms (SNPs) known to have phenotypic impact, and over 2,700 SNPs
which the impacts are currently unknown,

• implementation and evaluation of baseline deep learning based latent phenotyping, to support
comparison with alternative approaches, and

• a web platform supporting comparison of approaches with algorithm performance leader-
boards, and discussion forums for interaction between machine learning practitioners and
sorghum-focused plant biologists in understanding the SNPs with unknown expression.

The images and dataset files that comprise this benchmark, along with the leaderboards and
discussion forums, can be found at http://sorghumsnpbenchmark.com.

2 Background
2.1 Large Scale Datasets and Deep Learning for Plant Phenotyping

Plant and agricultural datasets have been adopted both for general machine learning development
– such as the Iris Dataset, a flower sub-species classification dataset, initially introduced by [20] in
1936 and still used today for prototyping and testing simple machine learning algorithms – as well
as for more significant plant biology studies that utilize machine learning. In the last decade, deep
learning has yielded huge improvements on a variety of computational tasks, including many in plant
science. To achieve this performance, deep learning based approaches require very large datasets.
Early machine learning focused plant datasets explored variation in the shape and appearance of
leaves from large numbers of trees, including the Flavia dataset [64], the MalayaKew Plant Leaf
dataset [30] and LeafSnap [28]. In recent years, the scale of the datasets has grown. For example, the
Herbarium 2022 Challenge, focused on the fine grained classification of plant species, is comprised
of over 1.05 million images of 15,501 vascular plants [33].

While species identification is a common deep learning task in plant science, there are a large
number of datasets and papers that focus on more specific plant phenotyping tasks – measuring or
characterizing visual features of plants that have been defined by biologists as being interesting or
relevant. Most work in this space focuses on performing a specific task – such as fruit or flower
detection and segmentation [4, 27, 31, 44, 58, 15, 22], cultivar and species identification [3, 5, 24,
31, 42, 43, 57], plant disease classification [61, 19, 38, 52, 61], leaf counting or shape analysis [1,
16, 21, 35, 55, 60], yield prediction [12, 34, 41, 59], and stress detection [2, 10, 11, 36], among
other tasks. There has also been work to develop broader datasets and benchmarks that include
multiple phenotyping tasks, such as [37], a large scale dataset of Arabidopsis and tobacco imagery
with significant annotations, focused on eight different phenotyping tasks.
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In general, this prior work focuses on developing models and algorithms to extract phenotypes
that are defined by biologists, as opposed to discovering novel phenotypes or incorporating plant
genetics in any way. Latent Space Phenotyping [54] is notable in that it uses deep learning to discover
and represent unknown plant phenotypes. Those characteristics of a plant are a complex function of
its genetics and environmental factors, factors not often incorporated into these deep learning models.
Some example work that does include these factors include [32, 45], which develops approaches to
predict traits from genetic information, [53] which generates 3D reconstructions to identify leaf-angle
related loci in the sorghum genome, or, most related to this benchmark, [62] which uses deep learning
to predict the relative functional importance of specific genetic markers and mutations in plants.

In the SG×P Benchmark presented in this paper, we seek to provide an unprecedented scale of
curated visual and genomic data and tasks focused specifically on discovering unknown relationships
between the sorghum genotype and its expressed phenotypes.
2.2 TERRA-REF

Figure 1: The TERRA-REF Field and Gantry-
based Field Scanner in Maricopa, Arizona.

The image and genomic data in the
SG×P Benchmark was collected as part of the
TERRA-REF project [9, 29]. The TERRA-REF
gantry system shown in Figure 1 can monitor over
an acre of crops with imaging sensors including
stereo-RGB, thermal, short- and long-wave hyper-
spectral cameras, and laser 3D-scanner sensors.
The TERRA-REF data includes imagery from sev-
eral seasons where plants in the sorghum Bioen-
ergy Association Panel (BAP) [8]) were grown.
The BAP is a collection of 390 sorghum lines
which have shown potential for bio-energy usage,
and all 390 lines were fully sequenced.

The SG×P Benchmark includes imagery and genetic information curated from the original, full
TERRA-REF dataset to be broadly accessible by the machine learning community. It is organized to
(a) simplify challenges that arose in capturing data across multiple sensors from differing capture
times, sensor failures, and weather conditions, and (b) construct a dataset and evaluation protocol to
make the genotype×phenotype comparison accessible to those without a strong biological background.
The original TERRA-REF dataset and the derived datasets used in the SG×P Benchmark are released
under a CC0 1.0 Universal Public Domain Dedication license.
2.3 Sorghum and the Genotype×Phenotype Relationship

Sorghum is a genus of grass plants, and a critical crop globally for human and livestock consump-
tion, and for bioenergy. Sorghum’s drought tolerance and ability to grow in harsh environments make
it a valuable crop for food security in regions with unreliable rainfall, or regions being impacted by
climate change, and currently provides vital nutrition in many developing countries. Furthermore,
sorghum has a high potential for biofuel production – its high biomass yield and ability to thrive in
varying environmental conditions make it a sustainable alternative to fossil fuels. A deeper under-
standing of the genotype × phenotype relationship – the relationship between the plant’s genetics and
its actual expressed traits – is crucial for breeding improved sorghum crops for food and energy pur-
poses. The complex interplay between genes and expressed phenotypic traits in sorghum can impact
various characteristics such as yield, drought tolerance, nutrient content, and biomass accumulation.

Identifying the impact of specific genes on plants and their interaction with the environment is
a crucial area of research in plant biology [6, 7, 13, 39, 46], and the SG×P dataset and benchmark
seeks to advance the understanding of the sorghum genotype×phenotype relationship, and the ways
that machine learning and computer vision can be used to uncover these relationships.

3 SG×P Benchmark
A high level overview of the plant and sorghum genetics helps to understand the data and labels

in this benchmark. Sorghum has 10 chromosomes, each of which contains genetic instructions in the
form of DNA – these genetic instructions drive both the form and function of the plant. Sorghum is
a diploid species, meaning that it has two copies of each of these 10 chromosomes. The DNA that
comprises these chromosomes is composed of nucleotides (either A,C,T,G), which form sequences
that direct the plant to produce specific proteins. Variations at specific locations in these sequences,
can be defined by a change of a single nucleotide (e.g. an A is changed to a G). These variations are
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Chromosome Gene Position Known Controlled Phenotype
1 001G269200 51588525

Wax composition [56])1 001G269200 51588838
1 001G269200 51589143
1 001G269200 51589435
6 006G067700 42805319 Plant height and structure, stem length and internode length [67, 25])6 006G067700 42804037
6 006G147400 50898459

Plant height and structure, and sugar composition [66])

6 006G147400 50898536
6 006G147400 50898315
6 006G147400 50898231
6 006G147400 50898523
6 006G147400 50898525
6 006G057866 40312463 Flowering time and maturity [14, 63, 40])6 006G004400 2697734
9 009G229800 57040680 Pigmentation and tannin production [65])

Table 1: Details about the SNPs in the dataset with known phenotypic expression.

called single nucleotide polymorphisms (SNPs), and they are important as they can alter the proteins
produced by the plant, affecting its structure and performance.

Because Sorghum is diploid, a particular line of sorghum may have a variation on one or both
copies of its chromosome. If the variation is on only one copy, that line of sorghum is termed
heterozygous for that SNP; if the variation is on both copies, it is called homozygous. We only
consider homozygous cases to simplify the machine learning task and the biological interpretation.
Additionally, while in principle there could be different variations at the same location, in our case
each location is unique (so there is no case where at one SNP location an A is changed to a C in some
lines, and the same A is changed to a G in other lines).
3.1 Tasks

The overarching task in this benchmark is a binary classification task: to predict whether a
plant has the reference or alternate version of a SNP based on an image or images of that plant
from one or more imaging modalities. The benchmark includes datasets with RGB and 3D im-
ages for 15 SNPs with known genotype×phenotype relationships, and 2,717 SNPs with unknown
genotype×phenotype relationships (the specifics of the data are detailed in Section 3.2).

Details about the 15 SNPs with known phenotypic expression can be found in Table 1 – these
SNPs are known to control phenotypes such as leaf wax composition, plant height and structure,
pigmentation, and flowering time. In prior work [50, 68], we showed that simple classification models
trained on RGB images can accurately predict whether an image shows a plant with a reference or
alternate version of many of these SNPs. Additionally, heatmap-style explanatory visualizations from
these models often focused on the same traits that the SNPs were known to control. An example of
this is shown in Figure 2 (right), which shows an image of a sorghum plant that has the reference
version of a SNP that controls leaf wax composition, and the corresponding visualization for why a
neural network trained on the binary classification task predicted the reference label, highlighting
that the network learned to focus on the waxy build-up on the plant.

We encourage machine learning researchers engaging with this benchmark to first develop and
evaluate approaches on these markers with known phenotypic expression – all of these markers have
visual traits that are detectable and machine learning approaches to perform binary classification task
on these datasets can achieve significantly above chance performance. This makes these SNPs useful
for getting comfortable with the data in the benchmark and checking the validity of approaches.

These 15 SNPs, however, are perhaps less exciting to consider than the 2,717 SNPs in the
SG×P Benchmark that have unknown phenotypic expression. While many SNPs are “synonmyous” –
meaning that the nucleotide change does not result in an amino acid change in the protein sequence,
and so no change is made to the structure, function or interaction of the encoded protein with other
molecules – these 2,717 SNPs were identified as potential “high impact” polymorphisms. When a
SNP is referred to as potentially high impact, it means that the nucleotide change in that SNP has the
potential to significantly alter the protein coding sequence or its function. Many of these changes
may not result in obvious changes to the phenotype – but some certainly will. Finding those SNPs
and uncovering their phenotypic expression is exactly the goal of this benchmark, and will be key to
better understanding the genotype×phenotype relationship in sorghum and developing new lines of
sorghum that have desirable properties.
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Figure 2: (left-top) Example RGB imagery from the dataset. (left-bottom) A false color 3D line
scanner image from approximately the same location and date as the RGB image. The line scanner
data is shown with false coloring that highlights surface normal. (right) An image of a sorghum plant
that has the reference version of a SNP that controls leaf wax composition, and the class activation
map showing the model trained on this task learned to focus on wax buildup.

3.2 Data
The entire SG×P Benchmark consists of 543,574 RGB images and 536,153 false color 3D line

scanner images from the 2017 TERRA-REF growing season. There are 105 days with data captured
over the course of the 140 day growing season; some days did not have any data capture. Each
sorghum cultivar in the SG×P Benchmark was grown in two spatially separated plots within the field.
We provide images from both plots in our datasets, organized by cultivar.

To construct a simple image dataset, RGB images that cross plot boundaries are split into multiple
images, so that every image contains pixels of plants from only a single plot. This guarantees that all
images in our benchmark only show images of a single cultivar. The 3D line scanner output is also
cropped to plot boundaries. We convert the raw line scanner output from a three dimensional voxel
representation to a two dimensional false color image, where the hue encodes the surface normal at
each pixel location, and the value encodes distance from the camera (completely black pixels are
locations that were occluded). An example of this false color representation of the 3D line scanner
output can be seen in Figure 2 (bottom). For convenience, we will refer to these false color images as
the 3D images in the remainder of the paper. Researchers interested in using other representations of
the 3D data are welcome to download it from the original TERRA-REF data [29], but should include
information about their processing and data format when submitting results to the leaderboard.

We use these images across all of the SNP prediction datasets. There are 15 datasets focused on
SNPs with known phenotypic expression and 2,717 SNPs with unknown phenotypic expression. For
every one of these SNPs, we provide six datasets: RGB training and testing datasets, 3D training
and testing datasets, and multimodal training and testing datasets that contain 3D-RGB pairs. The
reason we consider a multimodal benchmark in addition to benchmarks for each separate modality, is
that we believe there may be interesting and complex phenotypes that are observable using multiple
modalities that may not be observable using only one modality (e.g., a variation in a particular SNP
might produce taller and greener leaves).

For every image including in any dataset in the SG×P Benchmark, we also provide additional
metadata: the sorghum cultivar and subpopulation shown in the image, the TERRA-REF plot from
which the image was captured, and the timestamp that the image was captured. Additional information
about this metadata can be found in the Appendix. Benchmark participants are encouraged to explore
ways to incorporate this metadata information in their approaches.
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In order to generate training and testing splits for each SNP, we find whether there are more
reference or alternate cultivars. We take a randomly selected third of the cultivars from whichever
label has fewer cultivars and put their images in the SNP-specific test set. We then complete the test
set with images from an equal number of randomly selected cultivars of the other label. In order for a
SNP to be included in the SG×P Benchmark, we require that there are at least 20 reference and 20
alternate cultivars. This means that there is a minimum of 6 reference and 6 alternate cultivars in each
test set. We then put all other cultivars in the training set, maximizing the amount of data available for
training, and guaranteeing that there is no overlap in cultivars between the training and testing sets.

Figure 3 shows distributions of images and labels for different subsets of the SG×P dataset.
Notably, Figure 3 (c) shows the training data distribution of reference minus alternate labels per SNP,
normalized by the total number of images in the dataset. Points that are farther to the left have more
alternate images than reference images, and points that have more reference images than alternate
images. This plot shows that the training datasets often have significant label imbalance, typically
with more reference images than alternate images. The test sets are all balanced to have an equal
number of reference and alternate images (guaranteeing that the average random model achieves 50%
accuracy on the binary classification task). We make sure there is no overlap in the cultivars included
in the training and testing datasets. This ensures that models cannot overfit on trivial, non-biologically
relevant features (such as unique patterns in the dirt or in the lighting conditions). Instead, models that
generalize from the cultivars in the training datasets to the entirely different cultivars in the testing
datasets are learning biologically relevant visual features.

Figure 2 shows an example pair of multimodal images. Although reasonably well aligned, the
alignment between sensors is not perfect because the RGB camera and the 3D line scanner camera
are physically in different parts of the gantry sensor box, and because the RGB images and 3D line
scanner images are typically captured at different times of day. This lack of spatial and temporal
alignment is a challenge for multi-sensor fusion approaches, and different approaches are possible.

Our approach to creating simple multimodal training and testing datasets is to provide pre-
computed 3D-RGB data pairs. To create the dataset we took each of the 3D images from the
SNP-specific datasets and selected a random RGB image from the closest date in time and the same
plot, to create 3D-RGB pairs. We exclude any 3D images that do not have a nearby RGB image from
within 10 days. In this construction, some RGB images that are included in the SNP-specific RGB
datasets may not be used, some 3D images may not have a valid RGB match, and some RGB images
may be the match for multiple 3D images. More details on the multimodal dataset construction are in
the Appendix. While we believe these RGB-3D pairs are a useful data structure for initial exploration
of multimodal sensor fusion for genotype×phenotype discovery, we encourage practitioners utilizing
this benchmark to consider other approaches that may be more complex.

4 Baseline Approach
We provide baseline deep learning models and results for all SNPs in the SG×P Benchmark. Prior

to training task specific baseline models for each of the SNPs, we pre-train a ResNet-50 model [23]
for RGB and 3D imagery, to learn useful, generalizable sorghum features. To do this pre-training, we
leverage additional publicly available data from the TERRA-REF project – 110,638 RGB images and
141,113 3D scanner images from 188 cultiavrs grown in 2019, processed in the same way as the data
in this benchmark. The 188 cultivars that are part of this 2019 dataset have no overlap with the ones
in the SG×P Benchmark, but have significant phenotypic variation, meaning models trained on this
data learn useful visual features for tasks relating to sorghum.

The pre-trained ResNet-50 models are trained to classify which of 375 field plots an image comes
from using cross-entropy loss. We train one model with RGB imagery and one with 3D imagery.
The models have a 2048-dimensional global average pooling layer, followed by a 128-dimensional
fully connected layer, and then the plot level classification output. During this pre-training, images
(RGB or 3D) are resized to 512x512 pixels and randomly flipped (horizontally and vertically). We
use PyTorch, training for 25 epochs with the SGD optimizer with an initial learning rate of 0.01, and
a learning rate decay of 0.1 every 10 epochs. The pre-trained model takes roughly one day to train on
a single 16GB P100 Nvidia GPU with a batch size of 30.

After pre-training, we chop off the final plot classification layer. For each SNP prediction task in
the SG×P Benchmark, we then take this pre-trained model and train a single fully connected layer
with two outputs, corresponding to the Reference and Alternate labels, using the SG×P Benchmark
training datasets (because the pre-trained model was trained on data from an entirely different growing
season, there is no risk of data leakage or overfitting). For the multi–modal tasks, we first concatenate
the 128-dimensional output features extracted by each of the RGB and 3D pre-trained models and
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(a) (b) (c)

(d) (e)

Figure 3: These plots show distributions of number of images by dataset, by sensor and by label.
Figure (c) in particular conveys the class imbalance in the training data, showing the distribution
of reference images minus alternate images in the training data (normalized by the total number of
images for that dataset). Datasets with more reference images are farther to the right, and tasks with
more alternate images are farther to the left.

then train a single fully connected layer on top of those concatenated features. In order to facilitate
fast training of these SNP-specific models, we first extract the 128-D output features for every image
in the dataset, and then train only the final fully connected layer for each SNP classification task. We
use a batch size of 256 when training the SNP-specific models. Due to significant class imbalance in
many of the datasets, we use a balanced sampler to guarantee a roughly equal number of Reference
and Alternate examples in each training batch. We discuss the results of this baseline in Section 5,
and provide links to the data used for pre-training, as well as our pre-trained model and training code,
at the benchmark website (http://sorghumsnpbenchmark.com).

5 Evaluation
For every SNP in the SG×P Benchmark, we consider two different evaluation paradigms for each

of the imaging modalities: one that is per-image, and one that is per-cultivar. The evaluation metric is
binary classification accuracy and per-image evaluation is straight-forward – for every image in the
test dataset, is the predicted SNP label correct or not? This is averaged over the entire test set (every
test set in the SG×P Benchmark has an equal number of Reference and Example images, meaning
that the average random model would achieve 50% accuracy on each task). We report on the results
of the baseline approach described in Section 4 for the SNPs with known phenotypic expression in the
middle three columns of Table 2. In all cases, the baseline models achieve significantly above chance
performance, with the multimodal approach often outperforming the single-modality approaches.

This per-image evaluation is valuable for three reasons. First, many baseline ML classification
approaches are designed to ingest a single image or image pair and produce a classification. Second,
many variations of explainable image classification [47, 48, 49, 51, 69] operate on single images at a
time to highlight visual features that affected the classification result. This approach to explainability
can be useful when trying to understand genotype×phenotype interactions.

The per-image evaluation, however, is not necessarily always the most appropriate. Some genetic
variations may only impact the plant during a small portion of the growing season – for example,
causing changes to the shape, size or timing of flowers that the plant produces. These sorts of
variations would not be meaningfully correlated with visual features in images from other parts of the
growing season. The goal of the SG×P Benchmark is to uncover meaningful and as-yet unknown
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By Image By Cultivar
SNP RGB Only 3D Only RGB+3D RGB Only 3D Only RGB+3DChromosome Gene Position

1 001G269200 51588525 0.615 0.569 0.640 0.640 0.700 0.700
1 001G269200 51588838 0.601 0.564 0.582 0.652 0.696 0.609
1 001G269200 51589143 0.622 0.597 0.637 0.662 0.662 0.676
1 001G269200 51589435 0.640 0.606 0.665 0.781 0.750 0.812
6 006G067700 42805319 0.604 0.584 0.630 0.654 0.654 0.744
6 006G067700 42804037 0.597 0.571 0.620 0.653 0.681 0.667
6 006G147400 50898459 0.539 0.536 0.578 0.553 0.605 0.684
6 006G147400 50898536 0.505 0.569 0.578 0.500 0.684 0.658
6 006G147400 50898315 0.527 0.584 0.600 0.553 0.658 0.711
6 006G147400 50898231 0.617 0.578 0.650 0.735 0.618 0.765
6 006G147400 50898523 0.578 0.568 0.626 0.553 0.579 0.632
6 006G147400 50898525 0.625 0.576 0.650 0.763 0.658 0.842
6 006G057866 40312463 0.670 0.543 0.659 0.850 0.650 0.850
6 006G004400 2697734 0.624 0.630 0.709 0.763 0.816 0.842
9 009G229800 57040680 0.587 0.590 0.636 0.611 0.704 0.648

Table 2: Binary classification performance of the baseline approach on the SNPs with known
genotype×phenotype relationships. Performance is reported for each sensor separately, and when
using sensor fusion, for both individual images and when aggregated by cultivar.

genotype×phenotype relationships, including those that may not be observable in every image in the
benchmark. To support this goal, we provide a more flexible, per-cultivar evaluation.

In the per-cultivar evaluation, researchers provide a single prediction for each of the cultivars in
the test set (as opposed to each image). As in the per-image evaluation, the number of cultivars that
have the Reference versus Alternate labels is the same, so the average random model would achieve
50% accuracy. We note that the number of cultivars per label for some SNPs can be relatively small –
e.g. about 10 – meaning that we expect there to be more noise in the average accuracy of models
on this evaluation. In the results shown in the last three columns of Table 2, we used the simplest
approach to per-cultivar evaluation: we decided whether a cultivar is Reference or Alternate for a
particular SNP by taking the mode of the predictions from all of the images that belong that cultivar.

Researchers have flexibility in how they produce the per-cultivar prediction. They could, for
example, only consider images from a particular portion of the growing season, or weight images from
different parts of the growing season differently. They could develop model architectures that consider
multiple images simultaneously. In general, the per-cultivar evaluation provides researchers with the
ability to develop models that explain complex genotype×phenotype relationships in sorghum.

One way that the SG×P Benchmark varies from traditional benchmarks is that it contains a
significant number of tasks where it is unknown if above-chance performance is even possible. While
we have structured the SG×P Benchmark to include SNPs that are already well understood for proof
of concept and validation, in addition to the SNPs with unknown genotype×phenotype interations
that are potentially “high impact”, in reality, many of these unknown SNPs will have minimal impact.
While this uncertainty makes our benchmark unique in machine learning datasets and competitions,
it is not unique in science – the goal of this benchmark is discovery.

6 Web Page, Leaderboards & Discussion Forums
To support that discovery, we provide a web interface that has not only traditional leaderboards

where researchers can compare their numerical performance to others, but also discussion forums
where they can interact with plant biologists, sharing about their approaches, what they think
their models are learning, and participate in back and forth dialogues to drive this discovery of
unknown genotype×phenotype relationships in sorghum. The website can be found at http://
sorghumsnpbenchmark.com. Screenshots of this web interface can be found in Figures 4 and 5.

Figure 4 (left) shows the main page for the SG×P Benchmark. This page includes leaderboards
for each of the SNPs in the Benchmark, with their current top accuracy by image and by cultivar, as
well as the attribution for those leading results. Users can switch between leaderboards for each of
the different imaging modalities. By clicking on the SNP name on these leaderboards, users are taken
to a detail page for that SNP (seen in Figure 4 (right)). This page includes metadata for the SNP (its
chromosome, gene and position on the chromosome), details about each of the training and testing
datasets including links to download the data, SNP-specific leaderboards for each of the imaging
modalities, and links to any Discussion Board posts that are about that SNP.
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Figure 4: (left) The overall leaderboard for the SG×P Benchmark, showing the current top results for
different SNPs. (right) The detail page for one of the SNPs, including metadata, dataset information,
the current SNP-specific leaderboards, and discussion board posts about the SNP.

In Figure 5, we show one such example discussion for the SNP highlighted in Figure 4 (right).
This SNP was interesting because the baseline model achieved well above chance accuracy in all
modalities, but also saw a significant improvement from using the multimodal data. We show
an example discussion, where we posted about this interesting behavior and one of the biologists
on our team replied with information from the sorghum literature about the SNP and a follow
up asking about visual features that the machine learning model was focusing on. This back-
and-forth engagement is precisely the goal of the SG×P Benchmark – to drive the discovery of
genotype×phenotype relationships that can lead to new understanding about sorghum and direct
development of new and improved sorghum crops.

7 Limitations
There are several possible limitations of this work. The focus on sorghum may limit the generaliz-

ability of the findings. While we believe the structure of the machine learning approaches that on this
dataset would generalize, other crops may exhibit unique genetic and phenotypic characteristics that
require different approaches. The data represents a snapshot of sorghum variants grown in specific
field conditions, which may introduce biases and limitations in capturing the full range of genetic and
environmental factors that influence sorghum phenotypes. The benchmark is also limited to focusing
on above ground traits that are visible in RGB and 3D data – this ignores any traits that are expressed
below group or are not visible in these imaging modalities. It also is setup to consider the genetic
impact of individual SNPs and does not consider more complex genetic interactions.

The SNPs chosen were ones that have a potential biological impact because they change the
amino acid that the DNA encodes. However, that amino acid may not be important to the function of
the plant, so many, perhaps most of these SNPs will have no biological impact. This limits the value
of these tasks for researchers focussed on demonstrating that generic machine learning algorithms
work in this domain. These tasks may be more compelling for researchers that want to be involved in
discovering biological function; in this case we provide the discussion forum because an machine
learning algorithm that scores well only goes part of the way to discovering the phenotype changed by
that SNP, and additional work with visualizations or other explainability approaches may be needed
to discover the genotype×phenotype relationship.

8 Conclusion
This Sorghum Genotype × Phenotype (SG×P ) Benchmark provides a resource for exploring the

relationships between genetic data and phenotypic expression in sorghum. By integrating large-scale,
multimodal imagery and genetic information from a large number of sorghum species grown in
real-world field conditions, this benchmark enables researchers to uncover significant insights into
the use of sorghum in food and energy production systems. The benchmark includes baseline deep
learning approaches, allowing for comparison to future algorithms that learn data-driven features
relevant to understanding sorghum phenotypes. We create a combined leaderboard and discussion
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Figure 5: A discussion board post about the SNP shown in Figure 4.

forum to further facilitate collaboration and knowledge-sharing among machine learning practitioners
and sorghum-focused plant biologists.

The SG×P Benchmark focuses specifically on sorghum, but we believe that algorithms and
methodologies that are effective on this benchmark have the potential to apply to other crops and
organisms with similar scales of imagery and genetic data. In building the benchmark, we have
worked to make the tasks directly relevant to understanding some part of the relationship between
genotypes and phenotypes, to simplify and catalyze interdisciplinary interactions within this research
domain. In doing so, we hope that the SG×P Benchmark thus serves as a catalyst to unraveling
the intricate connections between genetic information and observable traits in sorghum and beyond,
with the ultimate goal of addressing global challenges in food production, ecosystem resilience, and
sustainable development.
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