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Abstract

Large vision models with billions of parameters and trained on broad data have
great potential in numerous downstream applications. However, these models are
typically difficult to adapt due to their large parameter size and sometimes lack
of accesss to their weights—entities able to develop large vision models often
provide APIs only. In this paper, we study how to better utilize large vision mod-
els through the lens of in-context learning, a concept that has been well-known
in natural language processing but has only been studied very recently in com-
puter vision. In-context learning refers to the ability to perform inference on
tasks never seen during training by simply conditioning on in-context examples
(i.e., input-output pairs) without updating any internal model parameters. To de-
mystify in-context learning in computer vision, we conduct an extensive research
and identify a critical problem: downstream performance is highly sensitivie to
the choice of visual in-context examples. To address this problem, we propose a
prompt retrieval framework specifically for large vision models, allowing the se-
lection of in-context examples to be fully automated. Concretely, we provide two
implementations: (i) an unsupervised prompt retrieval method based on nearest
example search using an off-the-shelf model, and (ii) a supervised prompt retrieval
method, which trains a neural network to choose examples that directly maximize
in-context learning performance. Both methods do not require access to the inter-
nal weights of large vision models. Our results demonstrate that our methods can
bring non-trivial improvements to visual in-context learning in comparison to the
commonly-used random selection.

1 Introduction

In recent years, large-scale models have emerged in computer vision: they have enormous parameter
sizes and are pre-trained on broad data to gain wide-ranging knowledge. These models have demon-
strated remarkable generalization performance and have great potential for numerous downstream
applications [4]. However, due to the large model size and the potentially proprietary data used for
training, entities able to develop large-scale models typically only provide users with APIs, known
as Model-as-a-Service (Maas). Representative examples include the prominent text-to-image gen-
eration models, DALL·E [17] and Imagen [20], and OpenAI’s powerful language models like GPT-
3/ChatGPT [16]. As a result, users are unable to apply full fine-tuning or some parameter-efficient
tuning techniques, such as prompt learning [11, 10, 26, 25, 23, 15], for model adaptation, largely
limiting downstream performance. To circumvent the problem, “black-box” adaptation methods
need to be developed.
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Figure 1: (a) Different choices of in-context examples (outlined in green) often lead to significantly
different results. Here we show 30 random query images (x-axis) from Pascal-5i [21] split 0, and
measure the performance range using 50 different in-context examples. (b) We propose a prompt
retrieval framework aiming to automate the selection of in-context examples. We provide two im-
plementations of the idea: one is unsupervised while the other is supervised, both outperforming
random selection by a clear margin and without accessing the large vision model’s internal weights.

In-context learning, which is a “hidden” capability originally found in large autoregressive language
models [16], has recently been investigated for large vision models [3], and more importantly, has
the potential to be adopted as the mainstream approach in MaaS applications in the future. Without
the need to update any parameter when deploying in previously unseen tasks, in-context learning
simply prepends some domain-specific input-output pairs, called in-context examples or prompt,2
to a test example, which together guide the model to produce an ideal result. For instance, in natural
language processing one could prepend a French-English sentence pair to a French sentence, and
the model would produce an English translation of the French sentence. In computer vision, Bar et
al.. [3] pre-trained a neural network to fill missing patches in grid-like images, which allows the
model to perform in-context learning for unseen tasks like image segmentation (see the grid images
in Fig. 1(a) bottom).

In this work, we focus on visual in-context learning, a relatively new concept with little existing
research regarding how to better apply it in practice. We for the first time conduct a comprehensive
investigation on the impact of in-context examples for large vision models, and identify a critical
issue: downstream performance is highly sensitive to the choice of in-context examples. This is
evidenced by the large variances observed for a variety of test examples shown in Fig. 1(a) top. By
visualizing the results in Fig. 1(a) bottom, it seems to suggest that the closer the in-context example
to the query, the better the result. For example, the best prompt image is closer to the query as
they are similar in object pose and background; on the other hand, the worst prompt image has a
drastically different style than the query image, which might explain why the predicted mask focuses
on the wrong region, i.e., the white pillar instead of the cat.

Clearly, designing a proper prompt containing the optimal in-context example(s) by hand would be
extremely difficult. To overcome the problem, we propose a prompt retrieval framework where the
core component is a score function, which aims to give each source instance a score to indicate the
level of suitability for being included in the prompt. Once the scoring process is done, we can simply
pick one or multiple examples with the highest score(s) to construct a prompt. An overview of our
framework is depicted in Fig. 1(b).

We provide two implementations for the prompt retrieval framework, both interpreting the score
as the cosine distance measuring similarity between a query and a source example. The first is an
unsupervised method based on nearest example search using an off-the-shelf model. The second

2To clarify, in natural language processing, a prompt refers to the instruction input specifying a particular
purpose while in-context examples are a special prompt, which consist of domain-specific input-output pairs.
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Figure 2: Overview of the supervised prompt retrieval method. The main idea is to compute the
in-context learning result for each source example, and pick those with the highest/lowest results to
form a positive/negative set for contrastive learning.

is a supervised method, which learns a neural network to choose examples that directly maximize
in-context learning performance. Since there is no ground-truth score to be used as the supervisory
signal, we resort to a contrastive learning paradigm: source examples that result in better (or worse)
in-context learning performance should get closer (or farther) to the query in feature space.

Our contributions and the main findings are summarized as follows. (1) We present the first compre-
hensive study concerning how to select good examples for the emerging visual in-context learning,
and reveal a critical issue that the choice of in-context examples has a huge impact on performance.
(2) From the technical perspective, we present a prompt retrieval framework that can automate the
prompt selection process, and provide two simple implementations: an unsupervised method and
a supervised method. (3) By conducting extensive experiments on three visual in-context learn-
ing tasks (which have not been seen during pre-training), namely foreground segmentation, sin-
gle object detection and image colorization, we share valuable insights with the community on
how to find good visual in-context examples, e.g., the supervised method performs the best and
often finds examples that are both semantically close and spatially similar to a query. (4) The
code and models are available at https://github.com/ZhangYuanhan-AI/visual_
prompt_retrieval.

2 Methods

2.1 Visual In-Context Learning

In-context learning is a new paradigm that originally emerged from large autoregressive language
models pre-trained on broad data, such as GPT-3 [5]. Unlike traditional learning methods, in-context
learning does not require any parameter update and instead conditions prediction on some in-context
examples in the form of input-output pairs. For example, in natural language processing one might
give a French-English sentence pair and a test French sentence as input to the model, which then
produces the English version of the sentence. In computer vision, such a paradigm has only been
studied very recently. For example, Bar et al. [3] trained a neural network to fill missing patches in
grid-like images, which in turn allows the model to perform in-context learning on unseen tasks.

Formally, given a dataset D = {(xn, yn)}Nn=1 containing N image-label pairs (e.g., an image and
its segmentation mask), a query example xq , and a model gτ , in-context learning can be formulated
as:

yq = gτ (P, xq), (1)
where P is called a prompt, which consists of K input-output pairs, P = {xc1 , yc1 , ..., xcK , ycK} ⊂
D. In particular, the prompt P provides some context for guiding the model to produce the ideal yq
for xq without updating the large model’s parameters τ .

Problem. The most common approach for designing the prompt P in the vision domain is (within-
class) random selection proposed by [3]: one or multiple image-label pairs (with the same label
as the test example) are randomly chosen from the training dataset. As illustrated in Fig. 1(a), the
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performance is highly sensitive to the selection of in-context examples—the gap between the best
and worst prompt could reach over 70% mIoU. Below we propose two automatic prompt selection
methods to tackle this problem.

2.2 Prompt Retrieval

Our goal is to automatically select the most suitable example(s) from the training dataset for a query
xq . To this end, we propose a prompt retrieval framework in the following form,

x∗ = arg max
xn∈D

fθ(xn, xq), (2)

where fθ is a function parameterized by θ, aiming to produce a score for a pair of xn and xq . When
K = 1, we choose the optimal example pair as the prompt, P = {x∗, y∗}. When K > 1, we
rank the training examples by their scores and choose the top-K example pairs. An overview of our
methods is provided in Fig. 1(b).

In this work, we implement fθ as a combination of a neural network for feature extraction and the
cosine distance function for measuring similarity between two feature vectors.

2.2.1 Unsupervised Prompt Retrieval

Our first method is unsupervised prompt retrieval where the key idea is to use an off-the-shelf feature
extractor for extracting image features so that we can compare the cosine distance between the query
xq and each training example xn ∈ D. In this case, the parameters θ for the score function fθ
correspond to the off-the-shelf feature extractor, which are kept fixed.

2.2.2 Supervised Prompt Retrieval

The unsupervised method discussed above is not explicitly optimized for in-context learning; in-
stead, it relies on how the feature extractor was pre-trained and the objective (function) used in
pre-training may well not align with that of in-context learning. We propose a second method based
on supervised prompt retrieval where we assume the source data contains labels. The goal is to
directly optimize the score function fθ such that the chosen in-context example(s) can maximize the
log-likelihood,

max
P

log p(yq|P, xq). (3)

In this work, we present a simple implementation for the supervised method, which simply turns
the unsupervised method into a supervised one by making the feature extractor learnable. In other
words, we directly optimize Eq. 3 with respect to the feature extractor. Below we explain in detail
how we train the feature extractor (see Fig. 2 for an overview).

Data. Recall that we interpret the score fθ(·, ·) as the cosine distance between two images in feature
space. We would like to learn a space such that an image pair (xn, xq) with high in-context learning
performance is close to each other, or far away from each other if the performance is low. Since there
is no label defining how close a distance should be, we resort to contrastive learning for training the
feature extractor. The goal is then to find a positive and a negative set for each training example
xn ∈ D treated as a query. Specifically, for each example xn we compute the prediction ŷn =
gτ ((xm, ym), xn) where gτ is the large vision model defined in Sec. 2.1 and xm ∈ D but xm ̸= xn.
Since we have the ground truth yn for xn, we can measure the performance by comparing the
prediction ŷn with the ground truth yn. Then, for each xn we choose the top-5 examples with the
highest/lowest performance to form a positive/negative set.

Training. Let zn denote the features of xn extracted by the neural network we aim to optimize. At
each iteraction, we sample a mini-batch B from the training dataset. Then, for each example in B,
we sample one example from the top-5 positive and negative sets, respectively. The contrastive loss
is computed as

ℓ = − 1

|B|
∑
xn∼B

log
ecos(zn,z

+
n )

ecos(zn,z
+
n ) +

∑
z−
n ∈N

ecos(zn,z
−
n )

, (4)
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Table 1: Main results. The two prompt retrieval methods outperform random selection, and the
supervised method achieves the best performance.

Seg. (mIoU) ↑ Det. (mIoU) ↑ Color. (mse) ↓Split-0 Split-1 Split-2 Split-3 Avg

Random 28.66 30.21 27.81 23.55 27.56 25.45 0.67
UnsupPR 34.75 35.92 32.41 31.16 33.56 26.84 0.63
SupPR 37.08 38.43 34.40 32.32 35.56 28.22 0.63

where cos(·, ·) is the cosine distance function, z+n denotes the feature representation of a positive
example, and z−n denotes the feature representation of a negative example. It is worth noting that for
mini-batch training, the negative set N contains a negative example of xn sampled from the top-5
negative set and other examples within the same mini-batch.

3 Experiments

In this section we conduct a comprehensive evaluation using different prompt selection methods
(Sec. 3.1) and compare their robustness to distribution shifts (Sec. 3.2). We also provide extensive
quantitative and qualitative analyses in Sec. 3.3 to help understand why our methods work and how
to better apply them in practice. Source code will be released to the community for reproducing the
full experiments.

Methods. All experiments are based on the image inpainting model pre-trained by [3] on a dataset
consisting of academic figures.3 This inpainting model comprises an encoder and a decoder, as de-
picted in Figure 2. The encoder generates a feature vector as its output, while the decoder yields a
reconstructed image of the masked part of the input image. We mainly compare the following meth-
ods: (1) Random, the baseline method that randomly samples in-context examples from the source
training dataset; (2) Unsupervised prompt retrieval (UnsupPR), our first proposed method that uses
off-the-shelf features for nearest example search. The main experiments are based on CLIP’s vision
encoder [16], which was pre-trained using multimodal contrastive learning; (3) Supervised prompt
retrieval (SupPR), our second proposed method that fine-tunes CLIP’s vision encoder by directly
optimizing in-context learning performance on downstream datasets. A variety of backbones are
evaluated in Sec. 3.3.

Training details for the supervised model. The supervised model is trained for 200 epochs using
SGD. The initial learning rate is set to 0.005, decayed by the cosine annealing rule. Each task need
a specific supervised model for SupPR.

3.1 Main Results

Setup. Following [3], we evaluate our methods on three computer vision tasks, which have not
been seen during the training of the image inpainting model. We provide the details about the
datasets used for these tasks as follows. (1) Foreground segmentation: We use Pascal-5i [21], which
has four non-overlapping splits each containing five categories. The results are averaged over all
splits. (2) Single object detection: The experiments are done on Pascal VOC [7]. (3) Colorization:
We use ImageNet-2012 [19], where the original validation set containing 50,000 images is used
as our test set. The training data used to learn our supervised prompt retrieval model is created
by randomly sampling 50,000 images from ImageNet’s 1.2M training set. For all experiments, in-
context examples come from the training set.

Results. Table 1 shows the results on the three benchmarks covering foreground segmentation,
single object detection, and colorization. We summarize our findings as follows. First, prompt re-
trieval clearly outperforms random selection. In particular, the improvements of prompt retrieval
over random selection are significant in foreground segmentation and single object detection: more
than 6% on the former and 1% on the latter. However, the gains on colorization are only marginal
(0.63 vs. 0.67), suggesting that the image inpainting model is probably weak at image coloriza-

3https://github.com/amirbar/visual_prompting
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tion. Second, the supervised prompt retrieval method performs the best. This is not surprising as
the supervised method optimizes in-context learning performance concerning the prompt selection
module. In contrast, the unsupervised method relies more on the off-the-shelf feature extractor.
Overall, the results well justify the design of the prompt retrieval framework, which can serve as a
strong baseline for future research.

3.2 Experiments on Distribution Shifts

Setup. Distribution shifts are commonly seen in real-world applications, and therefore AI mod-
els need to be robust to distribution shifts [24]. To test this ability in visual in-context learning,
we create a new protocol focusing on foreground segmentation where the source dataset is Pascal
while the target dataset is MSCOCO [12]. Specifically, we follow the design of Pascal-5i and create
MSCOCO-5i, which also has four splits, each having the same set of categories as in the corre-
sponding split in Pascal-5i. Note that such a shift mainly affects the supervised prompt retrieval
method that requires training but not the unsupervised UnsupPR and Random.

Table 2: Results on distribution shifts (from Pascal to
MSCOCO). Despite being a learning-based approach,
SupPR shows stronger robustness than UnsupPR and
Random, which do not require any training.

Seg. (mIoU) ↑
Split-0 Split-1 Split-2 Split-3 Avg

Random 12.17 18.47 20.55 15.94 16.78
UnsupPR 12.67 19.62 21.33 18.44 18.02
SupPR 13.62 21.25 24.46 20.44 19.95

Results. The results are shown in Table 2.
First of all, the unsupervised prompt re-
trieval method beats the random selection
method by a clear margin. By comparing
the two prompt retrieval methods, we find
that the supervised method again performs
better than the unsupervised one despite
being a learning-based approach—this is
an exciting finding as it means the super-
vised method does not have the overfitting
problem here. Nonetheless, we observe
that the gains achieved by the prompt retrieval methods here are generally smaller than the gains
achieved on the standard foreground segmentation benchmark: here SupPR is only around 3% bet-
ter on average than Random (19.95% vs.16.78%) while the improvement in Table 1 reaches 8%
(35.56% vs. 27.56%). One potential solution to reduce the gap might be to improve the image
inpainting model, which is beyond the scope of this paper.

3.3 Further Analysis

What are good in-context examples? To answer this question, we visualize the in-context exam-
ples found by UnsupPR and SupPR in Fig. 3. We focus on foreground segmentation and choose
two categories from Pascal (person and cow). In each grid, the first row corresponds to the retrieved
in-context example (i.e., an input-output pair) while the second row contains the query and model
prediction. By comparing the in-context examples picked by UnsupPR and those picked by SupPR,
we find the reason why SupPR performs better than UnsupPR: the examples found by SupPR are
more similar to the queries in terms of semantics (e.g., Fig. 3(e)), background (e.g., Fig. 3(a)), object
pose (e.g., Fig. 3(b), object appearance (e.g., Fig. 3(i)), viewpoint (e.g., Fig. 3(k)), and so on. We
also observe similar patterns in other categories/tasks (please refer to the supplementary).

Table 3: Comparison between different backbones
pre-trained using different methods: multimodal con-
trastive learning for CLIP, self-supervised learning for
EVA, and supervised learning for ViT. Overall, the per-
formance is insensitive to the choice of backbones.

Seg. (mIoU) ↑
Split-0 Split-1 Split-2 Split-3 Avg

UnsupPR
CLIP 34.75 35.92 32.41 31.16 33.56
EVA 34.75 36.09 32.11 31.61 33.64
ViT 35.10 37.37 32.05 30.80 33.83

SupPR
CLIP 37.08 38.43 34.40 32.32 35.56
EVA 36.11 39.14 34.31 33.30 35.71
ViT 36.80 39.70 34.71 33.25 36.12

Backbone. To understand if using a dif-
ferent backbone than CLIP would make
a big difference, we further evaluate our
prompt retrieval methods, UnsupPR and
SupPR, on the foreground segmentation
benchmark using two other backbones:
EVA [8] pre-trained using self-supervised
learning (i.e., masked image modeling)
and ViT [6] pre-trained using supervised
learning. The results are reported in Ta-
ble 3. Although these three backbones
perform differently on image recognition
under the fine-tuning setting—EVA per-
formed the best—the gap between them
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Figure 3: In-context examples retrieved by UnsupPR and SupPR. In each grid, the first row contains
the prompt while the second row contains the query and prediction. The in-context examples found
by SupPR are more similar than those found by UnsupPR to the queries in a numer of ways: seman-
tics (e.g., (e)), background (e.g., (a)), object pose (e.g., (b), object appearance (e.g., (i)), viewpoint
(e.g., (k)), etc. More examples can be found in the supplementary.

Table 4: Impact of the order of in-context examples. The results of different orders are averaged and
their standard deviations are computed. The small variations in the results suggest that the order of
in-context examples does not matter.

Seg. (mIoU) ↑
Split-0 Split-1 Split-2 Split-3 Avg

Random 17.93 ± 0.20 25.48 ± 0.27 21.34 ± 0.73 21.12 ± 0.53 21.46 ± 0.43
UnsupPR 20.22 ± 0.31 27.58 ± 0.40 22.42 ± 0.38 23.36 ± 0.42 23.39 ± 0.37
SupPR 20.74 ± 0.40 28.19 ± 0.37 23.09 ± 0.34 24.22 ± 0.48 24.06 ± 0.40

for both UnsupPR and SupPR is less than 1%. Therefore, we can conclude that the backbone for
visual in-context learning does not matter much.

Number of in-context examples. We follow [3] and create a large grid enough to fit 8 examples
at maximum (as shown in Fig. 4 right). By varying the number of in-context examples from 1 to
7, we obtain a set of results and plot them in Fig. 4 left. Clearly, more in-context examples lead
to better performance for all three methods, including SupPR, UnsupPR, and Random. This is
probably because in-context examples can be viewed as “training data”, and having more training
data typically benefits performance—in visual in-context learning, more training data gives a more
comprehensive “context.” We show a few example cases in Fig. 4 right to explain this observation.
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compute the score function in Eq. 2. It can be observed that different metrics perform similarly.

Order of in-context examples. To understand if changing the order of in-context examples makes
a difference, we fix the number of in-context examples to 3, evaluate all possible combinations, and
compute the mean and standard deviation. As shown in Table 4, the standard deviation is generally
small, so the order is not a concern as long as good examples are chosen.

Size of retrieval set. Recall that in-context examples are sampled from the training dataset, namely
the retrieval set. We are interested to know whether the size has any impact on performance, espe-
cially for the supervised prompt retrieval method. To this end, we build seven subsets for each split
in Pascal-5i, which cover a wide range of sizes (see the x-axis in Fig. 5 left). The results are plotted
in Fig. 5 left. For random selection, the size does not matter at all. In contrast, the two prompt
retrieval methods clearly benefit from a bigger size. But their performance plateaus when the size
reaches a certain level. It is worth noting that for the supervised method, 20% of the total data is
sufficient for achieving a decent performance.

Table 5: Comparison between SupPR and a fine-tuned
MAE.

Seg. (mIoU) ↑
Split-0 Split-1 Split-2 Split-3 Avg

MAE 31.69 34.26 30.01 28.55 31.27
SupPR 37.08 38.43 34.40 32.32 35.56

SupPR vs. a supervised learning model.
To justify that the strength of SupPR
comes from its design rather than the su-
pervision signal, we further train a super-
vised learning model for each task and use
the trained model to extract image features
for prompt selection. This can be seen as
replacing the off-the-shelf model in Un-
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supPR with a supervised learning model. In this experiment, we fine-tune the state-of-the-art
Masked Autoencoder (MAE) model [9] on the Pascal-5i dataset, and use the image encoder for
feature extraction. Table 5 shows the results where SupPR largely outperforms the supervised MAE
model.

Distance metric. We use the cosine distance by default to compute the score function in Eq. 2. Here
we evaluate other design choices including Euclidean distance and Manhattan distance. As shown
in Fig. 5 right, the results are very similar for different distance metrics.

4 Related Work

4.1 In-Context Learning

In-context learning is a novel learning-free paradigm that originally emerged in large language mod-
els, such as GPT-3 [5]. In computer vision, in-context learning is a relatively new concept. One of
the earliest studies tackling in-context learning is Flamingo [2], a large visual language model that
can be prompted with textual instructions and can cope with both images and video sequences. More
relevant to our work is an image inpainting model developed by Bar et al. [3], which is pre-trained to
fill missing patches in academic paper figures and capable of performing in-context learning on new
tasks like foreground segmentation and image colorization. Another related work is Painter [22], a
generalist model that is trained on the combination of a variety of computer vision tasks (e.g., depth
estimation and semantic segmentation) using customized output spaces. Our work mainly follows
the image inpainting model [3] where the pre-training task differs significantly from the downstream
task, and reveals valuable insights about visual in-context learning.

4.2 Prompt Retrieval in NLP

The natural language processing community has found that the choice of in-context examples has a
huge impact on performance [1, 13]. Moreover, the way how in-context examples are constructed
can also affect performance, e.g., prompt length and order of in-context examples. These findings
prompted the NLP community to study how to find good in-context examples for large language
models, which largely inspired our research. Liu et al. [13] assumed that good in-context examples
should be semantically close to query sentences, based on which they proposed to select nearest
neighbors in the training set measured by a sentence encoder like RoBERTa [14]. Rubin et al. [18]
first used an unsupervised method to retrieve some candidates, among which top examples were
chosen using a supervised prompt retriever to maximize downstream performance. Different from
the prompt retrieval research in NLP, our work focuses on large vision models, which are different
from language models in many ways and require customized designs to deal with visual input.

5 Discussion and Conclusion

Our research presents a timely study on an emergent ability termed in-context learning for large
vision models. We systematically investigate how the choice of in-context examples impacts down-
stream performance, exposing a critical issue that different in-context examples could lead to drasti-
cally different results. We then propose an effective prompt retrieval framework for visual in-context
learning, with two simple implementations provided: one based on unsupervised learning and the
other based on supervised learning. Our methods obtain significant improvements over random se-
lection under various problem settings, demonstrating huge potential of prompt retrieval methods in
black-box adaptation scenarios for vision foundation models.

Our research also unveils some intriguing phenomena. For instance, we show that a good in-context
example should be semantically similar to the query and closer in context. A model that can better
balance spatial and semantic closedness in feature space would be more ideal for visual in-context
learning. We hope the insights presented in this work could pave the way for developing more
effective prompt retrieval methods.

Our experiments show that our methods are not strong enough to cope with distribution shifts.
Though our methods outperform random selection under distribution shifts, the gap is much smaller
than that on a standard benchmark, suggesting huge room for improvement.
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Figure 6: In-context examples, which are from the foreground segmentation task, retrieved by Un-
supPR and SupPR. These grids show examples from the train, tv, and bus categories.

A Illustration of In-context Examples

In the supplementary material, we illustrate more in-context learning results of foreground segmen-
tation, single object detection, and colorization tasks.

A.1 Foreground Segmentation

The main paper presents the in-context examples from the person and cow categories. In the supple-
mentary, as shown in Fig. 6-11, we present examples from the remained 18 categories in Pascal-5i.
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IoU: 29.58IoU: 7.31

IoU: 34.12IoU: 43.23IoU: 74.64 IoU: 78.78 IoU: 4.09IoU: 43.13

IoU: 40.52IoU: 35.02IoU: 38.64 IoU: 16.38 IoU: 21.61IoU: 19.90

IoU: 66.50IoU: 54.57IoU: 66.08 IoU: 57.10 IoU: 30.44IoU: 44.75

IoU: 65.49IoU: 54.25IoU: 77.60 IoU: 81.50 IoU: 35.28IoU: 66.75

IoU: 61.31IoU: 33.79

Figure 7: In-context examples, which are from the foreground segmentation task, retrieved by Un-
supPR and SupPR. These grids show examples from the bottle, sheep, and bird categories.

A.2 Single Object Detection

As shown in Fig. 12-13, we illustrate the in-context examples from the single object detection task.
By comparing the in-context examples picked by UnsupPR and those picked by SupPR, we find the
examples found by SupPR are more similar to the queries in terms of object pose (e.g., Fig. 12(f)),
viewpoint (e.g., Fig. 12(r).

A.3 Coloralization

As shown in Fig. 14-15, we illustrate the in-context examples from the colorization task. This task
aims to map a gray-scale image to a color image. By comparing the in-context examples picked
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IoU: 28.07IoU: 56.08IoU: 17.95 IoU: 57.14 IoU: 38.60IoU: 7.50

IoU: 34.96IoU: 71.44IoU: 29.17 IoU: 70.87 IoU: 74.21IoU: 14.59

IoU: 41.31IoU: 64.74IoU: 52.98 IoU: 63.29 IoU: 68.04IoU: 72.49

IoU: 8.52IoU: 15.43

Figure 8: In-context examples, which are from the foreground segmentation task, retrieved by Un-
supPR and SupPR. These grids show examples from the boat, airplane, and bicycle categories.

by UnsupPR and those picked by SupPR, we find the ground truth images of examples found by
SupPR are more similar to that of the queries in terms of image style, e.g. the background color
(e.g., Fig. 14(g)(h)).
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Figure 9: In-context examples, which are from the foreground segmentation task, retrieved by Un-
supPR and SupPR. These grids show examples from the car, cat, and chair categories.
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Figure 10: In-context examples, which are from the foreground segmentation task, retrieved by
UnsupPR and SupPR. These grids show examples from the dog, horse, and motorbike categories.
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Figure 11: In-context examples, which are from the foreground segmentation task, retrieved by
UnsupPR and SupPR. These grids show examples from the table, plant, and sofa categories.
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Figure 12: In-context examples, which are from the single object detection task, retrieved by Un-
supPR and SupPR. We find the examples found by SupPR are more similar to the queries in terms
of object pose (e.g., (f)), viewpoint (e.g., (r))
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Figure 13: In-context examples, which are from the single object detection task, retrieved by Un-
supPR and SupPR. We find the examples found by SupPR are more similar to the queries in terms
of object pose (e.g., (l)), viewpoint (e.g., (m))
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mse : 0.88mse : 0.73 mse : 0.23 mse : 0.17mse : 0.40 mse : 0.48

Figure 14: In-context examples, which are from the colorization task, retrieved by UnsupPR and
SupPR. We also show the ground truth of the query image. The query image is the gray-scale
version of its ground truth. The ground truth images of the in-context examples found by SupPR are
more similar than those found by UnsupPR to the ground truth images of queries in terms of image
style, e.g. the background color (g).
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Figure 15: In-context examples, which are from the colorization task, retrieved by UnsupPR and
SupPR. We also show the ground truth of the query image. The query image is the gray-scale
version of its ground truth. The ground truth images of the in-context examples found by SupPR are
more similar than those found by UnsupPR to the ground truth images of queries in terms of image
style, e.g. the background color (h).
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