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Abstract

Federated learning (FL) has emerged as a powerful scheme to facilitate the col-
laborative learning of models amongst a set of agents holding their own private
data. Although the agents benefit from the global model trained on shared data, by
participating in federated learning, they may also incur costs (related to privacy and
communication) due to data sharing. In this paper, we model a collaborative FL
framework, where every agent attempts to achieve an optimal trade-off between her
learning payoff and data sharing cost. We show the existence of Nash equilibrium
(NE) under mild assumptions on agents’ payoff and costs. Furthermore, we show
that agents can discover the NE via best response dynamics. However, some of the
NE may be bad in terms of overall welfare for the agents, implying little incentive
for some fraction of the agents to participate in the learning. To remedy this, we
design a budget-balanced mechanism involving payments to the agents, that ensures
that any p-mean welfare function of the agents’ utilities is maximized at NE. In
addition, we introduce a FL protocol FedBR-BG that incorporates our budget-
balanced mechanism, utilizing best response dynamics. Our empirical validation
on MNIST and CIFAR-10 substantiates our theoretical analysis. We show that
FedBR-BG outperforms the basic best-response-based protocol without additional
incentivization, the standard federated learning protocol FedAvg (McMahan et al.
[2017]), as well as a recent baseline MWFed (Blum et al. [2021]) in terms of
achieving superior p-mean welfare.

1 Introduction

Federated Learning (FL) has emerged as an effective collaborative training paradigm, where a
group of agents can jointly train a common machine learning model. The success of collaborative
learning paradigms is visible in the domains of autonomous vehicles (Elbir et al. [2020]), digital
healthcare (Dayan et al. [2021], Xu et al. [2021], Nvidia [2019]), multi-devices (Learning [2017]),
and biology (Bergen and Petryshen [2012]). Although such collaborative learning is immensely
beneficial to the agents, individually, they may not be incentivized to share their data. This is because
sharing data may incur costs attributed to bandwidth use, privacy leakage, and the use of computing
resources. In turn, high costs and low learning payoffs may cause some of the agents to drop out of
FL, resulting in subpar learning. As noted by Blum et al. [2021], the success of FL systems depends
on its ability to attract and retain a large number of federating agents.

Thus, it is crucial to achieve fairness and welfare guarantees for all participating agents.

This calls for game-theoretic modeling and analysis of the agent’s payoff and costs, and subsequent
mechanism design to incentivize participation. Towards the former, Blum et al. [2021] introduce a
model, where every agent receives a payoff from the collaboration measuring the “learning benefit”
the agent derives from the total data shared. In particular, when each agent i contributes si units of
data, the payoff for agent i is captured by ai(s), where s = ⟨s1, s2, . . . , sn⟩ is the data contribution
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profile, or sample vector. Blum et al. [2021] consider the constrained cost-minimizing model, where
each agent minimizes her data contribution (si) subject to the requirement that her payoff should be
larger than a threshold (ai(si, s−i) ≥ µi). They show that a Nash equilibrium (NE) (Nash [1951]),
arguably the most sought after solution concept in game theory, may not always exist in this model.
They derive sufficient conditions for existence of NE, as well as provide novel structural results about
the equilibria.

We note that an agent’s cost for sharing data may be more complex than just the size of the total data
shared. There are studies dedicated to quantifying the losses (attributed to data collection, processing,
and privacy) that are incurred with increased sharing of data (Li and Raghunathan [2014], Laudon
[1996], Jaisingh et al. [2008]). Furthermore, within game theory (and economics) typically agents are
considered as net utility maximizers, i.e., maximizing payoff minus cost, for example value minus
payment in auctions (Myerson [1981]), and revenue minus cost in markets (Huber et al. [2001],
Börgers [2015]). To capture these aspects, in this paper we propose an unconstrained utilitarian
model, where we define the utility ui(s) of each agent i as the difference between her payoff and her
cost of sharing data, i.e., ui(s) = ai(s) − ci(si), where ci(si) denotes the cost incurred by agent
i on sharing si data samples. Each agent aims to maximize their utility. This model is natural in
FL settings where there is a natural coupling between payoffs and costs, and there are no hard cost
constraints, i.e., having an upper bound on the total cost that an agent can incur. Since utility functions
are directly indicative of the welfare for the agents, this facilitates defining global fairness and welfare
criteria in terms of the utilities of the agents. This motivates the following questions:

When agents strategize on data contribution to maximize their net utility, does a Nash equilibrium
always exist? If yes, then can agents actually discover a Nash equilibrium when acting

independently? Can any welfare function of utilities of the agents be optimized at such a Nash
equilibrium by designing new rules (mechanisms)?

The goal of this paper is to address the above questions. Before we describe our contributions, we
note that Karimireddy et al. [2022] also consider a framework similar to ours, by defining the utility
function to be payoff minus cost. However, their focus is data maximization and avoiding free-riding,
while the focus of our paper is to design mechanisms that achieve fairness and welfare for all agents.
Furthermore, our model generalizes the model of Karimireddy et al. [2022] as we do not require the
agents’ data to be identically distributed and in turn to have identical payoff functions.

1.1 Our Contributions

We work under the concavity assumption on the utility functions. In particular, we assume that the
payoff functions are concave and cost functions are convex. These assumptions are standard in the
literature (Blum et al. [2021], Karimireddy et al. [2022]). Convexity of cost functions is a natural
choice since it captures the property of increasing marginal costs. For instance, data sharing through
ordered selection, i.e., sharing records in ascending order of costs involved for collecting the records,
results in convex cost functions. There are more models that result in strictly convex cost functions (Li
and Raghunathan [2014]). Similarly, several important ML models exhibit concave payoff functions;
for instance payoffs in linear or random discovery models, random coverage models, and general PAC
learning are all concave – see Section 2.1. Furthermore, there is empirical evidence that the accuracy
function in neural networks under the cross-entropy loss is also concave (Kaplan et al. [2020]).

Existence and Reachability of Nash Equilibrium: Under the concavity assumptions, we show
that a Nash equilibrium (NE) is guaranteed to exist. We note that our existence result holds for more
general settings than those of Blum et al. [2021] – we do not assume that the cost functions are linear,
or that the utility functions have bounded derivatives. In particular, our result shows the existence of
NE under the general PAC learning framework (see Section 2.1); under this setting an equilibrium in
the model of Blum et al. [2021] fails to exist. We also demonstrate that if the concavity assumption is
relaxed, there exist instances which do not admit NE.

Furthermore, we show that the agents can discover a NE through an intuitive best response dynamics,
where agents update their data contribution proportional to the gradient of their utility functions in the
direction that increases their utility. We show that for strongly concave utility functions and under the
mild assumption of the gradient of the utilities being bounded, the best response dynamics converges
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to an approximate NE in time polynomial in O(log(ε−1)). This contribution may be of independent
interest to equilibrium computation in concave games.

A Fair and Welfare Maximizing Mechanism: In general, a Nash equilibrium need not be fair or
maximize any notion of welfare for the agents (see Example 1). Therefore, we next focus on designing
mechanisms that optimize welfare of the agents at its NE. The generalized p-mean welfare, defined
to be the pth -norm of the utilities of the agents ( 1n

∑
i∈[n] ui(s)

p)
1
p for p ∈ (−∞, 1], constitutes a

family of functions characterized by natural fairness axioms including the Pigou-Dalton principle
(Moulin [2003]). This notion encompasses well studied notions of fairness and economic welfare,
such as (i) the average social welfare ( 1n

∑
i∈[n] ui(s)) when p = 1, (ii) the egalitarian welfare

(mini∈[n] ui(s)) when p = −∞, which is a fundamental measure of fairness, and (iii) the Nash
welfare (

∏
i∈[n] ui(s))

1/n in the limiting p → 0 case, which is a popular notion in social choice
theory that achieves a balance between welfare and fairness (Varian [1974], Caragiannis et al. [2019]).

As our second main contribution, for linear costs, we design a budget-balanced mechanism that
always admits a Nash equilibrium. The mechanism involves payments, however, budget-balancedness
ensures that the total payment of all the agents is zero, and thereby the central server operates on
no-profit-no-loss. Moreover we show that when the sample vector at NE is positive, i.e., all agents
contribute positive amount of data samples, then the NE maximizes the p-mean welfare among all
positive sample vectors. Since we can ensure the server does not communicate with an agent who
does not contribute any data points, insisting on positive sample vectors is a mild assumption.

Our mechanism builds on ideas from a mechanism of Falkinger et al. [2000] for the efficient
provisioning of public goods. The key idea is to compensate an agent who incurs a cost higher than
the average cost incurred by other agents via a subsidy proportional to her excess cost; likewise,
agents incurring a lower cost than average of others are proportionally taxed. By setting the level
of tax/subsidy carefully, we show that the NE of the mechanism are p-mean welfare maximizing.
To the best of our knowledge, our work is the first to explore this intimate connection between FL
and public goods provisioning. Our results highlight the promise of bridging the fields of machine
learning and social choice theory.

Once we have established the mechanism, we show that a corollary of our first main result implies that
the best response dynamics under this mechanism will lead to the discovery of the p-mean welfare
maximizing Nash equilibrium.

Empirical Evaluation: We design a distributed training protocol for FL based on our mechanism,
called FedBR-BG. We compare our algorithm with three other algorithms: the distributed protocol
for the vanilla mechanism without budget balancing FedBR, the standard federated learning protocol
FedAvg (McMahan et al. [2017]), and a recent adaptation of FedAvg called MWFed (Blum et al.
[2021]). We show that our budget-balancing algorithm achieves superior p-mean welfare under
different settings on two datasets, MNIST (LeCun et al. [2010]) and CIFAR-10 (Krizhevsky [2009]).

1.2 Related Work

We mention some additional literature on welfare maximization and incentives in FL, as well as other
related mechanisms in public goods theory.

Welfare maximization in FL. Typically federated learning protocols compute a model which
maximize some weighted sum of agent accuracies (i.e. utilties). Examples of such protocols include
the standard FedAvg (McMahan et al. [2017]), AFL (agnostic FL) (Mohri et al. [2019]), and q-FFL
(Li et al. [2020]). However, unlike our work, all these methods ignore the strategic aspects arising
from costs involved in data sharing, and instead assume agents honestly contribute all their data.

Incentives in FL. This line of work adopts game theory for incentivizing the contribution of data
owners. Common models include the Stackelberg game, non-cooperative game, and coalition game.
More specifically, the Stackelberg game is employed to optimize the utility of both the server and
agents Feng et al. [2019]. On the other hand, in non-cooperative games, the server or the agent seeks
to maximize its own utility Zou et al. [2019]. While most previous methods analyze the properties of
a certain scenario, we aim to design mechanisms that achieve fairness and welfare for all agents.
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Mechanisms for public good provisioning. There is a long line of work for the efficient provi-
sioning of public goods, beginning from Samuelson [1954]. Several works such as Falkinger et al.
[2000], Andreoni and Bergstrom [1996] and Bergstrom et al. [1986] use the idea of imposing a
tax/subsidy on the agents but differ in the specific manner in which this tax/subsidy is imposed.
While our mechanism is inspired by Falkinger et al. [2000], our model is more general than theirs.
The design of our mechanism for this general model and the proof of its properties are our novel
contributions.

2 Problem formulation

We consider a federated learning problem with n agents who wish to jointly solve a common learning
problem. Let Di be the distribution of data points available to agent i. Towards jointly solving
the learning problem, each agent i contributes some set Ti ∼ Dsi

i of si data samples. Under the
assumption that agent i’s data is i.i.d. from their distribution Di, each agent’s contribution can
be captured simply by their contribution level, i.e., amount of data samples they contribute. Let
Si ⊆ R≥0 be the set of feasible contribution levels of agent i, and let S :=×j

Sj . Given a sample
vector s = (s1, . . . , sn) ∈ S, the central server returns model(s) trained using the samples

⋃
i Ti.

In our model, each agent i derives a payoff from the jointly learned model, e.g. the payoff could be
the accuracy of the model. We assume a general framework which models the payoff of agent i as a
function ai : S → R≥0. We typically assume each payoff function ai is bounded, continuous in s,
and non-decreasing in the contribution si of agent i. Moreover each agent i incurs a cost associated
with data sharing captured through a non-decreasing cost function ci : Si → R≥0. The net utility of
agent i is the payoff minus cost, i.e.,

ui(s) = ai(s)− ci(si).

Given the above framework, the goal of an agent i is to decide how many samples to contribute so
that her net utility ui(·) is maximized. Note that the utility of agent i depends on the contributions
of other agents as well. Further, we can assume without loss of generality that each set Si = [0, τi]
for some threshold τi > 0. This is because we can discard contribution levels where an agent gets
negative utility. Since the payoff ai(s) is bounded above by some constant Ai > 0 and costs are
increasing, agent i cannot obtain a positive utility by contributing more than τi := c−1

i (Ai) samples.

Payoff and cost functions are assumed to be concave and convex respectively (Blum et al. [2021],
Karimireddy et al. [2022]). As discussed in Section 1.1, it is natural to assume that cost functions
are convex to capture increasing marginal costs (Li and Raghunathan [2014]). Similarly, there are
ample justifications to concave payoff functions, as discussed in Section 2.1 where we analyze payoff
functions arising from some of the canonical learning paradigms, and their concavity properties.
Remark 1. Our framework generalizes those of Blum et al. [2021] and Karimireddy et al. [2022]. In
the former, an agent’s goal is to contribute the fewest number of data samples subject to ensuring that
their payoff crosses a certain threshold; and in the latter all agents have a common payoff function
that is a function of ∥s∥1 = s1 + · · ·+ sn, and linear cost functions.

Nash Equilibrium (NE). Arguably the most sought after solution concept within game theory is of
Nash Equilibrium (Nash [1951]), a stable state or an equilibrium state of the system where no agent
gains by unilaterally changing their data contribution level. Formally,
Definition 1 (Nash equilibrium (NE)). A sample vector s ∈ S is said to be at a Nash equilibrium if
for every i ∈ [n], and every s′i, we have ui(s) ≥ ui(s

′
i, s−i) where (s′i, s−i) = (s1, . . . , s

′
i, . . . , sn).

An alternate view of a Nash equilibrium relies on the concept of best response. Given the sample
contributions s−i of other agents, the set fi(s−i) of contribution levels of agent i that maximize her
utility is the best response set of agent i:

fi(s−i) = argmax
x∈Si

{
ai(x, s−i)− ci(x)

}
⊆ Si.

The best response correspondence f is then defined as a set-valued function f : S →×i
2Si , where

[f(s)]i = fi(s−i). It is then clear that:
Proposition 1. A sample vector s ∈ S is a Nash equilibrium if and only if it is a fixed point of the
best response correspondence, i.e., s ∈ f(s).
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2.1 Canonical examples of payoff functions

We now discuss a few examples of payoff functions that are captured by our general framework.
In all the examples below, the payoff functions ai(s) are non-negative, bounded, continuous, non-
decreasing, and concave in si for any fixed strategy profile s−i of the other agents.

Linear or Random discovery. In this model, the payoff is linear in the sample vector and is
given by ai(s) = (Ws)i for a matrix W . For example, Blum et al. [2021] consider a setting where
each agent has a sampling probability distribution qi over the instance space X and gets a reward
equalling qix whenever the instance x is sampled by any agent. Then the expected payoff to agent
i is ai(s) = (QQTs)i, where Q is a matrix given by Q[i, x] = qix for i ∈ [n] and x ∈ X . Here
W = QQT is a symmetric PSD matrix with an all one diagonal.

Random coverage. In the above setting, agent i obtains a reward qix each time some agent samples
instance x. In the random coverage model arising in binary classification (Blum et al. [2021]), an
agent gets this reward only once. Under this model, the payoff given by expected accuracy takes the
form:

ai(s) = 1− 1

2

∑
x∈X

qix

n∏
j=1

(1− qjx)
sj ∈ [0, 1]. (1)

Generalization bounds from general PAC learning. Consider a general learning setting where we
want to learn a model h from a hypothesis classHwhich minimizes the error over a data distributionD
given by R(h) = E(x,y)∈De(h(x), y), for some loss function e(·). Given m i.i.d. data points, the em-
pirical risk minimizer (ERM) can be computed as the model hm = argminh∈H

∑
ℓ∈[m] e(h(xℓ), yℓ).

Mohri et al. [2018] show the following bound on the error of hm, which holds with high probability:

1−R(hm) ≥ a(m) := a0 −
4 +

√
2k(2 + log(m/k))√

m
, (2)

where (1− a0) is the accuracy of the optimal model from H, and k is a (constant) measure of the
difficulty of the learning problem depending on e(·) andH. Using this we can define the agent payoff
ai function as the accuracy of the learning task as ai(s) = a(∥s∥1)1.

Empirical evidence. Kaplan et al. [2020] discuss empirical scaling laws relating the cross-entropy
loss on neural language models. They observe that the loss scales with the dataset size m as a power
law ℓ(m) = α ·m−β , for some parameters α > 0 and β ∈ (0, 1]. This naturally defines the payoff
function as the accuracy of the learning task as

ai(s) = 1− αi · ∥s∥−βi

1 . (3)

In addition, the pay-off functions of current large language models (e.g., accuracies) are also non-
negative and non-decreasing as a function of the data size (Henighan et al. [2020]).

3 Nash Equilibrium: Existence and Best Response Dynamics

In this section, we investigate the existence and computation of a Nash equilibrium. We start with
two positive results showing the existence of a Nash equilibrium for a broad class of payoff and cost
functions.
Theorem 3.1. A Nash equilibrium exists in any federated learning problem where for every agent i
the payoff function ai(s) is continuous in s and concave in si, and cost function ci is increasing and
convex in si.

Proof. We will show the existence of a Nash equilibrium by showing that the best response cor-
respondence f has a fixed point. First observe that f is defined over a compact, convex domain
S =×j

Sj since each Sj is convex. Next, note that agent i’s utility function ui(s) = ai(s)− ci(si)

is continuous in s due to the continuity of ai and ci. The continuity of ui in s and the concavity of

1We define a(0) = 0.
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ui in si implies the upper semi-continuity of the best response correspondence fi. Moreover, ui is
concave in si for each fixed s−i, since ai and −ci are concave in si. Thus for each fixed s−i, the
best response set fi(s−i) ⊆ R≥0 is a non-empty interval, and hence is also convex. Thus f is a
upper semi-continuous non-empty and convex valued correspondence defined over a compact, convex
domain. By the Kakutani fixed-point theorem (Kakutani [1941]), f admits a fixed point.

The above result can also be proved directly by invoking Rosen [1965], who showed the existence of
a Nash equilibrium of n-person concave games, where the utility function of an agent i is defined
over closed, compact set, is continuous and concave in i’s own strategy.

Implications. Theorem 3.1 shows that a Nash equilibrium exists when payoffs are concave and costs
are convex. All our motivating examples from Section 2.1 lie under this concave/convex regime and
therefore admit a NE. In Appendix A we discuss existence and non-existence of Nash equilibrium in
our model when we go beyond the concave-convex regime of payoff and cost functions. In particular,
we show that Nash equilibrium exists even with decreasing payoff function of an agent as long as the
function is separable between her and other agents’ data contribution. We also show that a NE need
not exist even with linear cost functions if the payoff functions are non-concave.

Best response dynamics. We now turn to computation and consider a natural procedure by which
agents can find a Nash equilibrium: best response (BR) dynamics. Agents start with some initial
sample vector s0. In each step t of the BR dynamics, every agent i updates their sample contribution
proportional to the gradient ∂ui

∂si
in the direction of increasing utility. Concretely, for a scalar step size

δt > 0, the updates take the following form:
st+1 = st + δt · g(st,µt), (4)

where g(st,µt)i =
∂ui(s

t)
∂si

+ µt
i and µt is chosen so that the updated sample vector st+1 lies in the

feasible region S . Specifically, µt ∈ argminµ∈K ∥g(st,µ)∥2, where K = {µ : st + δt · g(st,µ) ∈
S}. For instance, if 0 ≤ si ≤ τi, then:

µt
i =

{
−∂ui

∂si
, if si = 0 and ∂ui

∂si
< 0, or si = τi and ∂ui

∂si
> 0

0, otherwise.

We measure convergence of the above dynamics to a Nash equilibrium via the L2 norm of the update
direction g(st,µt). Under mild assumptions on the utility functions, we show the dynamics (4)
converges to an approximate Nash equilibrium where ∥g(st,µt)∥2 < ε:

Theorem 3.2. Let G(s) be the Jacobian of u : S → Rn, i.e., G(s)ij = ∂2ui(s)
∂sj∂si

. Assuming agent
utility functions ui satisfy

1. Strong concavity: (G+ λ · In×n) is negative semi-definite,

2. Bounded derivatives: |Gij | ≤ L,

for constants λ, L > 0, the best response dynamics (4) with step size δt = λ
n2L2 converges to an

approximate Nash equilibrium sT where ∥g(sT ,µT )∥2 < ε in T iterations, where

T =
2n2L2

λ2
log

(
∥g(s0,µ0)∥2

ε

)
.

Below we sketch the proof and defer the full proof to Appendix A.

Proof sketch. We measure convergence of the above dynamics by the error term ∥g(st,µt)∥2. We
show the following bound:

∥g(st+1,µt)∥22 ≤ ∥g(s
t,µt)∥22 + δ2t · ∥G(s′)g(st,µt)∥22 + 2δtg(s

t,µt)TG(s′)g(st,µt).

We then use strong concavity to show g(st,µt)TG(s′)g(st,µt) ≤ −λ∥g(st,µt)∥22, and the bounded
derivatives property to show ∥G(s′)g(st,µt)∥2 ≤ nL∥g(st, µt)∥2. For our choice of the step size
δt = λ

n2L2 , we can relate the error in subsequent iterations as follows:

∥g(st+1,µt+1)∥22 ≤
(
1− λ2

n2L2

)
· ∥g(st,µt)∥22.
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This then allows us to conclude that after T = 2n2L2

λ2 log
(∥g(s0,µ0)∥2

ε

)
iterations, we will have an

approximate Nash equilibrium sT with ∥g(sT ,µT )∥2 ≤ ε.

Implications. The above theorem implies that agents playing the natural best response update
strategy will converge quickly (in O(log(ε−1)) iterations) to a NE. We note that our theorem applies
to the payoff functions defined by generalization bounds (eq. (2)) and observed in practice (eq. (3))
as they are strongly concave and have bounded derivatives. Moreover, under the assumptions of
Theorem 3.2, our proof also implies the fast convergence of the best response dynamics in the
budget-balanced mechanism we discuss in the next section.

4 Welfare Maximization: A Budget-Balanced Mechanism

We first note through an example that Nash equilibria need not be welfare maximizing.
Example 1. Consider two agents with identical payoff functions a(s) = 8− (s1 + s2)

−1, and linear
cost functions given by c1(s1) = 5c1 and c2(s2) = 4c2. The NE is given by s∗ = (0, 0.5), i.e.,
agent 1 does not contribute any data samples. The Nash welfare (which is the p-mean welfare in
p→ 0 limiting case) of this NE is u1(s

∗) · u2(s
∗) = 24. However consider another sample vector

s′ = (0.2, 0.4) where agent 1 increases her contribution and agent 2 reduces her contribution. Then
s′ has a higher Nash welfare of u1(s

′) · u2(s
′) = 25.25 > 24.

To address the issue of NE not being welfare-maximizing, by designing a budget-balanced mechanism
for agents with linear cost functions. Our mechanism is inspired from a mechanism for the efficient
provisioning public goods (Falkinger et al. [2000]). We show that our mechanism always admits a
NE. Moreover, when the sample vector at NE is positive, i.e. every agent participates by contributing
data, the NE maximizes the p-mean welfare among all positive sample vectors. For the FL setting,
assuming positive sample vectors is natural since the only way for an agent to participate is by making
some positive data contribution.

We present our result for a more general model than one discussed so far. Not only does this
generalization strengthen our result, it also naturally allows expressing agent utilities in terms of the
taxes/subsidies they receive from our mechanism. In this generalization, each agent i has a budget
Bi of which bi is unspent and the remaining is used towards the cost of sampling si data points,
i.e., bi + ci(si) = Bi. We assume agents have arbitrary continuous, concave utility functions of
the form ui(bi, ∥s∥1). Agents have linear cost functions ci(si) = ci · si + di, with ci > 0. This
model already captures some previously discussed settings (Sec 2.1) as follows. For e.g., when
payoff functions are derived from generalization bounds (Mohri et al. [2018]) or empirical evidence
(Kaplan et al. [2020]), they take the form ai(s) = âi(∥s∥1), for some function âi which depends on
∥s∥1. Then for ui(bi, ∥s∥1) = bi + â(∥s∥1), the budget constraint implies the utility takes the form
âi(∥s∥1) − ci(si) + Bi, which is the same as the utility under the original model with a constant
offset. We also assume that for all i, ∂ui(bi,S)

∂S > 0 and ∂ui(bi,S)
∂bi

̸= 0.

MechanismMβ . We design a mechanism parametrized by a scalar β ∈ (0, 1). It uses the following
payment scheme. At a data contribution vector s, each agent i is rewarded an amount

pi(s) = β(ci(si)−
1

n− 1

∑
j ̸=i

cj(sj)).

Thus if an agent incurs higher (resp. lower) sampling cost than the average cost borne by other agents,
we compensate (resp. penalize) her by a subsidy (resp. tax) of β times her excess cost. By design, our
mechanism is budget-balanced: at any sample vector s, we have:

∑
i

pi(s) = β(
∑
i

ci(si)−
1

n− 1

∑
j ̸=i

cj(sj)) = 0.
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Under this mechanism, given a vector of contributions s−i of agents other than agent i, the best
response of agent i is any solution to the following optimization problem:

max ui(bi, si + ∥s−i∥1)

s.t. ∀i : bi + (1− β)ci(si) +
β

n− 1

∑
j ̸=i

cj(sj) = Bi

∀i : bi ≥ 0

(5)

We next define a β value that plays a crucial role in our mechanism.

Definition 2. (Optimal parameter β∗) Let A := (
∑

i c
−1
i )−1 and C :=

∑
i ci. Then we define β∗ as

the solution to the following equation.

Cβ2 − (An(n− 2) + C)β +A(n− 1)2 = 0, (6)

which satisfies 0 ≤ β∗ ≤ 1− 1/n.

The next lemma shows that (6) indeed has such a root – the proof is deferred to Appendix B.

Lemma 1. The equation Cβ2 − (An(n − 2) + C)β + A(n − 1)2 = 0 of (6) has a real root β∗

where 0 ≤ β∗ ≤ 1− 1/n.

We now state the main result of this section. We show that for every β ∈ [0, 1], a Nash equi-
librium of Mβ exists. Additionally, for a specific value of β = β∗ (Definition 2), our mech-
anism admits Nash equilibria which are socially efficient: it maximizes the p-mean welfare:
Wp(b, s) = (

∑
i ui(bi, ∥s∥1)p)1/p, for p ≤ 1 among all positive sample vectors s.

Theorem 4.1. For each β ∈ [0, 1], the mechanismMβ admits a Nash equilibrium. For β = β∗

(Definition 2), whenever the NE s∗ ofMβ∗ satisfies s∗ > 0, the NE s∗ maximizes the p-mean welfare
among all vectors s > 0, for any p ≤ 1.

We now sketch the proof of the above theorem. The full proof is deferred to Appendix B.

Proof sketch. When 0 ≤ β ≤ 1, the first constraint in the above program is a convex constraint even
for general convex cost functions. Since ui(·) is concave, a proof similar to the proof of Theorem 3.1
shows the existence of a Nash equilibrium.

The program maximizing p-mean welfare as follows.

max Wp(b, s) := (
∑
i

ui(bi, ∥s∥1)
p)1/p

s.t. ∀i : bi + (1− β)ci(si) +
β

n− 1

∑
j ̸=i

cj(sj) = Bi

∀i : bi ≥ 0

(7)

We first show that the above program is convex. With µi and γi as the dual variables to the first and
second constraints respectively, we write down the KKT conditions of program (7) with si > 0. We
then use the KKT conditions satisfied by a NE (b∗, s∗) to find values of the dual variables µ∗ and γ∗

so that (b∗, s∗,µ∗,γ∗) satisfy the KKT conditions of (7). Since KKT conditions are sufficient for
optimality, this shows that the NE (b∗, s∗) also maximizes p-mean welfare.

Implications. Theorem 4.1 shows that by augmenting the federated learning with a simple payment
protocol that is budget-balanced, one can obtain NE that maximize any p-mean welfare function of
the net-utilities of the agents. Furthermore, note that the payment augmented utility function is still
essentially of the form ui(s) = âi(s) − (1 − β)ci(si) − β

n−1cj(sj), with a constant offset. Since
β ∈ [0, 1], when ai(·) are λ-strongly concave and ci(·) are λ-strongly convex, the functions ui(·) are
λ-strongly concave. Therefore Theorem 3.2 applies, which ensures that the welfare maximizing NE
can be reached through the simple best response dynamics quickly. Finally, we remark that when cost
functions are identical, the value of the optimal parameter β∗ is (1− 1/n), which is exactly the value
used by Falkinger et al. [2000].
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Remark 2. Our mechanism requires that costs of the agents be publicly known in order to calculate
the value of β∗ by solving (6) in Definition 2. This is a common assumption made in previous work
(e.g. Karimireddy et al. [2022] and Blum et al. [2021]) and is justified in practice. Indeed, costs are
common knowledge in many real-world applications e.g. (1) in many ML applications, each agent
derives their training data from manually labeling a subset of a publicly available dataset like CIFAR
or ImageNet, and the cost of labeling dataset is usually known; (2) in autonomous driving, where
each data point is a random path taken under random external conditions.

5 Distributed Algorithm and Empirical Evaluation

In this section, we realize our budget-balanced mechanism in a real-world FL system. We perform
the evaluation on the MNIST (LeCun et al. [2010]) and CIFAR-10 (Krizhevsky [2009]) datasets. We
compare our mechanism with two baselines: the standard FedAvg and MWFed Blum et al. [2021].
We denote the vanilla mechanism without budget balancing as FedBR and the budget-balanced
mechanism as FedBR-BG. We demonstrate that compared to the FedBR, FedBR-BG achieves better
p-mean welfare for p ≤ 1. We also show that the standard FL protocol FedAvg gives significantly
lower welfare since it does not allow agents to change their contribution.

5.1 Algorithm Details

We first define the concrete forms for payoff and cost functions. According to standard practice in
FL, an agents payoff is measured through the accuracy evaluated on her local test data given model
θ, which has the form ai(s, θ) =

1
|D∗

i |
∑

(x,y)∈D∗
i
1[θ(x) = y], where D∗

i is the test data for agent i.
We note that this form inherently aligns with ai(s) = âi(∥s∥1) because the received global model θ
is trained on ∥s∥1 samples. We consider linear cost functions where ci(si) = cisi.

Now we derive the update rule for agent contributions for FedBR-BG based on best-response
dynamics. We rewrite the utility of agent i in the budget-balancing mechanism as ui(s) = âi(

∑
i si)−

(1− β)cisi − β
n−1

∑
j ̸=i cjsj . We then compute its gradient with respect to si: ∂ui

∂si
=

∂âi(
∑

i si)

∂si
−

(1− β)ci. Since the accuracy function is generally unknown in practice, the server can train a public
accuracy function ã : S̃ → R≥0 and broadcast it to all agents. We obtain an estimate of the accuracy
ã by evaluating models trained on different numbers of samples, in increasing intervals of ∆s. For
example, if the server trains models on 0, 2, 4, · · · samples and evaluates their accuracy to obtain the
estimated accuracy ã, the interval ∆s = 2 in this case. We assume (τ1, . . . , τn) ∈ S̃ as the server
can be a service provider with plenty of data sources. With ã, we can approximate the gradient as
∂ui

∂si
≈ ã(

∑
i si+∆s)−ã(

∑
i si)

∆s − (1 − β)ci. Similarly, ∂ui

∂si
≈ ã(

∑
i si+∆s)−ã(

∑
i si)

∆s − ci for FedBR,
and ui(s) = ai(

∑
i si)− cisi for FedAvg, MWFed and FedBR.

We further assume that si is a multiple of ∆s to ensure that ã is always well-defined for our chosen
contributions. Finally, we leverage best-response dynamics to update agent contributions. We present
the full description of the algorithm for FedBR-BG and FedBR as Algorithm 1 and Algorithm 2 in
Appendix C, respectively.

5.2 Experiment Setup

We conduct the experiments with 10 agents for MNIST and 100 agents for CIFAR-10. For MNIST,
we use a CNN as the global model, which has two 5× 5 convolution layers followed by two fully
connected layers with ReLU activation. For CIFAR-10, we use VGG11 (Simonyan and Zisserman
[2014]). We consider the i.i.d. setting, i.e., the local data of agents are sampled from the same
distribution. For both datasets, each agent has 100 training images and 10 testing images, i.e.,τi =
100,∀i ∈ [n].

We randomly initialize the contributions as a multiplier of 10 in [0, 100]. In each contribution updating
step, we re-initialize the global model and perform FedAvg for 50 communication rounds. We set
global learning rate η to 1.0, local learning rate α to 0.01, and momentum to 0.9. We set the number
of contribution updating steps to 100 and the sample number interval to 10. For evaluating FedAvg,
we simply optimize the global model with the same hyperparameters while keeping individual
contribution to τi.
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5.3 Experiment Results

We show the p-mean welfare of our method and baselines on MNIST and CIFAR-10 in Table 1. We
observe that FedBR-BG achieves better p-mean welfare on both datasets compared to FedBR and
FedAvg, verifying our theoretical results. Note that the p-mean of FedAvg is significantly lower since
agents always contribute all their data in FedAvg, which incurs a high cost so that the marginal gain
becomes limited.

Table 1: p-mean welfare of our budget-balanced mechanism FedBR-BG and baselines on MNIST and CIFAR-
10. We report the results for different p. The cost for adding one data sample ci is 0.005 for every agent.

Method
MNIST CIFAR-10

p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

FedAvg 48985.23 154.99 22.763 8.726 4.909 42386.21 135.92 23.528 8.381 4.582
MWFed 51326.49 158.92 21.648 8.803 5.230 48178.29 142.91 23.981 8.879 4.891
FedBR 53395.21 168.85 24.784 9.495 5.340 58297.23 178.32 26.187 9.675 5.681

FedBR-BG 54589.31 172.63 25.340 9.708 5.459 60385.32 183.23 27.958 9.981 5.891

6 Discussion

In this paper, we formulated a federated learning framework which incorporates both payoffs an
agent receives from sharing data as well as the cost she incurs due to sharing data. We show the
existence of Nash equilibria under the assumption of concave payoffs and convex costs, which are
mild assumptions observed in practice. We then note that while NE exist, they may not maximize any
notion of welfare for the agents, leaving agents with less incentive to participate. We address this
issue via a budget-balanced mechanism with payments whose NE maximize the p-mean welfare of
the agent utilities. Our experiments show that FedBR-BG achieves better p-mean welfare compared
to FedBR and FedAvg, verifying our theoretical results.

We conclude by discussion some directions for future work. Our mechanism required that costs of
the agents be publicly known, or at least verifiable. Studying incentives when costs are not common
knowledge is an interesting question. Another assumption of our mechanism was that an agent’s
payoff depends on the number of data samples. Designing welfare-maximizing mechanisms for
general settings where payoff functions take more general forms is another direction for future work.

Acknowledgements. This work is partially supported by the National Science Foundation under grant
No. 1750436, No. 1910100, No. 2046726, No. 2229876, DARPA GARD, the National Aeronautics
and Space Administration (NASA) under grant no. 80NSSC20M0229, the Alfred P. Sloan Fellowship,
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A Appendix to Section 3

We first show that a Nash equilibrium exists when agent payoff functions are separable, i.e., for
every agent i there are functions gi : Si → R≥0 and hi :×j ̸=i

Sj → R≥0 s.t. for all s ∈ S,
ai(s) = gi(si) + hi(s−i).

Theorem A.1. In any federated learning problem where agent payoff functions are separable, a
Nash equilibrium exists.

Proof. When the payoff function of an agent i is separable, the best response to any contribution
vector s−i is independent of s−i:

fi(s−i) = argmax
x∈Si

ai(x, s−i)− ci(x) = argmax
x∈Si

gi(x) + hi(s−i)− ci(x)

= argmax
x∈Si

gi(x)− ci(x). (since hi(s−i) is independent of x)

Let Fi := argmaxx∈Si
gi(x) − ci(x). Clearly Fi ̸= ∅ since Si ̸= ∅. Then any s ∈×i

Fi satisfies
s ∈ f(s) by definition. By Proposition 1 any such sample vector is a Nash equilibrium.

Next, we present a negative result showing that there are federated learning settings where a Nash
equilibrium is not guaranteed to exist.

Theorem A.2. There exists a federated learning problem in which a Nash equilibrium does not
exist. Moreover, the instance has three agents with continuous, non-decreasing, non-concave payoff
functions and linear cost functions.

Proof. Let ε ∈ (0, 1
16 ). Let e : [0, 1]→ [0, 1] be a function given by:

e(x) =


0, if 0 ≤ x ≤ 1

2 − ε,
1
2 + 1

2ε (x−
1
2 ), if 1

2 − ε ≤ x ≤ 1
2 + ε,

1, if 1
2 + ε ≤ x ≤ 1.

(8)

Essentially the function e is a continuous, piece-wise linear function connecting (0, 0), ( 12−ε, 0), (
1
2+

ε, 1) and (1, 1).

Now consider the following federated learning instance with n = 3 agents, where S1 = S2 = S3 =
[0, 1]. The payoff functions are given by:

a1(s) = e(s1) + e(s3)− e(s1) · e(s3)
a2(s) = e(s2) + e(s1)− e(s2) · e(s1)
a3(s) = e(s3) + e(s2)− e(s3) · e(s2),

(9)

and the cost functions are ci(si) =
1
4si for all i ∈ [3]. Notice that the payoff functions are increasing

in sj for every j ∈ [3] and are continuous since e is continuous.

We now show that this instance does not admit a Nash equilibrium. Let us first evaluate the best
response set f1(s2, s3). Note that u1(s) = e(s1) · (1 − e(s3)) + e(s3) − 1

4s1. Since u1(s) is
independent of s2, f1(s2, s3) only depends on s3.

• Case 1. s3 ≤ 1
2 − ε. Then u1(s) = e(s1)− 1

4s1, which is maximized at s1 = 1
2 + ε and results in

a utility of 7
8 −

ε
4 .

• Case 2. s3 ≥ 1
2 + ε. Then u1(s) = 1− 1

4s1, which is maximized at s1 = 0 and results in a utility
of 1.

• Case 3. 1
2 − ε ≤ s3 ≤ 1

2 + ε. We consider the intervals in which the best response s1 to such an s3
can lie:

– s1 ≤ 1
2 − ε. In this range, u1(s) = e(s3)− 1

4s1, which is maximized at s1 = 0 and results in
a utility of e(s3).
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– s1 ≥ 1
2 + ε. In this range, u1(s) = 1− 1

4s1, which is maximized at s1 = 1
2 + ε and results in

a utility of 7
8 −

ε
4 .

– 1
2 − ε ≤ s1 ≤ 1

2 + ε. In this range, using the definition of e(s1) (eq. 8) we obtain:

u1(s) =

(
1− e(s3)

2ε
− 1

4

)
· s1 + (1− e(s3)) ·

(
1

2
− 1

4ε

)
+ e(s3).

Thus u1(s) is a linear function in s1 with slope 1−e(s3)
2ε − 1

4 . If the slope is positive, then the
best response in the current interval is s1 = 1

2 + ε, and gives a utility of 7
8 −

ε
4 . If the slope

is negative, then s1 = 1
2 − ε is the best response in the current interval and gives a utility of

e(s3)− 1
4 (

1
2 − ε). However s1 = 0 gives a utility of e(s3) implying that s1 = 1

2 − ε cannot
be a best response. Finally if the slope is zero, then it must mean that e(s3) = 1− ε

2 , and the
utility is ε

2 (
1
2 −

1
4ε ) + 1 − ε

2 = 7
8 −

ε
4 . However responding with s1 = 0 gives a utility of

e(s3) = 1− ε
2 , which exceeds 7

8 −
ε
4 , since ε < 1

16 . Thus, the best response does not lie in
( 12 − ε, 1

2 + ε) and s1 = 0 is the overall best response.

The above discussion shows that the best response f1(s2, s3) ⊆ {0, 1
2 + ε}. By symmetry, the same

holds for f2 and f3. Suppose there exists a Nash equilibrium s∗ = (s∗1, s
∗
2, s

∗
3). By Proposition 1,

s∗ ∈ f(s∗). Since the above discussion implies s∗3 ∈ {0, 1
2 + ε}, we consider two cases:

• Suppose s∗3 = 0. Then

s∗3 = 0 =⇒ s∗1 =
1

2
+ ε (Case 1 for agent 1)

=⇒ s∗2 = 0 (Case 2 for agent 2)

=⇒ s∗3 =
1

2
+ ε, (Case 1 for agent 3)

which is a contradiction.

• Suppose s∗3 = 1
2 + ε. Then

s∗3 =
1

2
+ ε =⇒ s∗1 = 0 (Case 2 for agent 1)

=⇒ s∗2 =
1

2
+ ε (Case 1 for agent 2)

=⇒ s∗3 = 0, (Case 2 for agent 3)

which is also a contradiction.

This shows that there is no s∗ such that s∗ ∈ f(s∗), implying that the above instance does not admit
a Nash equilibrium.

We now prove the fast convergence of best response dynamics.

Theorem 3.2. Let G(s) be the Jacobian of u : S → Rn, i.e., G(s)ij = ∂2ui(s)
∂sj∂si

. Assuming agent
utility functions ui satisfy

1. Strong concavity: (G+ λ · In×n) is negative semi-definite,

2. Bounded derivatives: |Gij | ≤ L,

for constants λ, L > 0, the best response dynamics (4) with step size δt = λ
n2L2 converges to an

approximate Nash equilibrium sT where ∥g(sT ,µT )∥2 < ε in T iterations, where

T =
2n2L2

λ2
log

(
∥g(s0,µ0)∥2

ε

)
.
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Proof. Observe that µt is chosen s.t. ∥g(st,µt)∥2 is minimized among all µ s.t. the updated sample
vector st+1 remains in S. Thus:

∥g(st+1,µt+1)∥2 ≤ ∥g(s
t+1,µt)∥2 (10)

Using Taylor’s expansion, we have:

g(st+1,µt) = g(st,µt) +H(s′, µt) · (st+1 − st),

where Hij(s
′,µt) = ∂g(s′,µt)

∂sj
, and s′ = st + α(st+1 − st) for some α ∈ [0, 1].

By definition, g(st, µt)i =
∂ui(s

t)
∂si

+µt
i. Thus Hij(s

′,µt) = ∂2ui(s
t)

∂sj∂si
= Gij(s

′), hence H(s′,µt) =

G(s′). The BR dynamics update rule (4) implies st+1 − st = δt · g(st,µt). We therefore have
g(st+1,µt) = (In×n + δt ·G(s′)) · g(st,µt). Taking the L2 norm, we get:

∥g(st+1,µt)∥22 = ∥g(st,µt)∥22 + δ2t · ∥G(s′)g(st,µt)∥22 + 2δtg(s
t,µt)TG(s′)g(st,µt), (11)

By the strong concavity assumption, for a constant λ > 0, G+ λ · In×n is negative semi-definite,
i.e., vT (G+ λ · In×n)v ≤ 0 for any v ∈ Rn. With v = g(st,µt), we have:

g(st,µt)TG(s′)g(st,µt) ≤ −λ · ∥g(st,µt)∥22. (12)

Next we use the fact that the L2 norm ∥A∥2 of an n× n matrix A is bounded by its Frobenius norm
∥A∥F :

∥A∥2 := sup
x̸=0

∥Ax∥2
∥x∥2

≤ ∥A∥F :=

√∑
i

∑
j

|Aij |2

By the bounded derivatives assumption, we have |G(s′)ij | ≤ L, which implies that ∥G(s′)∥F =√∑
i

∑
j L

2 = nL. This gives:

∥G(s′)g(st, µt)∥2 ≤ nL∥g(st, µt)∥2. (13)

Using (12) and (13) in (11), we get:

∥g(st+1,µt)∥22 = (1 + δ2t · n2L2 − 2δtλ) · ∥g(st,µt)∥22,

Since δt = λ
n2L2 , the above equation together with (10) gives:

∥g(st+1,µt+1)∥22 ≤
(
1− λ2

n2L2

)
· ∥g(st,µt)∥22.

Using (1− x)r ≤ e−xr repeatedly we obtain that:

∥g(st,µt)∥2 ≤ e−
λ2

2n2L2 ·t · ∥g(s0,µ0)∥2.

Thus if we want the error ∥g(st,µt)∥2 ≤ ε, T = 2n2L2

λ2 log
(∥g(s0,µ0)∥2

ε

)
iterations suffice, as

claimed.

B Appendix to Section 4

Lemma 1. The equation Cβ2 − (An(n − 2) + C)β + A(n − 1)2 = 0 of (6) has a real root β∗

where 0 ≤ β∗ ≤ 1− 1/n.

Proof. Using the quadratic formula, we see that β∗ given by:

β∗ =
An(n− 2) + C −

√
(An(n− 2) + C)2 − 4AC(n− 1)2

2C
(14)

We first argue β∗ is real, by showing (An(n − 2) + C)2 − 4AC(n − 1)2 ≥ 0. This is equivalent
to showing q(y) := (y + n(n − 2))2 − 4(n − 1)2y ≥ 0, where y = C/A. Expanding q, we have
q(y) = y2 − 2(n2 − 2n+ 2)y + n2(n− 2)2. The roots of q are:

y1, y2 =
2(n2 − 2n+ 2)±

√
4(n2 − 2n+ 2)2 − 4n2(n− 2)2

2
= (n2 − 2n+ 2)± 2(n− 1),
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i.e., y1 = (n− 2)2 and y2 = n2. Since q(y) has a positive leading coefficient, we have that q(y) ≥ 0
for all y ≥ y2 = n2. Thus it remains to show that y = C/A ≥ n2. To see this, we use the AM-HM
inequality:

C

n
=

c1 + · · ·+ cn
n

≥ n
1
c1

+ · · ·+ 1
cn

=
n

A
, (15)

implying C/A ≥ n2 as desired. This shows that the root β∗ of equation (6) is real, hence well-defined.

We now show 0 ≤ β∗ ≤ 1− 1/n. From (14), we see:

β∗ =
An(n− 2) + C −

√
(An(n− 2) + C)2 − 4AC(n− 1)2

2C

≥
An(n− 2) + C −

√
(An(n− 2) + C)2

2C
= 0

Further, from (14) we also have:

β∗ =
An(n− 2) + C −

√
(An(n− 2) + C)2 − 4AC(n− 1)2

2C

≤ An(n− 2) + C

2C
=

Cn(n− 2)/n2 + C

2C
= 1− 1

n
,

where we used A/C ≤ 1/n2 (15) in the last inequality. This concludes the proof of Lemma 1.

Theorem 4.1. For each β ∈ [0, 1], the mechanismMβ admits a Nash equilibrium. For β = β∗

(Definition 2), whenever the NE s∗ ofMβ∗ satisfies s∗ > 0, the NE s∗ maximizes the p-mean welfare
among all vectors s > 0, for any p ≤ 1.

Proof. When 0 ≤ β ≤ 1, the program (5) is a convex program for general convex cost functions.
Since ui(·) is concave, a proof similar to the proof of Theorem 3.1 shows the existence of a Nash
equilibrium.

We now show the welfare-maximizing property. For simplicity, we only consider feasible strategies
where each agent participates in the mechanism, i.e., si > 0. Let ρi and λi as the dual variables to the
first and second constraints respectively for each i, and let S = ∥s∥1. Writing the KKT conditions
and eliminating all ρi, we get that a NE (b∗, s∗) together with dual variables λ∗ satisfies:

∀i : ∂ui(b
∗
i , S

∗)

∂S
= (1− β) · ci ·

(
∂ui(b

∗
i , S

∗)

∂bi
+ λ∗

i

)
(from stationarity conditions) (16)

∀i : λ∗
i ≥ 0 (dual feasibility) (17)

∀i : λ∗
i · bi = 0 (complimentary slackness) (18)

Now we turn to the p-mean welfare maximizing solution which is an optimal solution to the following
program.

max Wp(b, s) := (
∑
i

ui(bi, ∥s∥1)
p)1/p

s.t. ∀i : bi + (1− β)ci(si) +
β

n− 1

∑
j ̸=i

cj(sj) = Bi

∀i : bi ≥ 0

(19)

The following lemma establishes that (19) is a convex program. For ease of readability we defer its
proof to B.1.

Lemma 2. For β ∈ [0, 1] and p ≤ 1, the program (19) is convex.

We can now write the KKT conditions of program (19). By letting µi and γi denote the dual variables
corresponding to the first and second constraints respectively for each i and S = ∥s∥1, the KKT
conditions (considering only solutions with si > 0) are:

∀i : (
∑
j

up
j )

1/p−1
∑
k

up−1
k

∂uk

∂S
= ci · [µi(1− β) +

β

n− 1

∑
k ̸=i

µk] (stationarity) (20)

17



∀i : (
∑
j

up
j )

1/p−1up−1
i

∂ui

∂bi
= µi − γi (stationarity) (21)

∀i : γi ≥ 0 (dual feasibility) (22)
∀i : γi · bi = 0 (complimentary slackness)

(23)

Since KKT conditions are sufficient for optimality, to prove Theorem 4.1 it suffices to show that for
an NE (b∗, s∗), there exist dual variables µ∗ and γ∗ which satisfy (20)-(23) for β = β∗.

Let α := (
∑

j uj(b
∗
j , s

∗)p)1/p−1
∑

k uk(b
∗
j , s

∗)p−1 ∂uk(b
∗
k,s

∗)
∂S , i.e., the common value of the equality

(20) at the NE (b∗, s∗). The equation (20) then becomes α · c−1
i = µi(1 − β) + β

n−1

∑
k ̸=i µk.

Summing these over all i and letting T =
∑

j µj , we obtain:

α · (
∑
i

c−1
i ) =

∑
i

[µi(1− β) +
β

n− 1

∑
k ̸=i

µk] = T.

Putting this back in (20), we obtain the following expression for µ∗
i , which can be computed from the

NE (b∗, s∗) with T = α · (
∑

i c
−1
i ):

µ∗
i =

Tc−1
i∑

i c
−1
i

− βT
n−1

1− βn
n−1

. (24)

Recall that the NE (b∗, s∗) satisfies (16)-(18) for some dual variables λ∗. We define γ∗
i as follows:

γ∗
i = µ∗

i ·

(
λ∗
i

λ∗
i +

∂ui(b∗i ,s)

∂bi

)
(25)

The next lemma proves Theorem 4.1.

Lemma 3. A NE (b∗, s∗) with µ∗ and γ∗ defined by (24) and (25) satisfy the KKT conditions
(20)-(23) of program (19).

Proof. First observe that at the NE, (1− β)ci ·
(

∂ui(b
∗
i ,S

∗)
∂bi

+ λ∗
i

)
=

∂ui(b
∗
i ,S

∗)
∂S > 0 by assumption.

Since β ∈ (0, 1) and ci > 0, we have ∂ui(b
∗
i ,S

∗)
∂bi

+ λ∗
i > 0. Together with λ∗

i ≥ 0 (17), this shows
γ∗
i ≥ 0 thus satisfying dual feasibility (22).

Next we show complimentary slackness (23) holds. For any i, λ∗
i · bi = 0 due to (18). Then by the

definition of γ∗
i , we have γ∗

i · bi = 0 for all i.

Finally, we show that equations (20) and (21) are satisfied for a specific choice of β = β∗. Together,
(20) and (21) imply that an optimal solution to program (19) satisfies:

∀i :
∑
k

(µk − γk) ·
∂uk/∂S

∂uk/∂bk
= ci · [µi(1− β) +

β

n− 1

∑
k ̸=i

µk] (26)

The choice of γ∗
i from equation 25 implies that µ∗

i − γ∗
i = µ∗

i · (
∂ui(b

∗
i ,s)/∂bi

∂ui(b∗i ,s)/∂bi+λ∗
i
). Moreover at the

NE, equation (16) implies that:

(µ∗
i − γ∗

i ) ·
∂ui(b

∗
i , s)/∂S

∂ui(b∗i , s)/∂bi
= µ∗

i ·
(

∂ui(b
∗
i , s)/∂bi

∂ui(b∗i , s)/∂bi + λ∗
i

)
· (1− β)ci ·

(
1 +

λ∗
i

∂ui(b∗i , s)/∂bi

)
= µ∗

i · (1− β)ci.

Using the above in (26), it only remains to be argued that µ∗, b∗ and s∗ satisfy:

∀i : (1− β) ·
∑
k

µ∗
k · ck = ci · [µ∗

i (1− β) +
β

n− 1

∑
k ̸=i

µ∗
k] = α,

18



for β = β∗. By plugging in the value of µ∗
i from (24) and using α = T · (

∑
k c

−1
k )−1, we get:

(1− β) ·
∑
k

{
Tc−1

k (
∑

i c
−1
i )−1 − βT

n−1

1− βn
n−1

}
· ck = T · (

∑
k

c−1
k )−1.

Let us define A := (
∑

i c
−1
i )−1 and C :=

∑
i ci. Manipulating the above expression, the above

equation then becomes:

Cβ2 − (An(n− 2) + C)β +A(n− 1)2 = 0,

which is true for β = β∗ since it is exactly the definition of β∗ (Definition 2).

Thus for β = β∗, the NE (b∗, s∗) with dual variables µ and γ as defined in (24) and (25) respectively
satisfy the KKT conditions of program (19).

B.1 Proof of Lemma 2

Lemma 2. For β ∈ [0, 1] and p ≤ 1, the program (19) is convex.

Proof. For β ∈ [0, 1] the constraints of program 19 are convex since ci(·) are convex functions.
It remains to be shown that the objective Wp(b, s) := (

∑
i ui(bi, ∥s∥1)p)1/p to be maximized is

concave.

We use the following standard fact about the concavity of composition of functions (see e.g. Boyd
and Vandenberghe [2004], Page 86).

Proposition 2. Let h : Rn → R and gi : Rk → R and let f : Rn → R be given by f(x) =
h(g(x)) = h(g1(x), . . . , gn(x)). Then f is concave if h is concave, h is non-decreasing in each
argument and gi are concave.

Note that Wp(b, s) = h(g(b, s)), where h(x1, . . . , xn) = (
∑

i x
p
i )

1/p and gi(b, s) = ui(b, s).

We now observe that:

• h is non-decreasing in each argument. This is because:

∂h

∂xi
= h1−pxp−1

i ≥ 0.

• h is concave. Using the above, we can compute the Hessian H given by:

Hij =
∂2h

∂xj∂xi
=

{
(1− p)h1−2p(xixj)

p−1 (if i ̸= j)
(1− p)h1−2pxp−2

i · (xp
i − hp) (if i = j)

Thus for any v ∈ Rn, we have:

vTHv =
∑
i

∑
j

viHijvj

= (1− p)h1−2p ·
(∑

i

vi
∑
j ̸=i

Hijvj +
∑
i

v2iHii

)

= (1− p)h1−2p ·
(∑

i

vix
p−1
i ·

((∑
j

vjx
p−1
j

)
− vix

p−1
i

)
+
∑
i

v2i (x
2p−2
i − hpxp−2

i )

)

= (1− p)h1−2p ·
((∑

i

vix
p−1
i

)2 −∑
i

(vix
p−1
i )2 +

∑
i

v2i x
2p−2
i −

∑
i

v2i h
pxp−2

i

)
= (1− p)h1−2p ·

((∑
i

vix
p−1
i

)2 − (∑
i

v2i x
p−2
i

)(∑
j

xp
j

))
≤ 0,
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Algorithm 1 FedBR-BG
1: Input: Number of iterations in game H , number of iterations of gradient descent T , learning

rate α, step size δ, data increasing interval ∆s
2: Output: Model weights θT , individual contributions s
3: for h = 1, 2, · · · , H do
4: Server sends θt to agents;
5: for t = 0, 1, · · · , T − 1 do
6: for i ∈ [n] in parallel do
7: i computes∇θtLi(θ

t) on its local dataset Di;
8: i sends ∇θtLi(θ

t) to server;
9: end for

10: Server aggregates the gradients following

∇θtL(θt)← 1∑
i∈[n] |Di|

∑
i∈[n]

|Di| · ∇θtLi(θ
t);

11: Server updates θt+1 following

θt+1 ← θt − α · ∇θtL(θt);

12: end for
13: for i ∈ [n] in parallel do
14: ∂ui

∂si
← a(

∑
i si+∆s)−a(

∑
i si)

∆s − (1− β)ci

15: if (si = 0 and ∂ui

∂si
< 0) or (si = τi and ∂ui

∂si
> 0) then

16: sh+1
i ← shi ;

17: else
18: sh+1

i = shi + δ · ∂ui

∂si
;

19: end if
20: end for
21: end for

since p ≤ 1, h ≥ 0, and by the Cauchy-Schwarz inequality (
∑

i ai · bi)2 ≤ (
∑

i a
2
i ) · (

∑
i b

2
i ) with

ai = vix
p/2−1
i and bi = x

p/2−1
i . Thus H is negative semi-definite and hence h is concave.

• For each i, gi(b, s) = ui(b, s) is concave.

Using Proposition 2 and the fact that Wp(b, s) = h(g(b, s)) we conclude that Wp(b, s) is concave.

C Distributed Algorithms

In this section, we present the distributed algorithms of our two mechanisms, FedBR and FedBR-BG.
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Algorithm 2 FedBR
Input: Number of iterations in game H , number of iterations of gradient descent T , learning rate
α, step size δ, data increasing interval ∆s
Output: Model weights θT , individual contributions s
for h = 1, 2, · · · , H do

Server sends θt to agents;
for t = 0, 1, · · · , T − 1 do

for i ∈ [n] in parallel do
i computes∇θtLi(θ

t) on its local dataset Di;
i sends ∇θtLi(θ

t) to server;
end for
Server aggregates the gradients following

∇θtL(θt)← 1∑
i∈[n] |Di|

∑
i∈[n]

|Di| · ∇θtLi(θ
t);

Server updates θt+1 following

θt+1 ← θt − α · ∇θtL(θt);

end for
for i ∈ [n] in parallel do

∂ui

∂si
← a(

∑
i si+∆s)−a(

∑
i si)

∆s − ci

if (si = 0 and ∂ui

∂si
< 0) or (si = τi and ∂ui

∂si
> 0) then

sh+1
i ← shi ;

else
sh+1
i = shi + δ · ∂ui

∂si
;

end if
end for

end for
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