
Does Localization Inform Editing? Surprising
Differences in Causality-Based Localization vs.

Knowledge Editing in Language Models

Peter Hase1,2 Mohit Bansal2 Been Kim1 Asma Ghandeharioun1

1Google Research 2UNC Chapel Hill
{peter, mbansal}@cs.unc.edu

{beenkim, aghandeharioun}@google.com

Abstract

Language models learn a great quantity of factual information during pretraining,
and recent work localizes this information to specific model weights like mid-layer
MLP weights [21]. In this paper, we find that we can change how a fact is stored
in a model by editing weights that are in a different location than where existing
methods suggest that the fact is stored. This is surprising because we would
expect that localizing facts to specific model parameters would tell us where to
manipulate knowledge in models, and this assumption has motivated past work on
model editing methods. Specifically, we show that localization conclusions from
representation denoising (also known as Causal Tracing) do not provide any insight
into which model MLP layer would be best to edit in order to override an existing
stored fact with a new one. This finding raises questions about how past work relies
on Causal Tracing to select which model layers to edit [21, 22]. Next, we consider
several variants of the editing problem, including erasing and amplifying facts.
For one of our editing problems, editing performance does relate to localization
results from representation denoising, but we find that which layer we edit is a
far better predictor of performance. Our results suggest, counterintuitively, that
better mechanistic understanding of how pretrained language models work may
not always translate to insights about how to best change their behavior.1

1 Introduction

Language models learn a variety of facts about the world during pretraining that can be elicited via
natural language prompts [28]. Recent work explores how these facts are stored in model weights and
expressed in response to particular prompts, suggesting that MLP weights act as key-value memories
that support factual association [12, 21, 13]. Besides improving our scientific understanding of
pretrained language models, this kind of investigative work may enable the design of better model
editing methods for injecting new facts into model weights, and indeed it has been used to motivate
the ROME and MEMIT model-editing methods [21, 22]. These recent methods set a new state of
the art for weight edits that successfully rewrite stored facts in language models. Model editing
methods could be broadly useful for correcting factual errors in pretrained models, avoiding morally
undesirable outputs, and updating models with changing knowledge over time.

The connection between localization (identifying components of a model responsible for a certain
behavior) and editing (changing model components in order to change model behavior) is predicated
on the reasonable assumption that one should go about editing a model by first localizing a behavior
to a specific component and then choosing to edit that particular component. In the case of ROME and

1Code for all experiments is available at https://github.com/google/belief-localization

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/google/belief-localization

MEMIT, localization is done via Causal Tracing, which measures the information content of hidden
representations, and editing is done by treating MLP weights as linear associative memories and inject-
ing new key-value memories into the weights. Meng et al. [21, 22] choose to edit early MLP layer(s)
based on results from Causal Tracing showing the largest causal effects on average in early layers.

Surprisingly, the assumption that one should change the knowledge in a model by editing the
weights where it is stored turns out to be false. In fact, localization results from Causal Tracing
are statistically uncorrelated with the success of an edit injecting a new fact into MLP weights.
Using the CounterFact dataset from Meng et al. [21] with a GPT-J model [35], we show that (1) not
only is a substantial fraction of factual knowledge stored outside of the range of layers edited by
ROME/MEMIT (see Fig. 1), (2) the correlation between Causal Tracing results and edit success is near
zero (for several editing methods including ROME, MEMIT, and Adam-based finetuning). We note
that this is surprising largely because ROME and MEMIT do work well for editing facts, in spite of
Causal Tracing often suggesting knowledge is stored elsewhere than early-to-mid-layer MLP weights.

ROME Edit Layer
MEMIT Edit Layers

0

50

100

150

200

1 4 8 12 16 20 24 28

Layer in GPT-J where Causal Tracing effects peak

N
um

. P
oi

nt
s

How often does Causal Tracing peak in each layer?

Figure 1: We visualize where 652 facts known
by GPT-J are stored within the model, as local-
ized by Causal Tracing. Model editing methods
like ROME and MEMIT can successfully change
knowledge in LMs by editing layers 4-9. But many
facts appear to be stored outside of this range, e.g.
at layers 1-3 and 16-20. What about these facts?

In the face of this result, we attempt to recover
the connection between tracing-based localiza-
tion and editing by introducing four variants of
the default model editing problem. Each variant
differs in terms of the input, target, or objective
used in the editing problem. One variant we
introduce, called Fact Forcing, is designed to
match Causal Tracing along these three factors.
Specifically, Fact Forcing uses a noised input
and involves maximizing the probability of the
correct target output, just like Causal Tracing.
We find that tracing results are related to edit
success for Fact Forcing. However, even for
this variant, it is still better to ignore the tracing
results and always choose an early-to-mid-layer
MLP weight for editing. We conclude that,
although Causal Tracing is a reasonable
localization method that has yielded insight
into how models store factual information, this
insight does not actually indicate which model
layers we should edit in order to manipulate
what facts are stored in language models.

To summarize, our conclusions are as follows:
1. We find that model edit success is essentially unrelated to where factual information is stored in

models, as measured by Causal Tracing. Robustness experiments generalize this result across
causal localization methods, editing methods, editing metrics, models, and datasets.

2. To reconnect localization with editing performance, we introduce four variants of a standard model
editing problem, including Tracing Reversal, Fact Erasure, Fact Amplification, and Fact Forcing.

3. Edit success and tracing effects correlate best in the Fact Forcing setting. However, tracing effects
explain only a small fraction of the variance in editing performance, while the choice of edit layer
is a much more important factor. This suggests that, surprisingly, localization insights from Causal
Tracing are not useful for choosing which model layer to edit.

2 Related Work

Localization. A long line of work aims to interpret what certain hidden representations represent, or,
in the reverse direction, to understand how a given concept is represented in a model. Both of these
efforts aim to localize behaviors to specific model components. We group these methods based on
the kinds of model components they consider (e.g. layers, neurons, etc.).

Many works focus on individual layers or weight matrices [37, 31, 9, 33, 11]. In this paper, we adopt
the layer-wise localization method from Meng et al. [21] known as Causal Tracing, which estimates
the information content of a set of representations via a denoising operation. We specifically focus on
MLP layers given evidence of their role in factual association [12, 21, 13].

2

Related to analysis at the layer level, other work aims to localize concepts to directions in a latent
space, dating back to work interpreting directions in word vector space [23, 17, 41, 14, 38, 5]. One
might also place “key-value memory” theories of weight matrices in this category since a key vector
represents a direction in the latent space [1, 32, 12, 21].

Neurons, meanwhile, are the most common focus of localization analysis. Past work explores
the functions of groups of neurons and subnetworks [27, 6, 10, 4] or simply individual neurons
[29, 40, 18, 2, 34, 26, 8, 19, 3, 16, 7, 36].

Relating Localization to Editing. Many works on localization validate the quality of their con-
clusions by editing neuron activations or layer weights corresponding to a particular concept, then
checking that the network behavior changes appropriately. For example, Dai et al. [8] check that their
“knowledge neurons” have localized a specific fact by amplifying or suppressing the expression of
that fact via adjusting the corresponding neuron activations. Altogether, we find many localization
analyses are validated by editing models in suggested locations [29, 18, 2, 26, 34, 8, 19, 7, 36, 4] or
directions in the latent space [23, 1, 32, 21].

Changing model behavior by editing components suggested by localization seems like a reasonable
validation step. However, in isolation, it paints an incomplete picture that has led to misleading
interpretations about the connections between localization and editing. Such experiments alone do
not show whether editing that specific component is (1) successful in proportion to the strength of
the localization, (2) necessary to achieve the desired behavior, or (3) the best option for editing. In
particular, these experiments do not show whether the same change in behavior can be achieved
elsewhere in the network. Meng et al. [21] consider this question by measuring editing success
across layers, averaged across data, then comparing the results with Causal Tracing conclusions also
averaged across data. However, as we show, more fine-grained analysis at the datapoint level reveals
the unexpected result that tracing results are unrelated to edit success. We are not aware of any work
that primarily investigates the connection between localization and editing or that demonstrates better
model editing at locations elsewhere in the network than those suggested by localization analysis.

3 Notation and Background

3.1 Data Notation

Following Meng et al. [21], we consider facts of the form (s, r, o), where s represents a subject entity
(e.g. Paris), r a binary relation (e.g. is located in), and o an object (e.g. France) for which the tuple
(s, r, o) represents a factual assertion about the world. In the CounterFact dataset [21], each datapoint
is a prompt P for some fact (s, r, o). So, P might be “Paris is located in” or “Paris is situated in,” to
be completed by the object o to form a true statement. In an abuse of notation, we will often use s
and r to refer to textual representations of a subject and relation, for instance by writing a model’s
conditional probability as pθ(·|s, r) instead of pθ(·|P). We do so in order to more easily indicate
when an input is provided where the subject or relation has been manipulated (described next).

We make use of a few variations of the data for the fact (s, r, o). The additional variables include:

1. s∗ is a “neighboring” entity to the subject s (similar to s) for which (s∗, r, o) is a true fact like
(s, r, o). In CounterFact, “Marseille” is a neighboring entity to “Paris.”

2. r∗ is a paraphrase of the relation r, such as “is situated in” for “is located in.”
3. snoise is a noised representation of the subject s. We add Gaussian noise to the token embeddings

of s, following Meng et al. [21].
4. ofalse is an object that incorrectly completes the tuple (s, r, ·). CounterFact contains an ofalse for

each datapoint, intended to be the new model output when evaluating model editing methods.
5. otrue, for clarity, is the object that correctly completes the fact (s, r, ·), from CounterFact.

3.2 Causal Tracing

We give a brief description of Causal Tracing here and refer readers to Meng et al. [21] for more
information (see Fig. 2 for an example visualization). Causal Tracing is a method for localizing
information in the forward pass of an autoregressive Transformer to specific hidden representations.
For a model with L layers, the input is a prompt containing T tokens (including a subject s and

3

relation r). Given this input, the forward pass produces T × L layer outputs (one representation per
T tokens and L layers). The algorithm aims to estimate the amount of information about the fact
(s, r, otrue) that is contained in each of these representations. We denote the representation at token t
and layer ℓ as v(t,ℓ).

The amount of factual information in v(t,ℓ) is estimated by copying this representation into a different
forward pass obtained from using a noised subject in the input:

Tracing Effect= pθ(otrue|snoise, r, v(t,ℓ))−pθ(otrue|snoise, r)

0 5 10 15 20
Center of 10 Restored Layers

 Orig Prob: 0.923, Noised Prob: 0.001

The*
 Space*
 Need*

le*
 is
 in

 the
 city

 of

MLP Tracing Effect (Window Size: 10)

0.1

0.2

0.3

0.4

0.5

p(Seattle)

Figure 2: Visualizing Causal Tracing results over
MLP layers with window size 10. Tokens with
an asterisk are the noised subject tokens. Here,
pθ(otrue|s, r)=.923 and pθ(otrue|snoise, r)=.001.

where snoise indicates that we add Gaussian
noise with σ = 0.094 to the token embeddings
of s following Meng et al. [21], and v(t,ℓ) is the
representation at token t and layer ℓ in the for-
ward pass on the original prompt P = (s, r).
The probability pθ(otrue|snoise, r, v(t,ℓ)) is com-
puted by (1) running the model forward pass on
the noised prompt P ∗ = (snoise, r) until layer
ℓ, (2) overwriting the existing representation at
token t and layer ℓ with the representation v(t,ℓ),
then (3) computing the remaining L− ℓ layers
as normal using this adjusted set of T represen-
tations as input (adjusted at token index t). Thus,
Causal Tracing estimates the information con-
tent of a representation in terms of its effect on
the probability of the true target. The results
from Causal Tracing show where the represen-
tations containing information about the true
target are in the model forward pass.

In practice, a set of representations from mul-
tiple adjacent layers is copied from the clean
forward pass rather than a single layer’s rep-
resentation (for instance, ten layers in Fig. 2). The size of this set is referred to as the tracing window
size. A window size of, e.g., three implies that the tracing effect at layer ℓ estimates the amount of
information contained in the three representations v(t,ℓ−1), v(t,ℓ), and v(t,ℓ+1). See Appendix Figs.
10 and 11 for analysis of the parameter’s effect. In this paper, we use a tracing window size of 5
by default, and we apply Causal Tracing exclusively to MLP layers, given evidence of their role in
factual association [12, 21].

3.3 Model Editing with ROME

Autonomous University of Madrid,
which is located in

Input Prompt:

Requested Edit:

Paraphrase:

Neighbor:

Spain Sweden

and Sallie Beavers Riley. Autonomous
University of Madrid is located in

Ripollès, located in

CounterFact Example

Figure 3: An example CounterFact datapoint.

We describe the ROME editing method here
since we use it in our analysis in Sec. 4, and
later in Sec. 5 we outline additional editing
methods we consider. For mathematical detail,
see Meng et al. [21].

The input to ROME includes a prompt
P = (s, r) and a new desired output, which is
always a false target ofalse in the CounterFact
dataset. To change the model prediction to
ofalse, ROME applies a rank one edit to the
down-projection matrix in a prespecified MLP
layer in the model. The default layer in GPT-J
is layer 6, following from averaged Causal Tracing results. ROME also makes use of covariance
statistics of different subject representations obtained from a larger corpus as it edits individual facts.
Overall, the method is designed to optimize the quantity pθ(ofalse|s, r) while aiming to satisfy some
other constraints reflecting what a desirable model edit is (described in Sec. 3.4 next).

4

3.4 Editing Metrics

Editing methods are typically evaluated according to their ability to (1) change the model prediction
on the input P provided at runtime, (2) generalize appropriately to paraphrases of the prompt P ,
and (3) avoid over-generalizing to unrelated data [42, 9, 24, 15, 25]. We adopt metrics for each
desideratum that we compute with available CounterFact data. Instead of the exact “magnitude”
metrics from Meng et al. [21], we use normalized versions of each metric that we design to scale
from 0 to 1 depending on whether the edit was maximally (un)successful, for purposes of making
scores more comparable across data points. We denote the new edited weights of the LM as θ∗ and its
pre-edit weights as θ. See Fig. 3 for an example of the kinds of data these metrics are computed on.

1. Rewrite Score. The rewrite score measures how much an edit improves the target probability
p(ofalse|s, r) as a fraction of the maximum possible improvement:

pθ∗(ofalse|s, r)− pθ(ofalse|s, r)
1− pθ(ofalse|s, r)

2. Paraphrase Score. The paraphrase score measures the target probability using syntactical para-
phrases as inputs, always preserving the exact subject wording:

pθ∗(ofalse|s, r∗)− pθ(ofalse|s, r∗)
1− pθ(ofalse|s, r∗)

which is averaged over multiple available paraphrases per input P . The score measures whether
edits properly generalize across semantically equivalent prompts.

3. Neighborhood Score. The neighborhood score measures whether edits change predictions for
prompts with a similar subject s∗, the same relation r, and the same (true) objects. We scale the
difference in probabilities so that 1 means the probability did not change (good), and 0 means it
changed to the maximum extent possible (bad):

1−
|pθ∗(ofalse|s∗, r)− pθ(ofalse|s∗, r)|

.5 + |pθ(ofalse|s∗, r)− .5|

The score measures whether edits avoid over-generalizing from the prompt P to different subjects.

4 Does Edit Success Follow From Localization?

Ostensibly, localization results should inform editing methods because it should help to know where
information is stored in a model if you are going to manipulate the model’s expression of that
information. More specifically, if you wanted to inject a false belief (s, r, ofalse) into a model (as
defined in the ROME editing problem), it seems helpful to know which weights store the true fact
(s, r, otrue), so that you could replace some stored representation of otrue with that of ofalse. This
underlying assumption about editing models appears in much past work on localization, where
editing is used to verify localization analysis (see Sec. 2). In this section, we investigate the validity
of this assumption as it applies to autoregressive Transformers.

4.1 Experiment Design

The goal of our experiments is to determine, for a given datapoint, whether edit success at a specific
layer aligns with the results from Causal Tracing at that layer (see Causal Tracing description in Sec.
3.2). We operationalize this outcome and explanatory variable as follows:

1. Edit Success. We primarily consider Rewrite Score as our measure of edit success, given that this
is the main optimization objective of ROME. Note ROME achieves an average rewrite score of
99% at layer 6 of GPT-J and above 96% at layers besides the last layer of the model.

2. Tracing Effect at layer ℓ. Since the output of Causal Tracing is a T × L grid of estimates, we
obtain a single tracing effect per layer by taking the max across the T token effects at each layer
(i.e., we collapse the grid in Fig. 2 down to a single curve across layers). Like our other metrics,

5

we use a fractional tracing effect where 0 means the intervention had no effect and 1 means it
fully restored the original probability pθ(otrue|s, r):

pθ(otrue|snoise, r, v(t,ℓ))− pθ(otrue|snoise, r)

pθ(otrue|s, r)− pθ(otrue|snoise, r)

Lastly, note we use a tracing window size of 5 (smaller than the value of 10 used in Fig. 2).

4.2 Model and Data

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Tracing Effect (Fraction Restored)
R

ew
ri

te
 S

co
re

ROME Rewrite Score by Tracing Effect at Layer 6

Figure 4: The correlation between ROME edit
success and the tracing effect at layer 6 in GPT-J
is not positive but in fact slightly negative (ρ =
−0.13; p <1e−3). The dashed red line shows a
hypothetical perfect relationship.

We conduct our analysis with GPT-J [35]
using the CounterFact dataset, similar to Meng
et al. [21]. GPT-J is a 6 billion parameter
autoregressive language model. We record
editing performance at layers in {1, 5, 9, 13,
17, 21, 25, 28} as well as layer 6 (the default
for ROME). Note ROME achieves an average
rewrite score of 99% at layer 6 and above 96%
at layers besides layer 28.

The CounterFact dataset includes datapoints
consisting of a prompt, paraphrases, and
neighboring points. For each point, a new
(false) target is supplied for editing purposes.
We show an example datapoint in Fig. 3. Note
paraphrases intentionally include unrelated text
preceding a syntactical paraphrase of the input,
with the idea that this text should not affect the
output. We select data for experiments from
10% of CounterFact, additionally filtering to a
subset of facts that are correctly completed by GPT-J, in order to ensure that there is knowledge
to localize in the model for each point (details in Appendix A). Our final sample size is n = 652.

4.3 Experiment Results

We present results in two ways. First, in Fig. 4, we show Rewrite Score as a function of the
(fractional) tracing effect. The red dotted line shows a hypothetical perfect relationship between
tracing and edit success. Surprisingly, there is not a positive relationship but a negative relationship
between the rewrite score and the tracing effect (linear correlation of ρ = −0.13; p <1e−3). This
seems to fully invalidate the assumption that editing should be most effective when it occurs at a
layer where information is stored about the edited fact. We wish to emphasize, however, that in most
layers we simply see a near-zero rather than negative correlation, as shown in Appendix Fig. 15.

Table 1: R2 values for predicting ROME edit suc-
cess. Tracing effects explain essentially none of
the variance in rewrite score, while the choice of
edit layer is very important.

R2 Values

Method Layer Tracing Effect Both

ROME 0.947 0.016 0.948

Our second mode of analysis is though linear
regression models predicting rewrite score
based on (1) the tracing effect, (2) the choice
of edit layer treated as a categorical variable,
or (3) both terms interacted, again treating edit
layer as a categorical variable. The purpose
of the models is to show how much of the
variance in rewrite score is explained by one
variable versus the other. We show the resulting
R2 values in Table 1. We see that the choice
of layer explains almost all of the variance in
rewrite score (94.7%), while adding the tracing effect to the model raises the R2 only to 94.8%. This
means that the tracing effect is able to explain only 0.1% of the variance in edit success when
accounting for the choice of edit layer. These results suggest that the tracing effect is essentially
unrelated to the success of model editing.

This is a surprising conclusion, and it naturally raises the question of why applying ROME at layer 6
works well in the first place (see average rewrite, paraphrase, and neighborhood scores across layers
in Appendix Fig. 7). We suggest a possible answer to this question in Sec. 6.

6

Editing Problem Variants

Error Injection

Fact Amplification

Fact Erasure

Fact Forcing

Tracing Reversal Autonomous University of Madrid, which is located in

Autonomous University of Madrid, which is located in

Autonomous University of Madrid, which is located in

Autonomous University of Madrid, which is located in

Add noise to subject

Autonomous University of Madrid, which is located in

Input Prompt Objective

Figure 5: Depiction of editing problem variants. Rather than inject a new false fact into a model
(Error Injection), we consider injecting the output obtained from noising the subject entity (Tracing
Reversal), erasing a stored fact (Fact Erasure), amplifying a stored fact (Fact Amplification), or
forcing a known fact onto the same kind of noisy input as used in Causal Tracing (Fact Forcing).

Additional Robustness Experiments. We include additional results in Appendix B using another
dataset, ZSRE [20] (Figs. 19 and 20, Table 8), and another localization method, representation
zeroing [2] (Figs. 21 and 22). Further robustness experiments in Appendix C include results with
(1) other measures of edit success including Paraphrase Score, Neighborhood Score, and an Overall
Score (Tables 4, 5 and 6), (2) different values of the tracing window size (Fig. 12), (3) GPT2-XL
rather than GPT-J (Fig. 13), (4) the original unscaled metrics from Meng et al. [21] (Fig. 14), and (5)
tracing effects measured at the last subject token rather than the max across tokens (Fig. 16). We
find that all of these experiments corroborate our results comparing Causal Tracing to Rewrite
Score for GPT-J on CounterFact. Considering these robustness results alongside additional editing
method experiments that we consider in Sec. 5 below, we note that our main conclusions generalize
across different causal localization methods, editing methods, editing metrics, models, and datasets.

5 Reconciling Localization and Editing

If injecting a new fact has little to do with where an existing fact is stored in the model, perhaps there
is some other editing intervention that would be more closely related to insights from tracing analysis.
In this section, we propose a few variants of the model editing problem that appear more and more
like Causal Tracing in terms of their input, target, and objective. Then, we repeat and extend our
analysis from Sec. 4 for all of these editing problems.

5.1 Editing Problem Variants

We summarize the following editing problems in Fig. 5.
1. Error Injection. The editing problem considered in Sec. 4, the objective being to maximize

pθ(ofalse|s, r).
2. Tracing Reversal. We maximize pθ(onoise|s, r), aiming to change the model output from otrue back

to the output for the “original” noised input P = (snoise, r) in Causal Tracing, onoise.
3. Fact Erasure. Knowing where a fact is stored could be more useful for erasing the fact rather than

injecting a new one. Hence, we consider erasing a fact by minimizing pθ(otrue|s, r).
4. Fact Amplification. We reinforce known facts in the model by maximizing pθ(otrue|s, r). Even for

correctly predicted points, this value is often not near 1, leaving room for it to be increased.
5. Fact Forcing. As in Causal Tracing, this method uses a noised subject representation snoise.

We force the model to output otrue for this input by maximizing pθ(otrue|snoise, r). Though this
problem is of little practical significance, it is the most similar to Causal Tracing in its design,
since it uses the same input as Causal Tracing and matches the goal of increasing the probability
of otrue (see Sec. 3.2).

Note that solutions to each of these problems are evaluated according to our Rewrite Score, Paraphrase
Score, and Neighborhood Score metrics from Sec. 3.4. The only difference is in the target output for
the rewrite and paraphrase metrics (neighborhood is entirely identical).

7

29.4 29.6

75.1 75.2

29.4 31.0
21.2 21.8

38.3 39.3 42.4 43.6

88.0 88.0 90.5 90.6

64.3 64.6
69.8 70.0

85.7 85.8
92.5 92.5

69.7 72.4
63.4 66.6

42.2 42.5
34.5 35.4

Tracing Reversal Fact Amplification Fact Erasure Fact Forcing

FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT
0

25

50

75

100

Explanatory Variable(s): Layer Layer + Tracing Effect

Tracing effects are very weakly predictive of edit success

Figure 6: Tracing effects are very weakly predictive of edit success across editing problems and
methods. Relative to the R2 of a regression predicting rewrite score based on the edit layer (blue), a
regression with edit layer and tracing effects (orange) improves the R2 by at most .03 points (bolded).
The choice of edit layer is a much better predictor of the rewrite score.

5.2 Experiment Design and Additional Edit Methods

We use the same experimental procedure as in Sec. 4, except that we consider a broader set of editing
methods besides ROME. We list the four methods below:

1. ROME. The edit method from Sec. 4, ROME edits a single MLP layer’s down-projection weight.
2. MEMIT. Though designed to edit multiple facts at once, when editing a single fact this method

differs from ROME only by spreading out its update over several layers rather than one layer [22].
3. Constrained Finetuning (window size 1). We adopt a simple Adam-based optimization approach

with an ℓ∞-norm constraint, following Zhu et al. [42]. The window size of 1 indicates we apply
this method at a single layer.

4. Constrained Finetuning (window size 5). The above finetuning method on five adjacent layers.

We select these methods for their simplicity and since ROME and MEMIT are designed specifically
to edit MLP layers. Note that we report results for Causal Tracing with a window size of five, so
when we use MEMIT or constrained finetuning to edit five layers, these five layers can exactly match
the range of restored layers from Causal Tracing.

5.3 Experiment Results

Main Results. As in our analysis in Sec. 4, we report R2 values for a linear regression model
predicting the rewrite score based on (1) the choice of edit layer treated as a categorical variable,
or (2) that variable interacted with the tracing effect. We show the results in Fig. 6, with R2 values
for each regression above their respective bars (numbers also in Appendix Table 3). We find that,
relative to the Layer-only regression, tracing effects explain at most an additional 3.2% of the
variance in edit success across our different editing problems and editing methods. This is a very
small effect, especially compared to R2 values from the Layer-only regression, which explains most
of the variance in the outcome (58.5% on average across conditions in Fig. 6). We believe this is
surprising given how the editing problem variants are designed. It would seem that knowing where
a fact is stored should help with amplifying or erasing that fact, but our results appear to fully
disconfirm this hypothesis. Interestingly, it also appears that it makes little difference whether we
edit at one layer or five layers in order to match the number of representations restored by Causal
Tracing. Based on comparisons between finetuning methods (FT-1 and FT-5) and between ROME
and MEMIT (applied to 5 layers), editing at five layers does not improve the alignment between
tracing and editing. In addition to our robustness results listed in Sec. 4.3, we also repeat our analysis
using a subset of points where tracing effects are concentrated to a small number of layers, in order
to focus on points where MEMIT and FT-5 edit all of the layers where the fact is stored. Results are
nearly identical for this subset of the data (see Appendix B).

One Successful Case. We see the strongest positive relationship between edit success and tracing
effects for Fact Forcing with finetuning methods. Here, we find that tracing effects explain an
additional 3% of the variance in edit success (up from 1.5% for other experiments). This effect

8

is statistically significant at p < 1e−4 according to an F-test2 comparing the two models (see
visualization in Appendix Fig. 17). The result for Fact Forcing suggests that using snoise rather than s
in the model input is the cause of the positive relationship between editing and localization. We rule
out the choice of target and maximizing vs. minimizing the target probability as possible causes based
on the design of each problem variant (see Fig. 5): (1) the choice of target is not important since
results are similar for Error Injection, Tracing Reversal, and Fact Amplification, and (2) maximizing
vs. minimizing the target probability is not important since results are similar for Fact Erasure and
Fact Amplification. Yet, tracing effects are still weakly informative of Fact Forcing editing if they
explain only 3% of the variance in edit success. This points to there being other deeper reasons for
localization results being unrelated to editing success.

6 Discussion

Does Causal Tracing tell us anything? We show that Causal Tracing is not indicative of which
layer to select for model editing. However, this does not mean that localization insights from
Causal Tracing have been useless. Causal Tracing has helped reveal the role that early-to-mid-range
MLP representations at the last subject token index play in factual association in autoregressive
language models, and ROME does perform better on average when optimizing the last subject token
representation rather than another token representation [21].3 Past work finds that both MLP and
attention layers can show large Causal Tracing effects, and additional empirical editing experiments
then demonstrate that it is preferable to edit MLP weights [21].

Why is edit success high at layers where the edited fact is not actually stored? First, we note
that information is gradually accumulated across layers in a Transformer forward pass, as discovered
by past work [31, 12, 21, 22, 13]. We suggest that it is possible to “override” the information in layer
ℓ with an edit to another layer k (where k < ℓ or k > ℓ). Since ROME is typically effective across a
large range of layers (see Fig. 9), it appears that ROME can override the information accrued across
5 or 10 layers of a forward pass with an edit to a single layer outside of that range of layers. We
summarize this hypothesis as follows: Many layers could store a fact, and it happens that some do.

If this hypothesis were true, it would be surprising because one cannot arbitrarily swap layers in a
Transformer model without greatly damaging model performance [39]. That is, it should matter where
information enters the residual stream, since later layers strongly depend on receiving the right incom-
ing information from prior layers. We leave it to future work to further investigate this hypothesis.

What do our results imply about using model editing to validate localization claims? We
interpret our results to suggest that Causal Tracing answers a different question than model editing
does. That is, Causal Tracing answers a question about where factual information is carried in
representations in a Transformer forward pass, and this question turns out to be a different question
than the editing question of where is best to intervene in the Transformer in order to change the
factual information it expresses. It seems critical, then, to carefully formalize the questions that
one wishes to answer before (1) validating the results of localization via editing or (2) motivating
the design of an editing method via localization, because the conclusions that can be drawn from
a particular localization method might not be relevant for the performance of a given model editing
method. This would not imply the conclusions from the localization analysis are invalid, though.
For instance, we believe Causal Tracing reveals interesting insights about where MLP representations
contain factual information (see Figs. 1 and 2). We only wish to suggest that localization analysis
might answer a different question than the question answered by model editing.

These observations may have implications for the array of studies that validate their localization
analysis by manipulating a certain model behavior via an intervention on the model component
recommended by the analysis [29, 18, 2, 1, 26, 34, 8, 19, 7, 36, 4, 21]. Do model editing experiments
provide additional evidence for claims about which model components are responsible for certain
behaviors? If localization and editing answer different questions, editing experiments will not
provide further evidence for localization conclusions.

2This tests if one model explains more of the variance than another model which has only a subset of the
first’s covariates (here, tracing effect and edit layer vs. only edit layer).

3Although, datapoint-level regression would provide stronger evidence that tracing effects predict which
token representation is best to optimize with ROME (and rule out other confounders such as the edit layer).

9

7 Conclusion

We obtain the surprising result that model edit success is essentially unrelated to where factual
information is stored in models, as measured by Causal Tracing. Faced with this result, we attempt
to reconnect tracing-based localization with edit success by introducing four variants of the Error
Injection problem using the CounterFact dataset. We find that edit success and tracing effects correlate
best in our Fact Forcing setting. However, even in this case, tracing effects explain only a small
fraction of the variance in editing performance, while the choice of edit layer is a much more important
factor. This suggests that, counterintuitively, better mechanistic understanding of how pretrained
language models work may not always translate to insights about how to best change their behavior.

8 Limitations

We note a few limitations of the experiments conducted in this paper:

(1) We work only with the CounterFact and ZSRE datasets, which we use as short English prompts
with factual completions corresponding to a specific set of relations between subject and object
entities. This is a basic form of factual knowledge, and localization and editing analysis may yield
different trends for other forms of knowledge.

(2) We work with two autoregressive Transformers chosen for their representativeness of large
language models that show a capacity for expressing factual knowledge in response to natural
language prompts. However, the conclusions from our analysis may not generalize to models
larger than GPT-J (6B parameters) that are known to exhibit phase changes in their behavior under
prompting.

(3) We use a particular set of localization and editing methods, including representation denoising
and zeroing at the layer level and layer-level MLP editing methods that inject new facts or amplify
or erase existing facts. Our conclusions may not necessarily hold for the breadth of localization
and editing methods from work related to this paper, and one should be cautious in applying our
conclusions beyond our experimental setting.

9 Broader Impacts

It is possible that increased mechanistic understanding of models improves our ability to edit them
at some point in the future. In fact, we consider it unlikely that interpretability results never give
insight into improving model editing methods. Thus, to the extent that model editing is a dual use
methodology, which could be used to inject harmful beliefs or dangerous knowledge into models,
interpretability results may enhance the effectiveness of these malicious use cases. However, these
concerns are relatively far removed from our analysis, which focuses on the connection between
localization and editing performance. Ultimately, we hope that studies of mechanistic interpretability
and model editing improve our ability to control language models.

Acknowledgements

We thank Kevin Meng and David Bau for helpful discussions of the methods used in this paper and
the conclusions we reach from our experiments. Additionally, we thank Jasmijn Bastings and Lucas
Dixon for feedback on writing and presentation of results, as well as the paper’s reviewers for their
useful comments. This work was conducted while Peter Hase was a student researcher at Google.

References
[1] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting a deep

generative model. In European conference on computer vision, pages 351–369. Springer, 2020.
URL https://arxiv.org/pdf/2007.15646.pdf.

[2] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National

10

https://arxiv.org/pdf/2007.15646.pdf

Academy of Sciences, 117(48):30071–30078, 2020. URL https://www.pnas.org/doi/
pdf/10.1073/pnas.1907375117.

[3] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and
Martin Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.
URL https://arxiv.org/pdf/2104.07143.pdf.

[4] Stephen Casper, Shlomi Hod, Daniel Filan, Cody Wild, Andrew Critch, and Stuart Russell.
Graphical clusterability and local specialization in deep neural networks. In ICLR 2022
Workshop on PAIR, 2022. URL https://arxiv.org/pdf/2110.08058v2.pdf.

[5] Pattarawat Chormai, Jan Herrmann, Klaus-Robert Müller, and Grégoire Montavon. Disentangled
explanations of neural network predictions by finding relevant subspaces. arXiv preprint
arXiv:2212.14855, 2022. URL https://arxiv.org/pdf/2212.14855.pdf.

[6] Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modu-
lar? inspecting functional modularity through differentiable weight masks. arXiv preprint
arXiv:2010.02066, 2020. URL https://arxiv.org/pdf/2010.02066.pdf.

[7] Audrey Cui, Ali Jahanian, Agata Lapedriza, Antonio Torralba, Shahin Mahdizadehaghdam,
Rohit Kumar, and David Bau. Local relighting of real scenes. arXiv preprint arXiv:2207.02774,
2022. URL https://arxiv.org/pdf/2207.02774.pdf.

[8] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Knowledge neurons in pretrained
transformers. In ACL, 2022. URL https://arxiv.org/pdf/2104.08696.pdf.

[9] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
EMNLP, pages 6491–6506. Association for Computational Linguistics, November 2021. URL
https://aclanthology.org/2021.emnlp-main.522.

[10] Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and Ivan Titov. Sparse interventions in
language models with differentiable masking. In EMNLP BlackboxNLP Workshop, 2021. URL
https://arxiv.org/pdf/2112.06837.pdf.

[11] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

[12] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In EMNLP, 2021. URL https://arxiv.org/pdf/2012.14913.
pdf.

[13] Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022. URL https://arxiv.org/pdf/2203.14680.pdf.

[14] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-
based explanations. Advances in Neural Information Processing Systems, 32, 2019. URL
https://arxiv.org/pdf/1902.03129.pdf.

[15] Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov,
Mohit Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting,
updating, and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021. URL https:
//arxiv.org/pdf/2111.13654.pdf.

[16] Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and
Jacob Andreas. Natural language descriptions of deep visual features. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/pdf?id=
NudBMY-tzDr.

11

https://www.pnas.org/doi/pdf/10.1073/pnas.1907375117
https://www.pnas.org/doi/pdf/10.1073/pnas.1907375117
https://arxiv.org/pdf/2104.07143.pdf
https://arxiv.org/pdf/2110.08058v2.pdf
https://arxiv.org/pdf/2212.14855.pdf
https://arxiv.org/pdf/2010.02066.pdf
https://arxiv.org/pdf/2207.02774.pdf
https://arxiv.org/pdf/2104.08696.pdf
https://aclanthology.org/2021.emnlp-main.522
https://arxiv.org/pdf/2112.06837.pdf
https://arxiv.org/pdf/2012.14913.pdf
https://arxiv.org/pdf/2012.14913.pdf
https://arxiv.org/pdf/2203.14680.pdf
https://arxiv.org/pdf/1902.03129.pdf
https://arxiv.org/pdf/2111.13654.pdf
https://arxiv.org/pdf/2111.13654.pdf
https://openreview.net/pdf?id=NudBMY-tzDr
https://openreview.net/pdf?id=NudBMY-tzDr

[17] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas,
and Rory sayres. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 2668–2677. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/kim18d.html.

[18] Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene,
and Marco Baroni. The emergence of number and syntax units in lstm language models. In
NAACL-HLT, 2019. URL https://arxiv.org/pdf/1903.07435.pdf.

[19] Yair Lakretz, Dieuwke Hupkes, Alessandra Vergallito, Marco Marelli, Marco Baroni, and
Stanislas Dehaene. Mechanisms for handling nested dependencies in neural-network language
models and humans. Cognition, 213:104699, 04 2021. doi: 10.1016/j.cognition.2021.104699.
URL https://arxiv.org/ftp/arxiv/papers/2006/2006.11098.pdf.

[20] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation ex-
traction via reading comprehension. In Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017), pages 333–342, Vancouver, Canada, Au-
gust 2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL
https://aclanthology.org/K17-1034.

[21] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
knowledge in gpt. In NeurIPS 2022, 2022. URL https://arxiv.org/pdf/2202.
05262.pdf.

[22] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-
editing memory in a transformer. arXiv preprint arXiv:2210.07229, 2022. URL https:
//arxiv.org/pdf/2210.07229.pdf.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In arXiv preprint arXiv:1301.3781, 2013. URL https:
//arxiv.org/pdf/1301.3781.pdf.

[24] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. arXiv preprint arXiv:2110.11309, 2021. URL https://arxiv.
org/pdf/2110.11309.pdf.

[25] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning, pages
15817–15831. PMLR, 2022. URL https://arxiv.org/pdf/2206.06520.pdf.

[26] Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Ad-
vances in Neural Information Processing Systems, 33:17153–17163, 2020.
URL https://proceedings.neurips.cc/paper/2020/file/
c74956ffb38ba48ed6ce977af6727275-Paper.pdf.

[27] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine
Ye, and Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi:
10.23915/distill.00010. https://distill.pub/2018/building-blocks.

[28] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/
D19-1250. URL https://aclanthology.org/D19-1250.

[29] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and discover-
ing sentiment. arXiv preprint arXiv:1704.01444, 2017. URL https://arxiv.org/pdf/
1704.01444.pdf.

12

https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v80/kim18d.html
https://arxiv.org/pdf/1903.07435.pdf
https://arxiv.org/ftp/arxiv/papers/2006/2006.11098.pdf
https://aclanthology.org/K17-1034
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2210.07229.pdf
https://arxiv.org/pdf/2210.07229.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2206.06520.pdf
https://proceedings.neurips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://aclanthology.org/D19-1250
https://arxiv.org/pdf/1704.01444.pdf
https://arxiv.org/pdf/1704.01444.pdf

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
URL https://d4mucfpksywv.cloudfront.net/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf.

[31] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know
about how BERT works. Transactions of the Association for Computational Linguistics, 8:
842–866, 2020. doi: 10.1162/tacl_a_00349. URL https://aclanthology.org/2020.
tacl-1.54.

[32] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and
Aleksander Madry. Editing a classifier by rewriting its prediction rules. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 23359–23373. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf.

[33] Johannes Schneider and Michalis Vlachos. Explaining neural networks by decoding layer
activations. In International Symposium on Intelligent Data Analysis, pages 63–75. Springer,
2021. URL https://arxiv.org/pdf/2005.13630.pdf.

[34] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis,
Jason Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting
neural nlp: The case of gender bias. arXiv preprint arXiv:2004.12265, 2020. URL https:
//arxiv.org/pdf/2004.12265.pdf.

[35] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

[36] Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li.
Finding skill neurons in pre-trained transformer-based language models. arXiv preprint
arXiv:2211.07349, 2022. URL https://arxiv.org/pdf/2211.07349.pdf.

[37] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014. URL https:
//arxiv.org/pdf/1311.2901.pdf.

[38] Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A Ehinger, and Benjamin IP Rubinstein.
Invertible concept-based explanations for cnn models with non-negative concept activation
vectors. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021. URL https:
//arxiv.org/pdf/2006.15417.pdf.

[39] Sumu Zhao, Damián Pascual, Gino Brunner, and Roger Wattenhofer. Of non-linearity and
commutativity in bert. In 2021 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2021. URL https://arxiv.org/pdf/2101.04547.pdf.

[40] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual representa-
tions via network dissection. IEEE transactions on pattern analysis and machine intelligence,
41(9):2131–2145, 2018. URL https://arxiv.org/pdf/1711.05611.pdf.

[41] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposi-
tion for visual explanation. In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 119–134, 2018. URL https://people.csail.mit.edu/bzhou/
publication/eccv18-IBD.

[42] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020. URL https://arxiv.org/pdf/2012.00363.pdf.

13

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://proceedings.neurips.cc/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://arxiv.org/pdf/2005.13630.pdf
https://arxiv.org/pdf/2004.12265.pdf
https://arxiv.org/pdf/2004.12265.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/pdf/2211.07349.pdf
https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/pdf/2006.15417.pdf
https://arxiv.org/pdf/2006.15417.pdf
https://arxiv.org/pdf/2101.04547.pdf
https://arxiv.org/pdf/1711.05611.pdf
https://people.csail.mit.edu/bzhou/publication/eccv18-IBD
https://people.csail.mit.edu/bzhou/publication/eccv18-IBD
https://arxiv.org/pdf/2012.00363.pdf

A Experiment Details

Data Licenses. CounterFact is available by the MIT license at https://github.com/
kmeng01/rome [21], and ZSRE is available publicly at http://nlp.cs.washington.
edu/zeroshot/ [20].

Data Filtering. We filter the CounterFact dataset to a subset of facts that are correctly completed
by GPT-J, in order to ensure that there is knowledge to localize in the model for each point. We mark
a completion correct when otrue appears among the first 36 tokens sampled from the model given the
prompt P using greedy decoding. GPT-J achieves a completion accuracy of 32.6% under this scheme,
and after starting with about 10% of the CounterFact dataset, our final sample size is n = 652. We
perform additional filtering specifically for model editing in the Fact Erasure condition, where we
filter points to have a target probability pθ(otrue|s, r) of at least .02, so that there is a reasonable
amount of probability mass to be erased. In this condition, we have n = 489 points.

Compute. Experiments were run on a single NVIDIA A6000 GPU with 48gb memory. Computing
editing performance for n = 652 points with GPT-J for a single edit method applied across model
layers in the set {1, 5, 9, 13, 17, 21, 24, 28} could take about eight hours. Saving causal tracing or
representation zeroing results for these datapoints takes about twelve hours. Regression analyses and
plots can be made on demand (code in supplement) given the data from the editing and localization
experiments.

Edit Method Tuning. We tune the edit methods to have high rewrite scores while not trading off
too aggressively against paraphrase and neighborhood scores. More specifically, this means we tune
methods to have rewrite scores no higher than 99% (note methods can easily get above 99% rewrite
score), separately for each editing problem variant. The tuning is done with the first 100 points of
the CounterFact dataset, editing layer 6 for GPT-J and 18 for GPT2-XL. For ROME and MEMIT
methods, we tune over the KL regularization weight values in the set {.0625, .9, 1}. For constrained
finetuning, we tune over the L∞ norm weight values in the set {1e-4, 5e-5, 2e-5, 1e-5}. For both
methods, we adopt default parameters from Meng et al. [22] unless otherwise stated. We describe the
relevant hyperparameters below, for GPT-J first:

1. Error Injection. FT-1: norm constraint of 1e-4. FT-5: norm constraint of 2e-5. ROME: regulariza-
tion weight of 1. MEMIT: regularization weight of 0.9.

2. Tracing Reversal. FT-1: Norm constraint of 1e-5. FT-5: Norm constraint of 2e-5. FT-5: 2e-5.
ROME: default parameters. MEMIT: default parameters.

3. Fact Erasure. FT-1: norm constraint of 1e-5. FT-5: norm constraint of 1e-5. ROME: default
parameters. MEMIT: default parameters.

4. Fact Amplification. FT-1: norm constraint of 1e-5. FT-5: norm constraint of 1e-5. ROME: default
parameters. MEMIT: default parameters.

5. Fact Forcing. Note that for all methods we decide to increase the number of gradient steps,
as convergence takes longer for finetuning (from 25 to 50 steps) and for the gradient-based
optimization for v∗ in ROME (from 20 to 25 steps). FT-1: norm constraint of 1e-4. FT-5: norm
constraint of 1e-4. ROME: 25 gradient steps for finding v∗. MEMIT: default parameters (already
set to 25 steps).

We run only the Error Injection and Fact Forcing conditions for GPT2-XL. Hyperparameters are as
follows:

1. Error Injection. FT-1: norm constraint of 1e-3. FT-5: norm constraint of 1e-4. ROME: default
parameters. MEMIT: default parameters.

2. Fact Forcing. FT-1: norm constraint of 5e-4. FT-5: norm constraint of 5e-5. ROME: default
parameters. MEMIT: default parameters.

B Additional Results

ZSRE Dataset. Here, we describe experiments with the ZSRE dataset, which is commonly used
in past editing method papers [9, 24]. ZSRE includes naturalistic questions rather than prompts

14

https://github.com/kmeng01/rome
https://github.com/kmeng01/rome
http://nlp.cs.washington.edu/zeroshot/
http://nlp.cs.washington.edu/zeroshot/

0.00

0.25

0.50

0.75

1.00

1 4 8 12 16 20 24 28

(Central) Edit Layer

R
ew

ri
te

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Rewrite Score by Edit Layer

0.00

0.25

0.50

0.75

1.00

1 4 8 12 16 20 24 28

(Central) Edit Layer

P
ar

ap
h

ra
se

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Paraphrase Score by Edit Layer

0.900

0.925

0.950

0.975

1.000

1 4 8 12 16 20 24 28

(Central) Edit Layer

N
ei

g
hb

o
rh

o
o

d
 S

co
re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Neighborhood Score by Edit Layer

Figure 7: Edit success metrics for our four editing methods, under the Error Injection objective. Left:
Rewrite, Center: Paraphrase, Right: Neighborhood.

0.4

0.6

0.8

1.0

1 4 8 12 16 20 24 28

(Central) Edit Layer

E
ss

en
ce

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Essence Score by Edit Layer

Figure 8: Essence score by edit layer, for our four editing methods, under the Error Injection objective.

intended for autoregressive cloze completion, as in CounterFact. Following past work [21], we use
GPT-J to answer ZSRE questions in a zero-shot manner, and we edit the model with ROME. We
report results for ZSRE via plots of edit success vs. tracing effect in Figs. 19 (rewrite score) and 20
(overall score), accompanied by regression analysis results in Table 8. We find that results with ZSRE
match our conclusions with CounterFact, as the results are quite similar to plots and regressions with
CounterFact data. Tracing effects are not predictive of edit success.

Representation Zeroing. Representation zeroing is a common localization technique where neural
activations are manually set to zero during a model forward pass [18, 2]. We implement a form of
representation zeroing that is exactly like Causal Tracing, except instead of denoising already-noised
representations, we set clean representations to zero. Specifically, we simply run a normal forward

0.4

0.6

0.8

1.0

1 4 8 12 16 20 24 28

(Central) Edit Layer

O
ve

ra
ll

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Overall Score by Edit Layer

0.4

0.6

0.8

1.0

1 4 8 12 16 20 24 28

(Central) Edit Layer

O
ve

ra
ll

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Overall Score (+Essence) by Edit Layer

Figure 9: Overall edit success for our four editing methods, under the Error Injection objective. Left:
The mean of Rewrite, Paraphrase, and Neighborhood Scores. Right: the mean score with Essence
Score included.

15

Table 2: R2 values for predicting ROME edit success in Error Injection, subsetted to 10% of the data
that has the most concentrated tracing effects in a small number of layers. Even when facts appear to
be stored at a small number of layers and not other layers, tracing effects are still not predictive of
editing performance.

Concentrated Data R2 Values

Method Layer Tracing Effect Both

ROME 0.927 0.02 0.929

pass until a certain set of layers (window size=5), where we zero out representation values for the
MLP output representations at the subject token indices within those layers (then continue the forward
pass). The localization effect is computed as the proportion of the original predicted probability that
is deleted via the zeroing operation (ranging from no effect as 0% to 100% of probability deleted
as 100%). These new results are shown in Figs. 21 for rewrite score and 22 for overall score, using
ROME on GPT-J with CounterFact data. We obtain the same conclusions as our analysis with causal
tracing: localization via representation zeroing is not predictive of edit success. Specifically, we see
correlations between edit success and localization effect to be near zero across layers (using either
rewrite score or overall score for edit success).

Highly concentrated tracing effects. Since Causal Tracing analysis suggests that information
accrues gradually across layers (see Fig. 10), it seems possible that information is simply so diffusely
spread across model layers that no matter what layer you edit, you will be editing a layer where
a fact is at least stored in part. Based on this observation, we want to test whether tracing effects
correlate better with edit success specifically when tracing effects are concentrated in a small number
of layers. This condition represents that a fact appears to be stored in a small number of layers and
not elsewhere. We hope that by editing in that range of layers, we can more easily manipulate that
fact. To identify points with concentrated tracing effects, we use a heuristic for filtering points. Given
the output of Causal Tracing analysis for a point, i.e. one effect per layer (the max across tokens), we
define the point to have concentrated tracing effects when there are no more than three layers that
have at least 50% of the maximum effect across layers (besides the layer with the max effect itself).
Under this criterion, about 10% of the data (74 of 652 cases) have concentrated effects. Note we use
our default tracing window size of 5 with the 28 layer GPT-J model for this experiment.

We show the results from our analysis on this data subset in Table 2, and we observe no changes
in our main conclusions. For ROME with Error Injection, the added effect is 0.2%. Across editing
problems and edit methods, the maximum added effect of including tracing effects on R2 values for
predicting rewrite score remains at 3.2% (for Fact Forcing with constrained finetuning). Thus, we
conclude that even when facts appear to be stored in a small number of layers, localization results
from Causal Tracing are still not informative about editing success, while the choice of edit layer is a
far more important factor in whether a fact is successfully edited.

Measuring essence drift. Meng et al. [21] describe one possible consequence of model editing as
essence drift, which occurs when core properties of an entity change after attempting to edit only one
property of that entity. For example, changing where an island is located might also cause the model
to nonsensically treat the island as a university campus (see example in Meng et al. [21]).

We aim to obtain an automatic metric to serve as a rough proxy for essence drift. A related metric is
calculated with “Local Neutral” data involving the same subject entity but with other properties that
are logically neutral with the original property of the subject being edited [15]. However, we do not
have “Local Neutral” data for the CounterFact dataset, and essence drift aims to specifically measure
changes to core properties of a subject.

Therefore, we automatically estimate changes to known properties of the subject s by calculating the
change in model perplexity over samples of text that were drawn from the pre-edit model given the
prompt “s is a ” (which tend to describe a number of key properties of the subject s). We term these
samples essence texts, and we obtain five samples per subject prompt by sampling with multinomial
top-k sampling using k = 5. Given our essence texts, we measure the perplexity over the samples
before and after editing a fact in the model, for every edited fact in our dataset. Note this is quite
similar to the essence drift regularization objective used in the ROME optimization objective [21],

16

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

Tracing Window Size: 1 Tracing Window Size: 3 Tracing Window Size: 5 Tracing Window Size: 10

1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28
0.0

0.1

0.2

0.3

Layer in GPT-J

D
en

oi
si

ng
 E

ff
ec

t

Causal Tracing shows larger effects when multiple layers are denoised

Figure 10: Tracing effects grow larger as the number of adjacent restored layer representations
increases (tracing window size).

Rewrite Score Table R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.756 0.062 0.758 0.002 <1e-4
FT (5 layers) 0.775 0.055 0.777 0.002 <1e-4
ROME (1 layer) 0.947 0.016 0.948 0.001 <1e-4
MEMIT (5 layers) 0.677 0.024 0.678 0.001 0.199

Tracing Reversal

FT (1 layer) 0.067 0 0.067 0 0.997
FT (5 layers) 0.751 0.045 0.752 0.001 0.032
ROME (1 layer) 0.294 0.017 0.31 0.015 <1e-4
MEMIT (5 layers) 0.212 0.036 0.218 0.006 <1e-4

Fact Erasure

FT (1 layer) 0.643 0.028 0.646 0.003 <1e-4
FT (5 layers) 0.698 0.025 0.70 0.002 <1e-4
ROME (1 layer) 0.857 0.019 0.858 0 0.555
MEMIT (5 layers) 0.925 0.019 0.925 0 0.669

Fact Amplification

FT (1 layer) 0.383 0.014 0.393 0.01 <1e-4
FT (5 layers) 0.424 0.01 0.436 0.011 <1e-4
ROME (1 layer) 0.88 0.02 0.88 0 0.654
MEMIT (5 layers) 0.905 0.018 0.906 0.001 <1e-4

Fact Forcing

FT (1 layer) 0.697 0.104 0.724 0.027 <1e-4
FT (5 layers) 0.634 0.10 0.666 0.032 <1e-4
ROME (1 layer) 0.422 0.004 0.425 0.003 <1e-4
MEMIT (5 layers) 0.345 0.041 0.354 0.009 <1e-4

Table 3: R2 values for predicting rewrite score from choice of edit layer and tracing effect, across
editing problem variants (corresponds to data in Fig. 6). Diff shows the added effect of including
tracing in the regression (Both vs. Layer Only), in terms of R2, and p-value shows the results from
an F-test comparing the Both and Layer Only models. Tracing has some predictive value for Fact
Forcing, but the R2 value remains small compared to the choice of edit layer.

but we consider it as a metric here. We scale the change in perplexity to a fraction of 5, with the
cut-off of 5 chosen to represent a maximally bad change to the model perplexity. Similar to our
other metrics, our essence score is 1 if model perplexity on the essence texts does not change after
editing the model (capping to 1 in cases of slight decreases in perplexity), and it is 0 if the perplexity
increases by 5 or more.

We show essence scores for editing methods across layers in 8. Interestingly, the trend across layers
for this metric is mostly counter to the trends for other metrics (Fig. 7), with editing later layers being
generally preferable to editing earlier layers. As a result, when combined with the other metrics in
Fig. 9, we see that the overall score trend flattens and shifts slightly toward mid-range layers in the
model.

C Robustness Experiments

In addition to our main results with ROME for GPT-J and our Rewrite Score metric, we include
robustness experiments to confirm that results are similar for (1) other measures of edit success
including Paraphrase Score, Neighborhood Score, and Overall Score (Tables 4, 5, and 6), (2) different

17

Table 4: R2 values for predicting paraphrase score from choice of edit layer and tracing effect,
across editing problem variants. Diff shows the added effect of including tracing in the regression
(Both vs. Layer Only), in terms of R2, and p-value shows the results from an F-test comparing the
Both and Layer Only models. The added effect of including tracing effects is very small across
conditions (less than 3%).

Paraphrase Score Table R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.061 0.005 0.063 0.002 0.258
FT (5 layers) 0.036 0.003 0.038 0.001 0.582
ROME (1 layer) 0.279 0.001 0.303 0.024 <1e-4
MEMIT (5 layers) 0.246 0 0.269 0.023 <1e-4

Tracing Reversal

FT (1 layer) 0.004 0.001 0.004 0 0.989
FT (5 layers) 0.001 0 0.002 0.001 0.841
ROME (1 layer) 0.01 0 0.012 0.002 0.121
MEMIT (5 layers) 0.001 0 0.001 0 0.997

Fact Erasure

FT (1 layer) 0.046 0.001 0.048 0.002 0.303
FT (5 layers) 0.079 0.007 0.084 0.005 0.004
ROME (1 layer) 0.537 0.012 0.539 0.001 0.218
MEMIT (5 layers) 0.586 0.015 0.587 0.001 0.184

Fact Amplification

FT (1 layer) 0.005 0.012 0.022 0.017 <1e-4
FT (5 layers) 0.017 0.013 0.035 0.018 <1e-4
ROME (1 layer) 0.24 0.002 0.267 0.027 <1e-4
MEMIT (5 layers) 0.236 0.001 0.263 0.026 <1e-4

Fact Forcing

FT (1 layer) 0.044 0.004 0.046 0.002 0.367
FT (5 layers) 0.023 0.002 0.025 0.002 0.387
ROME (1 layer) 0.357 0.01 0.36 0.003 0.003
MEMIT (5 layers) 0.095 0.001 0.105 0.01 <1e-4

Table 5: R2 values for predicting neighborhood score from choice of edit layer and tracing effect,
across editing problem variants. Diff shows the added effect of including tracing in the regression
(Both vs. Layer Only), in terms of R2, and p-value shows the results from an F-test comparing the
Both and Layer Only models. The added effect of including tracing effects is very small across
conditions (2% or less).

Neighborhood Score Table R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.005 0 0.008 0.002 0.197
FT (5 layers) 0.014 0.001 0.015 0.001 0.55
ROME (1 layer) 0.011 0.003 0.015 0.005 0.001
MEMIT (5 layers) 0.004 0.001 0.006 0.002 0.154

Tracing Reversal

FT (1 layer) 0.001 0 0.001 0 1
FT (5 layers) 0.001 0 0.002 0.001 0.946
ROME (1 layer) 0.001 0 0.002 0.001 0.946
MEMIT (5 layers) 0.001 0 0.002 0 0.981

Fact Erasure

FT (1 layer) 0.01 0 0.014 0.004 0.037
FT (5 layers) 0.01 0 0.013 0.004 0.06
ROME (1 layer) 0.04 0.005 0.046 0.006 0.001
MEMIT (5 layers) 0.05 0.007 0.059 0.009 <1e-4

Fact Amplification

FT (1 layer) 0.012 0.009 0.02 0.008 <1e-4
FT (5 layers) 0.016 0.008 0.025 0.009 <1e-4
ROME (1 layer) 0.04 0.01 0.05 0.01 <1e-4
MEMIT (5 layers) 0.035 0.008 0.044 0.01 <1e-4

Fact Forcing

FT (1 layer) 0.054 0 0.057 0.003 0.03
FT (5 layers) 0.019 0.001 0.022 0.004 0.011
ROME (1 layer) 0.299 0.022 0.311 0.012 <1e-4
MEMIT (5 layers) 0.046 0.012 0.066 0.02 <1e-4

18

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

Tracing Window Size: 1 Tracing Window Size: 3 Tracing Window Size: 5 Tracing Window Size: 10

1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28
0

50

100

150

200

Layer in GPT-J where Causal Tracing effects peak

C
ou

nt

Causal Tracing peak distribution shifts outward with lower window size

Figure 11: Each individual plot shows the distribution of tracing curve peaks (the argmax layer)
across datapoints, using a different tracing window size. Together, the plots show how the distribution
of layers where the tracing curves peak for each point shifts outward toward the first and last layer of
the model as the tracing window size declines. This is primarily due to a clipping effect from using a
window size greater than 1. The way tracing values are computed, a window size of 10 implies that
the effect for “layer 1” is from restoring layers 1-5, while the effect for layer “layer 5” is 1-10. As a
result, a tracing window size of 10 favors layer 5 over layers 1-4, and reducing the tracing window
size leads to these clumps of effects shifting from layer 5 toward layer 1 (and from layer 24 to layer
28)

29.4%29.8%

75.1%75.2%

29.4%32.1%

21.2%23.3%

38.3%39.6%
42.4%43.7%

88.0%88.0% 90.5%90.6%

64.3%64.5%
69.8%69.8%

85.7%85.8%
92.5%92.6%

69.7%72.2%

63.4%66.5%

42.2%42.6%
34.5%35.9%

Tracing Reversal Fact Amplification Fact Erasure Fact Forcing

FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT
0.00

0.25

0.50

0.75

1.00

R2

Explanatory Variable(s): Layer Layer + Tracing Effect

Tracing Window Size 10: Tracing effects are very weakly predictive of edit success

Figure 12: The results of our R2 analysis for predicting rewrite score are nearly identical between
using a tracing window size of 5 (shown in Fig. 6) or 10 (shown here).

values of the tracing window size (Fig. 12), (3) GPT2-XL rather than GPT-J (Fig. 13), (4) the original
unscaled metrics from Meng et al. [21] (Fig. 14), and (5) using the tracing effect at the last subject
token rather than the max across tokens (Fig. 16). We consider the last subject token effect since this
corresponds more directly to the motivation for ROME (see Meng et al. [21]). We expand on each of
these experiments below:

Results for Paraphrase, Neighborhood, Overall Metrics. We recreate our regression-based analysis
across editing problem variants and editing methods using paraphrase score and neighborhood score
as our outcomes rather than Rewrite Score, as well as an Overall Score that is the raw average of the
three edit scores. These results are shown in Tables 4, 5, and 6 respectively. Similar to our analysis
with rewrite score, these tables show that tracing effects are barely predictive of edit success at all. For
paraphrase score, the largest gains in R2 values are around 0.03 (relative to the layer-only regression
model), and for neighborhood score, the largest gain is 0.02. The largest gain for overall score is 0.02
for Fact Forcing with constrained finetuning. Our overall conclusion remains that tracing effects are
almost totally unrelated to edit success across editing problem variants, including for different edit
success metrics.

Results for Different Tracing Window Sizes. We repeat our analysis from Sec. 5 using tracing
effects obtained from a larger tracing window size of 10, to match the value used in Meng et al.
[21]. Note that from Fig. 10, we know that the tracing effects grow larger as more adjacent layer
representations are restored. When we recreate our main R2 analysis using tracing effects with
window size 10 (shown in Fig. 12), we find that results are nearly identical to those shown in Tables
3, 4, and 5.

Results for GPT2-XL. We rerun our analysis with GPT2-XL, a 48 layer model [30], while editing
layers in the range {1, 5, 9, 13, 17, 18, 21, 25, 29, 33, 37, 41, 45, 48}. Here, we use a tracing window
size of 10, and we limit our experiments to focus on Error Injection and Fact Forcing editing problems.
As seen in Fig. 13, we find very similar trends when explaining rewrite score in terms of the choice

19

Table 6: R2 values for predicting overall score (raw average of rewrite, paraphrase, and neighborhood
scores) from choice of edit layer and tracing effect, across editing problem variants. Diff shows the
added effect of including tracing in the regression (Both vs. Layer Only), in terms of R2, and p-value
shows the results from an F-test comparing the Both and Layer Only models. The added effect of
including tracing effects is very small across conditions (2% or less).

Ovr. Edit Score R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.642 0.054 0.643 0.002 0.001
FT (5 layers) 0.663 0.047 0.665 0.002 0.001
ROME (1 layer) 0.62 0.003 0.629 0.009 <1e-4
MEMIT (5 layers) 0.525 0.008 0.534 0.009 <1e-4

Tracing Reversal

FT (1 layer) 0.294 0.025 0.296 0.002 0.054
FT (5 layers) 0.751 0.045 0.752 0.001 0.032
ROME (1 layer) 0.296 0.016 0.31 0.014 <1e-4
MEMIT (5 layers) 0.21 0.036 0.216 0.006 <1e-4

Fact Erasure

FT (1 layer) 0.28 0.007 0.283 0.004 0.008
FT (5 layers) 0.119 0 0.124 0.004 0.015
ROME (1 layer) 0.718 0.023 0.718 0 0.729
MEMIT (5 layers) 0.794 0.025 0.794 0 0.555

Fact Amplification

FT (1 layer) 0.188 0.003 0.199 0.011 <1e-4
FT (5 layers) 0.224 0.002 0.236 0.013 <1e-4
ROME (1 layer) 0.583 0.005 0.59 0.007 <1e-4
MEMIT (5 layers) 0.597 0.005 0.607 0.01 <1e-4

Fact Forcing

FT (1 layer) 0.487 0.056 0.5 0.013 <1e-4
FT (5 layers) 0.459 0.057 0.475 0.017 <1e-4
ROME (1 layer) 0.285 0.004 0.291 0.006 <1e-4
MEMIT (5 layers) 0.226 0.017 0.227 0.001 0.419

66.4% 66.6% 69.8% 70.0% 69.8% 69.9%

49.0% 49.5%
41.1% 42.9%

37.4% 39.5%

19.2% 20.0%
16.3% 17.8%

Error Injection Fact Forcing

FT-1 FT-10 ROME MEMIT FT-1 FT-10 ROME MEMIT
0.00

0.25

0.50

0.75

1.00

R2

Explanatory Variable(s): Layer Layer + Tracing Effect

GPT2-XL: Tracing effects are very weakly predictive of edit success

Figure 13: Like with GPT-J, tracing effects are very weakly predictive of edit success across editing
problem variants for GPT2-XL while Fact Forcing shows the largest relationship. Relative to the R2

of a model predicting rewrite score based on the choice of edit layer (blue), a model with edit layer
and tracing effects (orange) improves the R2 by at most .02 points for Fact Forcing. The choice of
edit layer explains a much greater share of the variance in rewrite score.

of edit layer and the tracing effect at that layer. The largest explanatory effects in terms of R2 are
observed for Fact Forcing with constrained finetuning, but these effects remain small at about 2%.

Results for Unscaled Metrics. We repeat our analysis using the original editing metrics and absolute
tracing effects from Meng et al. [21]. Their rewrite magnitude is the absolute difference between
the probability of the new target ofalse and the old true target otrue after editing, pθ∗(ofalse|s, r) −
pθ∗(otrue|s, r). The tracing effect is the absolute tracing effect, pθ(otrue|snoise, r, v(t,ℓ))
− pθ(otrue|snoise, r), measured at the last subject token index. We adjusted our rewrite and tracing
metrics to (1) rely only on the target output probability, rather than difference in probabilities of two
different targets which might not be appropriate for our different editing problems, and (2) to always
fall between 0 and 1 for better comparability between datapoints, since absolute tracing effect are
bounded by the original model probabilities. However, we reach the same conclusions from our
analysis when using the original editing metrics. We show an example for rewrite magnitude and the

20

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20 0.25

Last Subject Token Tracing Effect (Absolute Difference)
R

ew
ri

te
 M

ag
ni

tu
de

ROME Rewrite Magnitude by Abs. Tracing Effect

Figure 14: Editing vs. tracing results for ROME at layer 6 for Error Injection, using the
un-rescaled rewrite and tracing metrics from Meng et al. [21]. Here, rewrite magnitude is
the difference between the probability of the new target ofalse and the old true target otrue af-
ter editing, pθ∗(ofalse|s, r) − pθ∗(otrue|s, r). The tracing effect is the absolute tracing effect,
pθ(otrue|snoise, r, v(t,ℓ))− pθ(otrue|snoise, r), measured at the last subject token index. The correlation
here is near zero, at ρ = −.006.

Edit Metric Regression Metric Predictor(s) Value

Rewrite Score

R2 Layer 0.947
Tracing Effect 0.016

RMSE Layer 0.073
Tracing Effect 0.315

MAE Layer 0.02
Tracing Effect 0.206

Overall Score

R2 Layer 0.618
Tracing Effect 0.003

RMSE Layer 0.133
Tracing Effect 0.216

MAE Layer 0.11
Tracing Effect 0.183

Table 7: Additional regression error metrics (for CounterFact and ROME) lead us to the same
conclusion as our analysis based on R2. RMSE is root mean squared error, and MAE is mean absolute
error. Regressions predicting rewrite score (or overall score) from the choice of edit layer achieve
much lower prediction errors than regressions using the tracing effect, suggesting that the choice of
edit layer is much more important for edit success than the tracing effect.

absolute tracing effect for Error Injection in Fig. 14. The correlation between edit success and tracing
effect is still near zero.

Results for Last Subject Token Effect. ROME increases the target probability p(ofalse|s, r) by
optimizing for a new output representation from a chosen MLP layer at the last subject token index.
Meng et al. [21] show that this choice of token representation is critical to the success of the editing
method, which is a hypothesis directly motivated by the results from their Causal Tracing analysis.
In our paper, we by default report results using tracing effects that are the max across tokens at a
given layer, for better comparability across the editing methods we use. However, when we repeat
our analysis using the tracing effect specifically at the last subject token index, we obtain the same
negative conclusions about the relationship between Causal Tracing localization and ROME editing
performance. We show the correlations between Rewrite Score and Last Subject Token Tracing Effect
in Fig. 16, where we see there are no positive correlations between editing success and tracing results
at any layer in GPT-J.

21

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

R
ew

ri
te

 S
co

re
ROME Rewrite Score by Tracing Effect (Error Injection)

Figure 15: The relationship between ROME edit success and the tracing effect is near zero at most
edit layers in the model (for the standard Error Injection editing problem). Red lines show perfect
relationships between tracing effect and edit success.

Edit Metric Regression Metric Predictor(s) Value

Rewrite Score

R2 Layer 0.795
Tracing Effect 0.042

RMSE Layer 0.158
Tracing Effect 0.341

MAE Layer 0.072
Tracing Effect 0.254

Overall Score

R2 Layer 0.654
Tracing Effect 0.059

RMSE Layer 0.136
Tracing Effect 0.223

MAE Layer 0.097
Tracing Effect 0.188

Table 8: ZSRE regression results lead us to the same conclusion as our experiments on CounterFact,
using ROME editing. RMSE is root mean squared error, and MAE is mean absolute error. Regressions
predicting rewrite score (or overall score) from the choice of edit layer achieve much lower prediction
errors than regressions using the tracing effect, suggesting that the choice of edit layer is much more
important for edit success than the tracing effect.

22

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect at Last Subject Token

R
ew

ri
te

 S
co

re

ROME Rewrite Score by Last Subject Token Tracing Effect (Error Injection)

Figure 16: The relationship between ROME edit success and the tracing effect at the last subject
token. The ROME method edits a fact by changing the output representation for the MLP layer
specifically at the token index corresponding to the last subject token. However, editing performance
and tracing effect at this position still do not positively correlate. Note the distribution of points along
the x axis changes depending on the choice of edit layer since the distribution of tracing effects is
calculated from tracing effects at that layer.

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

R
ew

ri
te

 S
co

re

Fact Forcing Rewrite Score by Tracing Effect (Grouped by Edit Layer)

Figure 17: The relationship between Fact Forcing edit success and the tracing effect for constrained
finetuning of 5 adjacent layers. “Layer ℓ” indicates the center of this 5-layer interval, and the dashed
red lines show a hypothetical perfect relationship between tracing effect and edit success. For many
layers, there is a noticeable positive relationship between tracing effects and editing success. Yet,
(1) there is a high amount of variance in the outcome, and (2) this variance is largely explained by
the edit layer. As a result, tracing effects provide little extra information for predicting edit success
beyond the choice of edit layer (about 3% more explained variance; see Fig. 6).

23

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

O
ve

ra
ll

 S
co

re

ROME Overall Score by Tracing Effect (Error Injection)

Figure 18: The relationship between ROME overall score (average of
rewrite/paraphrase/neighborhood scores) and the tracing effect is somewhat negative for
most edit layers in the model (for the standard Error Injection editing problem). Red lines show a
perfect relationship between tracing effect and edit success, so a negative relationship suggests that
tracing localization results do not indicate that editing will be successful.

Layer 13 Layer 17 Layer 21 Layer 28

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

R
ew

ri
te

 S
co

re

ZSRE: Rewrite Score by Tracing Effect

Figure 19: Additional experiments on the ZSRE dataset show the same results as for CounterFact,
using the ROME editing method with rewrite score as our editing success metric (see regression
analysis results in Table 8). Red lines show a perfect relationship between tracing effect and edit
success, so near-zero relationships suggest that tracing localization results do not indicate that editing
will be successful.

24

Layer 13 Layer 17 Layer 21 Layer 28

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

O
ve

ra
ll

 S
co

re

ZSRE: Overall Score by Tracing Effect

Figure 20: ZSRE experiments using overall score (average of rewrite/paraphrase/neighborhood
scores) as the edit success metric.

Layer 13 Layer 17 Layer 21 Layer 25

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Zero Ablation Effect

R
ew

ri
te

 S
co

re

ROME Rewrite Score vs Zero Ablation Effect

Figure 21: Additional experiments with representation zeroing as the localization method show
the same results as for Causal Tracing, using the ROME editing method and rewrite score as the
edit success metric. Red lines show a perfect relationship between representation zeroing and edit
success, so near-zero relationships suggest that representation ablation localization results do not
indicate that editing will be successful.

25

Layer 13 Layer 17 Layer 21 Layer 25

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Zero Ablation Effect

O
ve

ra
ll

 S
co

re

ROME Overall Score vs Zero Ablation Effect

Figure 22: Additional experiments with representation zeroing as the localization method show
the same results as for Causal Tracing, using the ROME editing method and overall score as the
edit success metric. Red lines show a perfect relationship between representation zeroing and edit
success, so near-zero relationships suggest that representation ablation localization results do not
indicate that editing will be successful.

26

	Introduction
	Related Work
	Notation and Background
	Data Notation
	Causal Tracing
	Model Editing with ROME
	Editing Metrics

	Does Edit Success Follow From Localization?
	Experiment Design
	Model and Data
	Experiment Results

	Reconciling Localization and Editing
	Editing Problem Variants
	Experiment Design and Additional Edit Methods
	Experiment Results

	Discussion
	Conclusion
	Limitations
	Broader Impacts
	Experiment Details
	Additional Results
	Robustness Experiments

