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Abstract

Algorithmic reproducibility measures the deviation in outputs of machine learning
algorithms upon minor changes in the training process. Previous work suggests that
first-order methods would need to trade-off convergence rate (gradient complexity)
for better reproducibility. In this work, we challenge this perception and demon-
strate that both optimal reproducibility and near-optimal convergence guarantees
can be achieved for smooth convex minimization and smooth convex-concave
minimax problems under various error-prone oracle settings. Particularly, given
the inexact initialization oracle, our regularization-based algorithms achieve the
best of both worlds – optimal reproducibility and near-optimal gradient complexity
– for minimization and minimax optimization. With the inexact gradient oracle, the
near-optimal guarantees also hold for minimax optimization. Additionally, with
the stochastic gradient oracle, we show that stochastic gradient descent ascent is
optimal in terms of both reproducibility and gradient complexity. We believe our
results contribute to an enhanced understanding of the reproducibility-convergence
trade-off in the context of convex optimization.

1 Introduction

In the realm of machine learning, improving model performance remains a primary focus; however,
this alone falls short when it comes to the practical deployment of algorithms. There has been a
growing emphasis on the development of machine learning systems that prioritize trustworthiness and
reliability. Central to this pursuit is the concept of reproducibility [38, 64], which requires algorithms
to yield consistent outputs, in the face of minor changes to the training environment. Unfortunately, a
lack of reproducibility has been reported across various domains [10, 40, 41, 64], posing significant
challenges to the integrity and dependability of scientific research. Notably, empirical studies in
Henderson et al. [43] have revealed that reproducing baseline algorithms in reinforcement learning
is a formidable task due to both inherent sources (e.g., random seeds, environment properties) and
external sources (e.g., hyperparameters, codebases) of non-determinism. These findings underscore
the criticality of having access to the relevant code and data, as well as sufficient documentation of
experimental details, to ensure reproducibility in machine learning algorithms.

Instead of considering the irreproducibility issue solely from an empirical perspective, Ahn et al. [1]
initiated the theoretical study of reproducibility in machine learning as an inherent characteristic of the
algorithms themselves. They focus on first-order algorithms for convex minimization problems and
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Table 1: Algorithmic reproducibility (Def. 3) and gradient complexity for algorithms in the smooth
convex minimization setting given inexact deterministic oracles (Def. 1). Here, “LB” stands for
lower-bound and a ∧ b denotes min{a, b}. For the inexact gradient oracle, δ ≤ O(ϵ) is required for
GD to be ϵ-optimal and δ ≤ O(ϵ5/4) is required for Algo. 1.

Algorithm
Inexact Initialization Inexact Gradient

Convergence Reproducibility Convergence Reproducibility

GD [1] O(1/ϵ) O(δ2) O(1/ϵ) O(δ2/ϵ2)

AGD [6] O(1/
√
ϵ) O(δ2e1/

√
ϵ) - -

Algo. 1 (Thm. 3.3, 3.5) Õ(1/
√
ϵ) O(δ2) Õ(1/

√
ϵ) O(δ2/ϵ2.5)

LB [61, 1] Ω(1/
√
ϵ) Ω(δ2) Ω(1/

√
ϵ) Ω(δ2/ϵ2)

define reproducibility as the deviation in outputs of independent runs of the algorithms, accounting
for sources of irreproducibility captured by inexact or noisy oracles. In particular, they consider three
practical error-prone operations, including inexact initialization, inexact gradient computation due to
numerical errors, and stochastic gradient computation due to sampling or shuffling. When restricting
the outputs to be ϵ-optimal and assuming the level of inexactness that could cause irreproducibility is
bounded by δ, they establish both lower and upper reproducibility bounds of (stochastic) gradient
descent for all three settings. The lower-bounds indicate the existence of intrinsic irreproducibility
for any first-order algorithms, while the matching upper-bounds suggest that (stochastic) gradient
descent already achieves optimal reproducibility.

An important question arises regarding whether there is a fundamental trade-off between repro-
ducibility and convergence speed in algorithms. For example, in the case of inexact initialization, the
optimally reproducible algorithm [1], gradient descent (GD), is known to be strictly sub-optimal in
terms of gradient complexity for smooth convex minimization problems [61]. On the other hand, the
optimally convergent algorithm, Nesterov’s accelerated gradient descent (AGD) [60], suffers from a
worse reproducibility bound [6]. The situation becomes more intricate in the case of inexact gradient
computation. A natural question that we aim to address in this paper is: Can we achieve the best of
both worlds – optimal convergence and reproducibility?

On another front, while minimization problems can effectively model and explain the behavior of
many traditional machine learning systems, recent years have witnessed a surge of applications that
are formulated as minimax optimization problems. Important examples include generative adversarial
networks (GANs) [37], robust optimization [54], and reinforcement learning [25]. Despite a wealth
of convergence theory for various minimax optimization algorithms, extensive empirical evidence
suggests that these algorithms can be hard to train in practice [67, 4, 53]: the training procedure can
be very unstable [23] and highly sensitive to changes of hyper-parameters. Motivated by such issues,
we initiate the theoretical study of algorithmic reproducibility in minimax optimization. The second
question that we aim to address in this paper is: What are the fundamental limits of reproducibility for
minimax optimization algorithms and their convergence-reproducibility trade-offs? We will focus on
smooth convex-concave minimax optimization as a first step, where the irreproducibility issue comes
from either inexact initialization, inexact gradient computation, or stochastic gradient computation.

1.1 Our Contributions

Our main contributions are two-fold:

First, we propose Algorithm 1, which solves a regularized version of the smooth convex minimization
problem. This algorithm achieves both optimal algorithmic reproducibility ofO(δ2) and near-optimal
gradient complexity of Õ(1/

√
ϵ)2 under the δ-inexact initialization oracle. Table 1 provides a

comparison with GD and AGD. Our results rely on the key observation that solutions to strongly-

2Throughout the paper, Õ hides additional logarithmic factors. We claim near-optimality of the result when
it is optimal up to logarithmic terms.
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Table 2: Algorithmic reproducibility (Def. 6) and gradient complexity for algorithms in the smooth
convex-concave minimax setting given inexact deterministic oracles (Def. 4). Here, “LB” stands for
lower-bound and a ∧ b denotes min{a, b}. For the inexact gradient oracle, δ ≤ O(ϵ) is required for
GDA, EG, and Algo. 3 to be ϵ-optimal, and δ ≤ O(ϵ2) is required for Algo. 2. The diameter D in
Assumption 4.1 is a trivial upper-bound for reproducibility in all cases.

Algorithm
Inexact Initialization Inexact Gradient

Convergence Reproducibility Convergence Reproducibility

GDA (Thm. 4.2) O(1/ϵ2) O(δ2) O(1/ϵ2) O(δ2/ϵ2)

EG (Thm. 4.3) O(1/ϵ) O(δ2e1/ϵ ∧ (δ2 + 1/ϵ2)) O(1/ϵ) O(δ2e1/ϵ ∧ 1/ϵ2)

Algo. 2 (Thm. 4.4, 4.6) Õ(1/ϵ) O(δ2) Õ(1/ϵ) O(δ2/ϵ2)

Algo. 3 (Thm. 4.7, 4.8) Õ(1/ϵ) O(δ2) Õ(1/ϵ) O(δ2/ϵ2)

LB ([63], Lem. B.3) Ω(1/ϵ) Ω(δ2) Ω(1/ϵ) Ω(δ2/ϵ2)

convex regularized problems are unique, allowing algorithms that converge close to the minimizers
to be reproducible. This highlights the effectiveness of regularization in achieving near-optimal
convergence without compromising reproducibility.

Second, we extend the notion of reproducibility to smooth convex-concave minimax optimization (1)
under inexact initialization and inexact gradient oracles. We establish the first reproducibility analysis
for commonly-used minimax optimization algorithms such as gradient descent ascent (GDA) and
Extragradient (EG) [48]. Our results indicate that they are either sub-optimal in terms of convergence
or reproducibility. To address this, we propose two new algorithms (Algorithm 2 and 3) which utilize
regularization techniques to achieve optimal algorithmic reproducibility and near-optimal gradient
complexity. The summarized results are presented in Table 2. Additional numerical experiments
showcasing the effectiveness of our algorithms can be found in Appendix D. Although smooth convex-
concave minimax optimization is nonsmooth in its primal form, our results indicate an improved
reproducibility compared to the result of general nonsmooth convex problems [1] by leveraging the
additional minimax structure. Lastly, in the case of stochastic gradient oracle, we show stochastic
GDA can simultaneously attain both optimal convergence and optimal reproducibility.

1.2 Related Works

Related Notions. (Reproducibility) Previous works that study reproducibility in machine learning
are mostly on the empirical side. They either conduct experiments to report irreproducibility issues in
the community [40, 43, 18, 64], or propose practical tricks to improve reproducibility [69, 79, 56, 19].
Ahn et al. [1] initiated the theoretical study of reproducibility in convex minimization problems
as a property of the algorithm itself. (Replicability) In an independent work, Impagliazzo et al.
[45] proposed the notion of replicability in statistical learning, where an algorithm is replicable
if its outputs on two i.i.d. datasets are exactly the same with high probability. Its connection to
generalization and differential privacy [29] is established in Bun et al. [21] and Kalavasis et al. [47].
Replicable algorithms are proposed in the context of stochastic bandits [30] and clustering [31].
(Stability) Depending on the context, the term stability may have different meanings. In empirical
studies [4, 5, 22], instability often refers to issues such as oscillations or failure to converge during
training. In learning theory, algorithmic stability [17] measures the deviation in an algorithm’s outputs
for finite-sum problems when a single item in the input dataset is replaced by an i.i.d. in-distribution
sample. The concept receives increasing attention as it implies dimension-independent generalization
bounds of gradient-based methods for both minimization [42, 11, 6] and minimax [33, 49, 16]
problems. In the area of differential equations [13] and variational inequalities [32], stability is also
examined as a property of the solution set in response to perturbations in the problem conditions.

In this work, we consider the notion of reproducibility that characterizes the behavior of algorithms
upon slight perturbations in the training. We defer the task of establishing intrinsic connections
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among related notions to future work. The most closely related concept is algorithmic stability,
where the analysis is similar to reproducibility under the inexact deterministic gradient oracle. Attia
and Koren [6] showed the stability of AGD [60] grows exponentially with the number of iterations.
Later, this is improved to quadratic dependence [7] based on a similar idea as ours that leverages
stability of solutions to strongly-convex minimization problems [68, 34]. However, since there is
no inexactness of the gradients in their setting, it is possible to ensure outputs that are arbitrarily
close to the optimal solution. Given the presence of inexact gradients in our case, the convergence is
only limited to a neighborhood of the optimal solution, which makes the problem more challenging.
The trade-off between stability and convergence was investigated in Chen et al. [24]. Their results
suggest that a faster algorithm has to be less stable, and vice versa. However, we show the feasibility
of achieving both optimal reproducibility and near-optimal convergence simultaneously in the setting
we considered.

Minimax Optimization. Existing literature on minimax optimization primarily focuses on con-
vergence analysis across various settings. For instance, there are studies on the strongly-convex–
strongly-concave case [72, 57], convex-concave case [59, 63], and nonconvex–(strongly)-concave
case [52, 71]. The lower complexity bounds have also been established for these settings [80, 50, 77].
Our work aims to design reproducible algorithms while maintaining the optimal oracle complexities
achieved in these previous works.

Inexact Gradient Oracles. A series of works investigate the convergence properties of first-order
methods under deterministic inexact oracles for minimization [26, 27, 28] and minimax [70] problems.
However, their inexact oracles differ from ours, and our focus is more on reproducibility. In recent
years, there has been increasing interest in studying biased stochastic gradient oracles as well, where
the bias arises from various sources such as problem structure [44], compression [14] or Byzantine
failure [15] in distributed learning, and gradient-free optimization [62]. These biases can also
contribute to irreproducibility, and this direction would be an interesting avenue of research.

Regularization Technique. The central algorithmic insight driving our improvements towards
obtaining both optimal convergence and reproducibility is the regularization technique, which is
commonly used in the optimization literature. One important use case is to boost convergence
by leveraging known and good convergence properties of algorithms on smooth strongly-convex
functions for solving convex and nonsmooth problems, see e.g., [51, 3, 74], just to name a few. In
addition, the regularization technique has also been demonstrated to be useful in improving stability
and generalization [76, 7], enhancing sensitivity and privacy guarantees [34, 78], etc. In this paper, we
provide another important use case by showing an improved convergence-reproducibility trade-off.

2 Preliminaries in Algorithmic Reproducibility

Notation. We use ∥·∥ to represent the Euclidean norm. ΠC(x) denotes the projection of x onto
the set C. A function h : S → R is ℓ-smooth if it is differentiable and its gradient ∇h satisfies
∥∇h(x1) −∇h(x2)∥ ≤ ℓ∥x1 − x2∥ for any x1, x2 in the domain S ∈ Rd. A function g : S → R
is convex if g(αx1 + (1 − α)x2) ≤ αg(x1) + (1 − α)g(x2) for any α ∈ [0, 1] and x1, x2 ∈ S. If
g satisfies g(x) − (µ/2)∥x∥2 being convex with µ > 0, then it is µ-strongly-convex. Similarly, a
function g : S → R is concave if −g is convex, and µ-strongly-concave if −g is µ-strongly-convex.

Ahn et al. [1] studied the algorithmic reproducibility for convex minimization problems minx∈X F (x),
measured by the (ϵ, δ)-deviation bound of an algorithm A. Here, δ denotes the size of errors in the
oracles that can lead to different outputs in independent runs of the same algorithm. The notion of
reproducibility also requires A to produce ϵ-optimal solutions, avoiding trivial outputs.

Definition 1. Three different inexact oracle models are considered: (i) a δ-inexact initialization
oracle that returns a starting point x0 ∈ X such that ∥x0 − u0∥2 ≤ δ2/4 for some reference point
u0 ∈ X , (ii) a δ-inexact deterministic gradient oracle that returns an inexact gradient G(x) such that
∥∇F (x) −G(x)∥2 ≤ δ2 for the true gradient ∇F (x), (iii) a δ-inexact stochastic gradient oracle
that returns an unbiased gradient estimate∇f(x; ξ) such that E∥∇f(x; ξ)−∇F (x)∥2 ≤ δ2.

Definition 2. A point x̂ ∈ X is an ϵ-optimal solution if F (x̂)−minx∈X F (x) ≤ ϵ in the deterministic
setting, or E[F (x̂)]−minx∈X F (x) ≤ ϵ in the stochastic setting, where the expectation is taken over
all the randomness in the gradient oracle and in the algorithm that outputs x̂.
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Definition 3. The (ϵ, δ)-deviation ∥x̂− x̂′∥2 is used to measure the reproducibility of an algorithm
A with ϵ-optimal solutions x̂ and x̂′, where x̂ and x̂′ are outputs of two independent runs of the
algorithm A given a δ-inexact oracle in Definition 1.

We expand the definitions of reproducibility to encompass minimax optimization problems:

min
x∈X

max
y∈Y

F (x, y). (1)

Our goal is to find the saddle point (x∗, y∗) of the function F (x, y), such that F (x∗, y) ≤
F (x∗, y∗) ≤ F (x, y∗) holds for all (x, y) ∈ X × Y . The optimality of a point (x̂, ŷ) can be
assessed by its duality gap, defined as maxy∈Y F (x̂, y)−minx∈X F (x, ŷ). In the minimax setting,
we analyze reproducibility under the following inexact oracle models.
Definition 4. Three different inexact oracle models are considered: (i) a δ-inexact initialization
oracle that returns a starting point (x0, y0) ∈ X ×Y such that ∥x0 − u0∥2 + ∥y0 − v0∥2 ≤ δ2/4 for
some reference point (u0, v0) ∈ X × Y , (ii) a δ-inexact deterministic gradient oracle that returns
an inexact gradient G(x, y) = (Gx(x, y), Gy(x, y)) at any querying point (x, y) ∈ X × Y such
that ∥∇F (x, y)−G(x, y)∥2 ≤ δ2 for the true gradient ∇F (x, y) = (∇xF (x, y),∇yF (x, y)), (iii)
a δ-inexact stochastic gradient oracle that returns an unbiased gradient estimate ∇f(x, y; ξ) =
(∇xf(x, y; ξ),∇yf(x, y; ξ)) such that Eξ∥∇f(x, y; ξ)−∇F (x, y)∥2 ≤ δ2.
Definition 5. A point (x̂, ŷ) ∈ X × Y is an ϵ-saddle point solution if its duality gap satisfies that
maxy∈Y F (x̂, y)−minx∈X F (x, ŷ) ≤ ϵ in the deterministic setting, or its weak duality gap satisfies
that maxy∈Y E[F (x̂, y)]−minx∈X E[F (x, ŷ)] ≤ ϵ in the stochastic setting.

Definition 6. The (ϵ, δ)-deviation ∥x̂− x̂′∥2 + ∥ŷ − ŷ′∥2 is used to measure the reproducibility of
an algorithm A with ϵ-saddle points (x̂, ŷ) and (x̂′, ŷ′), where (x̂, ŷ) and (x̂′, ŷ′) are outputs of two
independent runs of the algorithm A given a δ-inexact oracle in Definition 4.

The optimal convergence rates are well-understood for the convex optimization problems, including
convex minimization [61] and convex-concave minimax optimization [63]. Ahn et al. [1] provided the
theoretical lower-bounds of reproducibility for convex minimization problems, which can be extended
to convex-concave minimax problems as well (Lemma B.3). We say an algorithm achieves optimal
reproducibility if its reproducibility upper-bounds match the established theoretical lower-bounds.

3 Deterministic Gradient Oracle for Minimization Problems

In this section, we consider convex minimization problems of the form

min
x∈X

F (x),

where X is a convex and closed set. We focus on the standard smooth and convex setting as
detailed in Assumption 3.1. Our goal is to find an ϵ-optimal point as in Definition 2. Ahn et al. [1]
showed that the optimal convergence rate and reproducibility can be achieved at the same time using
stochastic gradient descent (SGD) for the stochastic gradient oracle model. In the deterministic case,
they showed GD achieves the optimal reproducibility, albeit with a sub-optimal convergence rate
[60, 61]. Considering the instability of accelerated gradient descent (AGD) [26, 28, 6], Ahn et al. [1]
conjectured that Ω(1/ϵ) gradient complexity is necessary to attain the optimal reproducibility.
Assumption 3.1. The function F is convex and ℓ-smooth. We have access to initial points x0 that
are D-close to an optimal solution, i.e., ∥x∗ − x0∥2 ≤ D2 for some x∗ ∈ argminx∈X F (x).

We introduce a generic algorithmic framework outlined in Algorithm 1, that solves a quadratically
regularized auxiliary problem (⋆) using a base algorithm A with initialization x0 until an accuracy
of ϵr is reached. Our key insight is that since the optimal solution for strongly convex problems is
unique, the reproducibility of the outputs from the regularized problem can be easily guaranteed.
Note that the regularization parameter r presents a trade-off: as r increases, the auxiliary problem
can be solved more efficiently, but the obtained solution deviates further from the original solution.
We will show that Algorithm 1 achieves a near-optimal complexity of Õ(1/

√
ϵ), along with optimal

reproducibility under an inexact initialization oracle and slightly sub-optimal reproducibility under an
inexact deterministic gradient oracle. This finding disproves the conjecture [1] that Ω(1/ϵ) complexity
is necessary to achieve optimal reproducibility.
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Algorithm 1 Reproducible Algorithmic Framework for Convex Minimization Problems
Input: Regularization parameter r > 0, accuracy ϵr > 0, base algorithm A, initial point x0 ∈ X .

Apply A to approximately solve the r-strongly-convex and (ℓ+ r)-smooth problem

xr ← argmin
x∈X

Fr(x) := F (x) +
r

2
∥x− x0∥2, (⋆)

such that the optimality gap
Fr(xr)−min

x∈X
Fr(x) ≤ ϵr.

Output: xr.

3.1 Inexact Initialization Oracle

We first examine the behavior of Algorithm 1 with access to exact deterministic gradients but given
different initializations. Starting from two distinct initial points x0 and x′

0 such that ∥x0−x′
0∥2 ≤ δ2,

we want to control the deviation between the final outputs xr and x′
r of the algorithm. The following

contraction property is essential to attain optimal reproducibility.

Lemma 3.2. Let x∗
r = argminx∈X {F (x) + (r/2)∥x − x0∥2} and (x∗

r)
′ = argminx∈X {F (x) +

(r/2)∥x− x′
0∥2}. When F is convex, it holds that ∥x∗

r − (x∗
r)

′∥2 ≤ ∥x0 − x′
0∥2 for any r > 0.

This indicates the optimal solutions are reproducible up to δ2. Consequently, if we can solve the
auxiliary problem (⋆) to a high accuracy ϵr, we can ensure the final output xr is reproducible. The
selection of ϵr exhibits a trade-off: a smaller value increases complexity, yet brings the output
closer to the reproducible x∗

r . We characterize the complexity and reproducibility of Algorithm 1 by
carefully choosing the parameters r and ϵr.

Theorem 3.3. Under Assumption 3.1 and given an inexact initialization oracle, Algorithm 1 with
r = ϵ/D2, ϵr = (ϵ/2)min{1, δ2/(4D2)} and AGD [61] as base algorithm A outputs an ϵ-optimal
point xr with Õ(

√
ℓD2/ϵ) gradient complexity, and the reproducibility is ∥xr − x′

r∥2 ≤ 4δ2.

This theorem implies that we can simultaneously achieve the near-optimal complexity of Õ(
√

ℓD2/ϵ)
and optimal reproducibility of O(δ2), which improves over the O(ℓD2/ϵ) complexity of GD [1]. In
fact, when combined with any base algorithm that solves the auxiliary problem, Algorithm 1 attains
optimal reproducibility. However, using AGD as the base algorithm results in the best complexity. To
the best of our knowledge, this is the only algorithm capable of achieving the best of both worlds.
Previously, Attia and Koren [6] proved that the algorithmic reproducibility (referred to as initialization
stability in their study) of Nesterov’s AGD is Θ(δ2e1/

√
ϵ) when the initialization is δ2-apart.

Remark 1. Adding regularization is a common and useful technique in the optimization literature.
Our algorithmic framework solves one auxiliary regularized strongly-convex problem, which is
referred to as classical regularization reduction in Allen-Zhu and Hazan [3]. Algorithm 1 is biased
and requires the knowledge of ϵ and D to control the biased term introduced by the regularization
term. The convergence guarantee also has an additional sub-optimal logarithmic term. Allen-Zhu
and Hazan [3] proposed to use a double-loop algorithm, where a sequence of auxiliary regularized
strongly-convex problems with decreasing regularization parameters are solved. The vanishing
regularization ensures the algorithm is unbiased, and the resulting convergence guarantee requires no
knowledge of ϵ and does not have an additional logarithmic term. Similar idea could apply to our
case as well, and the task of bridging such gaps is deferred to future work.

3.2 Inexact Deterministic Gradient Oracle

We further study the algorithmic reproducibility and gradient complexity of Algorithm 1 under
the inexact gradient oracle model that returns an inexact gradient G(x) ∈ Rd such that ∥G(x) −
∇F (x)∥2 ≤ δ2 at any query point x ∈ X . From the inexact gradient oracle of F , we can construct
an inexact gradient oracle for the auxiliary problem Fr: Gr(x) = G(x) + r(x− x0) which satisfies
the condition ∥Gr(x) − ∇Fr(x)∥2 = ∥G(x) − ∇F (x)∥2 ≤ δ2. To solve the auxiliary problem,
we consider AGD with an inexact oracle (Inexact-AGD) as proposed by Devolder et al. [27]. The
proposition below establishes its convergence behavior.
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Proposition 3.4. Consider minx∈X Fr(x), where Fr is r-strongly-convex and (ℓ+ r)-smooth. Given
an inexact gradient oracle that returns Gr(x) such that ∥Gr(x) −∇Fr(x)∥2 ≤ δ2, starting from
y0 = x0, AGD with the following update rule

xt+1 = ΠX

(
yt −

1

2(ℓ+ r)
Gr(yt)

)
,

yt+1 = xt+1 +
2−

√
r/(ℓ+ r)

2 +
√
r/(ℓ+ r)

(xt+1 − xt),

(Inexact-AGD)

for t = 0, 1, · · · , T − 1, satisfies that

Fr(xT )−Fr(x
∗
r) ≤ exp

(
−T

2

√
r

2ℓ

)(
Fr(x0)− Fr(x

∗
r) +

r

4
∥x0 − x∗

r∥2
)
+

√
2ℓ

r

(
1

ℓ+ r
+

2

r

)
δ2,

where x∗
r is the unique minimizer of Fr(x).

This proposition suggests that Inexact-AGD converges to a neighborhood with a radius ofO(δ2/r3/2)
around the optimal value. We note that convergence to the exact solution is unattainable for algorithms
employing inexact gradients [27, 28], and the size of this neighborhood is important in determining
the reproducibility of xr.
Theorem 3.5. Under Assumption 3.1 with 0 < ϵ ≤ ℓD2 and given an inexact deterministic gradient
oracle in Definition 1, Algorithm 1 with r = ϵ/D2, ϵr = 6δ2D3

√
ℓ/(2ϵ3) and Inexact-AGD as

base algorithm outputs a (6δ2D3
√

ℓ/(2ϵ3) + ϵ/2)-optimal point xr with Õ(
√

ℓD2/ϵ) gradient
complexity, and the reproducibility is ∥xr − x′

r∥2 ≤ O(δ2/ϵ5/2).

Ahn et al. [1] showed that GD achieves optimal reproducibility of O(δ2/ϵ2) and a complexity of
O(1/ϵ) when δ ≤ O(ϵ). Our results indicate that a reproducibility of O(δ2/ϵ5/2) and a near-optimal
complexity of Õ(1/

√
ϵ) can be attained when δ ≤ O(ϵ5/4). We conjecture that this suboptimal

reproducibility bound is inevitable for the proposed framework given the lower bound result in
Devolder et al. [27] for algorithms under a (δ, ℓ, µ)-inexact oracle associated with ℓ-smooth µ-
strongly-convex functions. Further discussions are provided in Appendix A.2. Moreover, we point
out that for minimizing ℓ-smooth and µ-strongly-convex functions, Proposition 3.4 already implies
that Inexact-AGD attains the optimal reproducibility of O(min{δ2, ϵ}) and the optimal complexity
of Õ(

√
ℓ/µ) when the problem is well-conditioned, improving over the Õ(ℓ/µ) complexity in the

previous work [1].
Remark 2. In Appendix D, we demonstrate the effectiveness of Algorithm 1 on a quadratic mini-
mization problem equipped with an inexact gradient oracle. The results are plotted in Figure 1 in the
appendix. We observe that the reproducibility can be greatly improved when adding regularization,
with only a small degradation in the convergence performance.

4 Deterministic Gradient Oracle for Minimax Problems

In this section, we address the minimax optimization problem of the form

min
x∈X

max
y∈Y

F (x, y),

where X and Y are convex compact sets. We focus on the standard smooth and convex-concave
setting as detailed in Assumption 4.1. We aim to find an ϵ-saddle point (x̂, ŷ) such that its duality gap
satisfies maxy∈Y F (x̂, y)−minx∈X F (x, ŷ) ≤ ϵ. Here, the assumption that the domains are convex
and bounded ensures the existence of the saddle point when the objective is convex-concave [73]. We
focus on minimax problems equipped with inexact initialization oracles and inexact deterministic
gradient oracles as defined in Definition 4. We first show that two classical algorithms, gradient
descent ascent (GDA) and Extragradient (EG) [48, 72], are either sub-optimal in convergence or sub-
optimal in reproducibility, which mirrors the minimization setting. Based on the same regularization
idea, we propose two new frameworks in Algorithm 2 and 3 that successfully attain near-optimal
convergence and optimal reproducibility at the same time.
Assumption 4.1. For all y ∈ Y , F (·, y) is convex, and for all x ∈ X , F (x, ·) is concave. Furthermore,
F is ℓ-smooth on the domain X × Y . Additionally, both X and Y have a diameter of D. This means
that ∥x1 − x2∥2 ≤ D2 and ∥y1 − y2∥2 ≤ D2 for all x1, x2 ∈ X and y1, y2 ∈ Y .
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The optimal gradient complexity to find ϵ-saddle point under such assumptions is Θ(1/ϵ) [63]. Since
the minimax problem reduces to a minimization problem on X when the domain Y is restricted
to be a singleton, the reproducibility lower-bounds [1] for smooth convex minimization hold as
lower-bounds for smooth convex-concave minimax optimization as well. That is, Ω(δ2) under the
inexact initialization oracle, and Ω(δ2/ϵ2) under the inexact gradient oracle (see Lemma B.3). We
now present the convergence rate and reproducibility bounds of GDA (see Algorithm 4) and EG (see
Algorithm 5).
Theorem 4.2. (GDA) Under Assumption 4.1, the average iterate (x̄T , ȳT ) output by GDA with
stepsize 1/(ℓ

√
T ) after T = O(1/ϵ2) iterations is an ϵ-saddle point . Furthermore, the reproducibility

of the output is (i) O(δ2) under δ-inexact initialization oracle; (ii) O(δ2/ϵ2) under δ-inexact
deterministic gradient oracle if δ ≤ O(ϵ).
Theorem 4.3. (Extragradient) Under Assumption 4.1, the average iterate (x̄T+1/2, ȳT+1/2) output
by EG with stepsize 1/ℓ after T = O(1/ϵ) iterations is an ϵ-saddle point. Furthermore, the
reproducibility of this output is (i) O(min{δ2e1/ϵ, δ2 + 1/ϵ2, D2}) under δ-inexact initialization
oracle; (ii) O(min{δ2e1/ϵ, 1/ϵ2, D2}) under δ-inexact deterministic gradient oracle if δ ≤ O(ϵ).

While GDA can achieve optimal reproducibility, it converges with a sub-optimal complexity of
O(1/ϵ2). On the other hand, EG achieves an optimal O(1/ϵ) complexity but is not optimally
reproducible. Further details on this are provided in Appendix B. In Appendix B.3.4, we also
demonstrate that EG, through an alternative parameter selection, can achieve optimal reproducibility
at a sub-optimal rate O(1/ϵ3/2). The question that remains open is how to simultaneously attain
both optimal reproducibility and gradient complexity. To address this, we have developed two
algorithmic frameworks with near-optimal guarantees, one based on regularization and the other
based on proximal point methods [66, 12].

4.1 Regularization Helps!

Algorithm 2 Reproducible Algorithmic Framework for Convex-Concave Minimax Problems
Input: Regularization parameter r > 0, accuracy ϵr > 0, base algorithm A, initialization (x0, y0).

Apply A to inexactly solve the r-strongly-convex-strongly-concave and (ℓ+ r)-smooth problem

(xr, yr)← min
x∈X

max
y∈Y

Fr(x, y) := F (x, y) +
r

2
∥x− x0∥2 −

r

2
∥y − y0∥2, (∗)

such that ∀(x, y) ∈ X × Y ,

∇xFr(xr, yr)
⊤(xr − x)−∇yFr(xr, yr)

⊤(yr − y) ≤ ϵr. (2)

Output: (xr, yr).

We demonstrate that adding regularization is sufficient to achieve near-optimal guarantees for smooth
convex-concave minimax problems. The general framework is summarized in Algorithm 2, where a
base algorithm A is applied to solve a regularized auxiliary problem which is strongly-convex in x
and strongly-concave in y. For the inexact initialization case, we show that an optimal reproducibility
bound of O(δ2) and a near-optimal convergence rate of Õ(1/ϵ) can be attained simultaneously.
Theorem 4.4. Under Assumption 4.1 and given an inexact initialization oracle, Algorithm 2 with
r = ϵ/D2, ϵr = ϵ · min{1, δ2/(8D2)} and EG as base algorithm A outputs a (2ϵ)-saddle point
(xr, yr) with Õ(ℓD2/ϵ) gradient complexity, and the reproducibility is 4δ2.

Consider a δ-inexact deterministic gradient oracle that returns G(x, y) = (Gx(x, y), Gy(x, y)). First
note Gr(x, y) = (Gx(x, y)+r(x−x0), Gy(x, y)−r(y−y0)) is a δ-inexact gradient for the auxiliary
problem (∗). We now characterize the convergence behavior of EG with this δ-inexact gradient oracle,
referred to as Inexact-EG, to solve the auxiliary problem.
Lemma 4.5. Consider minx∈X maxy∈Y Fr(x, y), where Fr(x, y) is r-strongly-convex-strongly-
concave and (ℓ + r)-smooth. Given an inexact gradient oracle that returns Gr(x, y) such that
∥Gr(x, y)−∇Fr(x, y)∥2 ≤ δ2, Inexact-EG with stepsize 1/(2(ℓ+ r)) satisfies

∥xT − x∗
r∥2 + ∥yT − y∗r∥2 ≤ exp

(
−T

8

r

ℓ+ r

)(
∥x0 − x∗

r∥2 + ∥y0 − y∗r∥2
)
+

8δ2

r

(
2

ℓ+ r
+

1

r

)
.
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where (x∗
r , y

∗
r ) is the unique saddle point of Fr(x, y).

This lemma implies that Inexact-EG converges linearly to a neighborhood of size O(δ2/r2) around
the saddle point, which can be translated to the inaccuracy measure in (2) with ϵr = O(δ/r) utilizing
Lemma C.5. It is worth emphasizing that the size of this neighborhood is critical for achieving
optimal reproducibility, and the dependency on r in the above convergence rate is key for attaining
near-optimal complexity. Stonyakin et al. [70] analyzed Mirror-Prox [59] with restarts for strongly-
monotone variational inequalities under a different inexact oracle (see Devolder et al. [27] and [70,
Example 6.1] for its relationship with the inexactness notion of ours). Compared to Inexact-EG, their
two-loop structure of the restart scheme is more complicated to implement.

Theorem 4.6. Under Assumption 4.1 with 0 < ϵ ≤ ℓD2 and given an inexact gradient oracle,
Algorithm 2 with r = ϵ/D2, ϵr = O(δ/r) and Inexact-EG as base algorithmA outputs anO(ϵ+δ/ϵ)-
saddle point with Õ(ℓD2/ϵ) gradient complexity, and the reproducibility is O(δ2/ϵ2).
Remark 3. Some numerical experiments on a bilinear matrix game with inexact gradient information
are provided in Appendix D (see Figure 2). With a small degradation in the convergence speed, the
regularized framework in Algorithm 2 effectively improves the reproducibility of the base algorithm.

The theorem indicates that optimal reproducibility O(δ2/ϵ2) and near-optimal gradient complexity
Õ(1/ϵ) can be achieved when δ ≤ O(ϵ2). Note by Theorem 4.2 and 4.3, GDA and EG can find
ϵ-saddle points when δ ≤ O(ϵ). Next, we introduce an alternative algorithmic framework that
preserves the optimal reproducibility and attains the near-optimal complexity as long as δ ≤ O(ϵ).

4.2 Inexact Proximal Point Method

We propose a two-loop inexact proximal point framework, presented in Algorithm 3, which can
achieve both near-optimal gradient complexity and optimal algorithmic reproducibility. Compared
to Algorithm 2, the regularization parameter 1/α = O(ℓ) does not depend on the target accuracy ϵ
and the diameter D, and the center of the regularization term is the last iterate (xt, yt) instead of the
initial point. Since the auxiliary problem is ℓ-strongly-convex-strongly-concave and 2ℓ-smooth with
condition number being Θ(1), a wider range of base algorithms can be used to achieve the optimal
complexity than solving the problem in Algorithm 2 where the condition number is Θ(1/ϵ).

Algorithm 3 Inexact Proximal Point Method for Convex-Concave Minimax Problems
Input: Stepsize α > 0, accuracy ϵ̂ > 0, algorithm A, initialization (x0, y0), iteration number T .
for t = 0, 1, · · ·T − 1 do

Apply A to inexactly solve the smooth strongly-convex–strongly-concave problem

(xt+1, yt+1)← min
x∈X

max
y∈Y

F̂t(x, y) := F (x, y) +
1

2α
∥x− xt∥2 −

1

2α
∥y − yt∥2.

such that ∀(x, y) ∈ X × Y ,

∇xF̂t(xt+1, yt+1)
⊤(xt+1 − x)−∇yF̂t(xt+1, yt+1)

⊤(yt+1 − y) ≤ ϵ̂.

Output: (x̄T+1, ȳT+1) = (1/T )
∑T−1

t=0 (xt+1, yt+1).

Theorem 4.7. Under Assumption 4.1and given a δ-inexact initialization oracle in Definition 4 with
δ ≤ O(1/

√
ϵ), Algorithm 3 with ϵ̂ ≤ δ2/(2αT 2) and α = 1/ℓ outputs an O(ϵ)-saddle point after

T = O(1/ϵ) iterations, and the reproducibility is 9δ2.

Remark 4. The required accuracy ϵ̂ for the auxiliary problem is O(δ2ϵ2). Given that the auxiliary
problem is ℓ-strongly-convex-strongly-concave and 2ℓ-smooth, various linearly convergent algorithms
such as EG, GDA, and Optimistic GDA [35] can find a point that satisfies the stopping criterion
within O(log(1/(δϵ))) iterations. As a result, the total gradient complexity is Õ(1/ϵ). In contrast,
using GDA as the base algorithm in Algorithm 2 will lead to a sub-optimal gradient complexity.

Theorem 4.8. Under Assumption 4.1 and given a δ-inexact deterministic gradient oracle in Definition
4 with δ ≤ O(ϵ), Algorithm 3 with ϵ̂ ≤ O(δ) and α = 1/ℓ outputs an O(ϵ)-saddle point after
T = O(1/ϵ) iterations, and the reproducibility is O(δ2/ϵ2).
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Remark 5. This theorem requires solving the auxiliary problem with a δ-inexact gradient oracle. In
addition to Inexact-EG presented in Lemma 4.5, we show in Appendix C.1 that GDA with inexact
gradients (Inexact-GDA) can also converge linearly to the optimal point up to a O(δ2) error. Thus
the total complexity is O((1/ϵ) log(1/δ)) using both Inexact-EG and Inexact-GDA.

5 Stochastic Gradient Oracle for Minimax Problems

To provide a complete picture, in this section, we consider the stochastic minimax problem:

min
x∈X

max
y∈Y

F (x, y) = Eξ[f(x, y; ξ)], (3)

where the expectation is taken over a random vector ξ. We have access to a δ-inexact stochastic
gradient oracle that can return unbiased gradients ∇f(x, y; ξ) with a bounded variance δ2 at each
point (x, y). We consider the popular algorithm called stochastic gradient descent ascent (SGDA).
The convergence behaviors of SGDA for the stochastic minimax problem (3) are well-known in
various settings. However, due to the randomness in the gradient oracle, independent runs of SGDA
may lead to different outputs even with the same parameters. Following Definition 6, we further
establish the (ϵ, δ)-deviation of SGDA in the theorem below.
Theorem 5.1. Under Assumptions 4.1 and given an inexact stochastic gradient oracle in Definition 4
with δ = O(1), the average iterates (x̄T , ȳT ) = (1/T )

∑T−1
t=0 (xt, yt) of SGDA with stepsize 1/(ℓϵT )

after T = Ω(1/ϵ2) iterations is an O(ϵ)-stationary point and the reproducibility is O
(
δ2/(ϵ2T )

)
.

The O(1/ϵ2) sample complexity of SGDA is known to be optimal when the objective F (x, y) is
convex-concave [46]. Moreover, our results suggest that SGDA is also optimally reproducible, as
the lower-bound of Ω

(
δ2/(ϵ2T )

)
for convex minimization problems [1] is also valid for minimax

optimization according to our discussions in Lemma B.3.

6 Conclusion

In this work, instead of solely focusing on convergence performance, we investigate another crucial
property of machine learning algorithms, i.e., algorithms should be reproducible against slight pertur-
bations. We provide the first algorithms to simultaneously achieve optimal algorithmic reproducibility
and near-optimal gradient complexity for both smooth convex minimization and smooth convex-
concave minimax problems under various inexact oracle models. We focus on the convex case as
a first step since it is the most basic and fundamental setting in optimization. We believe a solid
understanding of the reproducibility in convex optimization will shed insights for that of the more
challenging nonconvex optimization. Note that some of the analysis and techniques used in this paper
can be extended to the smooth nonconvex setting, aligning with the stability analysis for nonconvex
objectives [42, 49]. The proposed regularized framework can be applied to nonconvex functions
as well using the convergence analysis of regularization or proximal point-based methods [2, 74].
However, the non-expansiveness property in Lemma 3.2 that is essential for the reproducibility
analysis will not hold any more without the convexity assumption. One potential way to alleviate it is
to impose additional structural assumptions on the gradients such as negative comonotonicity [39].
We leave a detailed study of the reproducibility in nonconvex optimization to future work.

Other possible improvements of our results include deriving optimal reproducibility with an acceler-
ated convergence rate for smooth convex minimization problems under the inexact gradient oracle,
removing the additional logarithmic terms in the complexity of our algorithms using techniques in
Allen-Zhu and Hazan [3], studying the reproducibility under the presence of mixed inexact oracles,
and extending the results to nonsmooth settings. Another interesting direction is to design simpler and
more direct methods with both optimal reproducibility and convergence guarantees. A possible way
is to directly unwrap the regularized algorithmic framework 1 or 2, leading to Tikhonov regularization
[8] or anchoring methods [75].
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A Near-optimal Guarantees in the Minimization Case

This section provides proof for the near-optimal guarantees of Algorithm 1 in the minimization case.
We start with some commonly-used facts that follow from basic algebraic calculations. See Bauschke
et al. [12] for an example.
Lemma A.1. The following facts will be used in the analysis. For any vectors a, b ∈ Rd, it holds that

(i) 2a⊤b = ∥a∥2 + ∥b∥2 − ∥a− b∥2,
(ii) 2a⊤b = ∥a+ b∥2 − ∥a∥2 − ∥a∥2,

(iii) − γ∥a∥2 − 1

γ
∥b∥2 ≤ 2a⊤b ≤ γ∥a∥2 + 1

γ
∥b∥2, ∀γ > 0,

(iv) ∥ηa+ (1− η)b∥2 + η(1− η)∥a− b∥2 = η∥a∥2 + (1− η)∥b∥2, ∀η ∈ R.

A.1 Inexact Initialization Oracle

This section contains proof of Lemma 3.2 and Theorem 3.3 for the near-optimal guarantees of
Algorithm 1 in the inexact initialization case.

Proof of Lemma 3.2. By the optimality conditions of x∗
r and (x∗

r)
′, we have that for any x, x′ ∈ X ,

(∇F (x∗
r) + r(x∗

r − x0))
⊤(x− x∗

r) ≥ 0,

(∇F ((x∗
r)

′) + r((x∗
r)

′ − x′
0))

⊤(x′ − (x∗
r)

′) ≥ 0.

Taking x′ = x∗
r and x = (x∗

r)
′ in the above equation, we obtain that

(x∗
r − (x∗

r)
′)⊤
(
(∇F (x∗

r) + r(x∗
r − x0))− (∇F ((x∗

r)
′) + r((x∗

r)
′ − x′

0))
)
≤ 0.

Since∇F is monotone when F is convex, rearranging terms, we get
0 ≥ (x∗

r − (x∗
r)

′)⊤(∇F (x∗
r)−∇F ((x∗

r)
′)) + r∥x∗

r − (x∗
r)

′∥2 − r(x∗
r − (x∗

r)
′)⊤(x0 − x′

0)

≥ r∥x∗
r − (x∗

r)
′∥2 − r(x∗

r − (x∗
r)

′)⊤(x0 − x′
0).

Given r > 0, this means
∥x∗

r − (x∗
r)

′∥2 ≤ (x∗
r − (x∗

r)
′)⊤(x0 − x′

0)

≤ ∥x∗
r − (x∗

r)
′∥∥x0 − x′

0∥.
Dividing both sides by ∥x∗

r − (x∗
r)

′∥, the proof is complete.

By converging sufficiently close to the optimal solution, we can ensure Algorithm 1 is reproducible.
The near-optimal convergence rate is achieved using AGD [60] as the base algorithm.

Proof of Theorem 3.3. We first analyze the convergence guarantee. Let x∗ ∈ argminx∈X F (x) be
one minimizer of F (x), and x∗

r = argminx∈X Fr(x) be the unique minimizer of Fr(x). By the
definition of Fr(x), we have that

F (xr)− F (x∗) = Fr(xr)−
r

2
∥xr − x0∥2 − Fr(x

∗) +
r

2
∥x∗ − x0∥2

≤ Fr(xr)− Fr(x
∗) +

r

2
∥x∗ − x0∥2

≤ Fr(xr)− Fr(x
∗
r) +

r

2
∥x∗ − x0∥2

≤ ϵr +
rD2

2
.

(4)
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ϵr and r will be selected later. For reproducibility, we proceed as
∥xr − x′

r∥ ≤ ∥xr − x∗
r∥+ ∥x∗

r − (x∗
r)

′∥+ ∥(x∗
r)

′ − x′
r∥

≤ δ + 2

√
2ϵr
r

.

where we use the optimality condition of x∗
r by r-strong-convexity of Fr(x):

r

2
∥xr − x∗

r∥2 ≤ Fr(xr)− Fr(x
∗
r)

≤ ϵr,

the optimality condition of (x∗
r)

′ and Lemma 3.2. Setting

r =
ϵ

D2
, ϵr =

ϵ

2
min

{
1,

δ2

4D2

}
,

we guarantee that F (xr) − F (x∗) ≤ ϵ and ∥xr − x′
r∥ ≤ 2δ. The gradient complexity of AGD to

achieve ϵr approximation error on the function value gap of an ℓ-smooth and (ℓ+ r)-strongly convex
function is O(

√
(ℓ+ r)/r log(1/ϵr)) = Õ(

√
ℓD2/ϵ), where Õ hides logarithmic terms.

A.2 Inexact Deterministic Gradient Oracle

This section contains proof of Lemma 3.4 and Theorem 3.5 for the guarantees in the inexact de-
terministic gradient case. We first study the convergence behavior of AGD [60] for smooth and
strongly-convex functions under the inexact gradient oracle. For the sake of simplicity and to enable
a general analysis, we slightly abuse notation here to consider the optimization problem

min
x∈X

f(x),

where f : X → R satisfies the following assumption.
Assumption A.2. f(x) is ℓ-smooth and µ-strongly convex on the closed convex domain X .

We consider the inexact gradient oracle defined below (referred to as δ-oracle in this section).
Definition 7. (δ-oracle) At any querying point x ∈ X , the δ-oracle returns a vector g(x) ∈ Rd such
that ∥g(x)−∇f(x)∥2 ≤ δ2, where ∇f(x) is the true gradient of f(x).

In previous work, Devolder et al. [27] define a different inexact oracle that is motivated by the exact
first-order oracle and study the convergence behavior of first-order algorithms including AGD.
Definition 8. ((δ, ℓ, µ)-oracle [27]) At any querying point x ∈ X , the (δ, ℓ, µ)-oracle returns approx-
imate first-order information (fδ,ℓ,µ(x), gδ,ℓ,µ(x)) such that for any y ∈ X ,

µ

2
∥x− y∥2 ≤ f(y)− (fδ,ℓ,µ(x) + gδ,ℓ,µ(x)

⊤(y − x)) ≤ ℓ

2
∥x− y∥2 + δ.

The lemma below characterizes that the two oracles can be transformed into each other (adapted from
Devolder et al. [27, 28]).
Lemma A.3. Under Assumption A.2. A δ-oracle can be transformed to a (δ′, ℓ′, µ′)-oracle with
δ′ = (1/(2ℓ) + 1/µ)δ2, ℓ′ = 2ℓ, and µ′ = µ/2. A (δ, ℓ, µ)-oracle can be transformed to a δ′-oracle
for δ′ defined in (7).

Proof. Given a δ-oracle that returns g(x) at any point x ∈ X , we construct a (δ′, ℓ′, µ′)-oracle as

fδ′,ℓ′,µ′(x) = f(x)− δ2

µ
, gδ′,ℓ′,µ′(x) = g(x).

By ℓ-smoothness of f(x) and fact (iii) in Lemma A.1, we have that

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
ℓ

2
∥x− y∥2

= f(x) + g(x)⊤(y − x) + (∇f(x)− g(x))⊤(y − x) +
ℓ

2
∥x− y∥2

≤ f(x) + g(x)⊤(y − x) + ℓ∥x− y∥2 + δ2

2ℓ
.

(5)

18



Similarly by µ-strong convexity of f(x) and fact (iii) in Lemma A.1, we have that

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2

= f(x) + g(x)⊤(y − x) + (∇f(x)− g(x))⊤(y − x) +
µ

2
∥x− y∥2

≥ f(x) + g(x)⊤(y − x) +
µ

4
∥x− y∥2 − δ2

µ
.

(6)

Combined the above two equations together, we obtain that

µ

4
∥x− y∥2 ≤ f(y)−

(
f(x)− δ2

µ
+ g(x)⊤(y − x)

)
≤ ℓ∥x− y∥2 +

(
1

2ℓ
+

1

µ

)
δ2.

This concludes the proof of the first part. For the second part, given a (δ, ℓ, µ)-oracle in Definition 8,
we construct a δ′-oracle as follows: g(x) = gδ,ℓ,µ(x). Taking y = x in Definition 8, we obtain ∀x,

fδ,ℓ,µ(x) ≤ f(x) ≤ fδ,ℓ,µ(x) + δ.

Therefore, by strong-convexity of f(x), we have that ∀x, y,

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2

≥ fδ,ℓ,µ(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2.

Combined with the second part of Definition 8, we obtain that ∀x, y,

(∇f(x)− gδ,ℓ,µ(x))
⊤(y − x) ≤ ℓ− µ

2
∥x− y∥2 + δ.

Then by a similar proof as for the convex case in Devolder et al. [28]. Let ∆(x) = ∇f(x) −
gδ,ℓ,µ(x) and y = x + min{

√
2δ/(ℓ− µ), r(x)}∆(x)/∥∆(x)∥ for r(x) = max{r ∈ R | (x +

r∆(x)/∥∆(x)∥) ∈ X}. We have that

∥∇f(x)− gδ,ℓ,µ(x)∥ ≤


√
2δ(ℓ− µ), when

√
2δ
ℓ−µ ≤ r(x),

ℓ− µ

2
r(x) +

δ

r(x)
, otherwise.

(7)

Since we use g(x) = gδ,ℓ,µ(x), the proof is complete.

Devolder et al. [27] prove that AGD equipped with (δ, ℓ, µ)-oracle in Definition 8 converges to a
O(δ

√
ℓ/µ)-neighborhood of the optimal solution with accelerated rate T = Õ(

√
ℓ/µ):

f(xT )− f∗ ≤ O

(
exp

(
−T
√

µ

ℓ

)
+ δ

√
ℓ

µ

)
,

where xT is the output of T -step AGD and f∗ is the optimal value. They further establish a lower-
bound showing tightness of the O(δ

√
ℓ/µ) error for any first-order methods with accelerated rate.

Here, we are interested in the performance of AGD under the δ-oracle in Definition 7. Motivated by
the transformation in Lemma A.3, we choose the parameters in AGD as follows:

xt+1 = ΠX

(
yt −

1

2ℓ
g(yt)

)
,

yt+1 = xt+1 +
2−

√
µ/ℓ

2 +
√

µ/ℓ
(xt+1 − xt).

(8)

The results can be implied by Devolder et al. [27] together with Lemma A.3. We provide detailed
proof in the following for completeness of the paper.
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Lemma A.4. Under Assumption A.2. Let x∗ be the unique minimizer of f(x) and κ = ℓ/µ be the
condition number. Given an inexact δ-oracle in Definition 7. Starting from y0 = x0, AGD with
updates (8) for t = 0, 1, · · · , T − 1 converges with

f(xT )− f(x∗) ≤ exp

(
− T

2
√
κ

)(
f(x0)− f(x∗) +

µ

4
∥x0 − x∗∥2

)
+
√
κ

(
1

ℓ
+

2

µ

)
δ2.

Proof. By (5) in the proof of Lemma A.3, we have that

f(xt+1) ≤ f(yt) + g(yt)
⊤(xt+1 − yt) + ℓ∥xt+1 − yt∥2 +

δ2

2ℓ
.

Similarly by (6), we know for any x ∈ X ,

f(x) ≥ f(yt) + g(yt)
⊤(x− yt) +

µ

4
∥x− yt∥2 −

δ2

µ
.

Combing the above two results, for any x ∈ X , we have

f(xt+1)− f(x) = f(xt+1)− f(yt) + f(yt)− f(x)

≤ g(yt)
⊤(xt+1 − x) + ℓ∥xt+1 − yt∥2 −

µ

4
∥x− yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2

≤ −2ℓ(xt+1 − yt)
⊤(xt+1 − x) + ℓ∥xt+1 − yt∥2 −

µ

4
∥x− yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2

= −ℓ∥xt+1 − yt∥2 + 2ℓ(xt+1 − yt)
⊤(x− yt)−

µ

4
∥x− yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2,

where in the last inequality we use the optimality condition of the projection step such that ∀x ∈ X ,(
xt+1 − yt +

1

2ℓ
g(yt)

)⊤

(x− xt+1) ≥ 0.

Let θ := 1/(2
√
κ) =

√
µ/(4ℓ). Setting x = xt and x = x∗ in the above equation, we get

(1− θ)(f(xt+1)− f(xt)) ≤ −ℓ(1− θ)∥xt+1 − yt∥2 + 2ℓ(1− θ)(xt+1 − yt)
⊤(xt − yt)

− µ

4
(1− θ)∥xt − yt∥2 + (1− θ)

(
1

2ℓ
+

1

µ

)
δ2,

θ(f(xt+1)− f(x∗)) ≤ −ℓθ∥xt+1 − yt∥2 + 2ℓθ(xt+1 − yt)
⊤(x∗ − yt)

− µ

4
θ∥x∗ − yt∥2 + θ

(
1

2ℓ
+

1

µ

)
δ2.

Let ∆t := f(xt)− f(x∗) ≥ 0. Summing the above two up, by fact (i) in Lemma A.1, we obtain

∆t+1 − (1− θ)∆t ≤ −ℓ∥xt+1 − yt∥2 + 2ℓ(xt+1 − yt)
⊤((1− θ)xt + θx∗ − yt)−

µ

4
θ∥x∗ − yt∥2

− µ

4
(1− θ)∥xt − yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2,

= ℓ∥yt − (1− θ)xt − θx∗∥2 − ℓ∥xt+1 − (1− θ)xt − θx∗∥2 − µ

4
θ∥x∗ − yt∥2

− µ

4
(1− θ)∥xt − yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2.

Let θut := xt − (1− θ)xt−1 for t ≥ 1. From the update (8) of AGD, we observe

(1 + θ)yt = (1 + θ)xt + (1− θ)(xt − xt−1)

= 2xt − (1− θ)xt−1

= xt + θut.
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Rearranging terms, we can get xt = (1 + θ)yt − θut and thus

yt − (1− θ)xt = yt − (1− θ)((1 + θ)yt − θut)

= yt − ((1− θ2)yt − (1− θ)θut)

= θ(θyt + (1− θ)ut).

It is easy to verify that the above also holds when u0 = x0 = y0. Since ℓθ2 = µ/4, we have that

∆t+1 − (1− θ)∆t

≤ µ

4
∥θyt + (1− θ)ut − x∗∥2 − µ

4
∥ut+1 − x∗∥2 − µ

4
θ∥x∗ − yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2

=
µ

4
∥(1− θ)(ut − x∗) + θ(yt − x∗)∥2 − µ

4
∥ut+1 − x∗∥2 − µ

4
θ∥x∗ − yt∥2 +

(
1

2ℓ
+

1

µ

)
δ2

≤ µ

4
(1− θ)∥ut − x∗∥2 − µ

4
∥ut+1 − x∗∥2 +

(
1

2ℓ
+

1

µ

)
δ2,

where we use fact (iv) in Lemma A.1. Rearranging terms, we then obtain

∆t+1 +
µ

4
∥ut+1 − x∗∥2 ≤ (1− θ)

(
∆t +

µ

4
∥ut − x∗∥2

)
+

(
1

2ℓ
+

1

µ

)
δ2.

Unrolling the recursion, we have that

f(xT )− f(x∗) ≤ ∆T +
µ

4
∥uT − x∗∥2

≤ (1− θ)T
(
∆0 +

µ

4
∥u0 − x∗∥2

)
+
(
(1− θ)T−1 + · · ·+ (1− θ) + 1

)( 1

2ℓ
+

1

µ

)
δ2

≤ exp(−θT )
(
f(x0)− f(x∗) +

µ

4
∥u0 − x∗∥2

)
+

1

θ

(
1

2ℓ
+

1

µ

)
δ2

= exp

(
− T

2
√
κ

)(
f(x0)− f(x∗) +

µ

4
∥x0 − x∗∥2

)
+
√
κ

(
1

ℓ
+

2

µ

)
δ2,

where we use the fact that 1 + η ≤ eη,∀η ∈ R.

Lemma 3.4 immediately follows from Lemma A.4. With the above results at hand, we are ready to
show proof of Theorem 3.5 below.

Proof of Theorem 3.5. For the convergence guarantee, similarly to the perturbed initialization case
in (4), for x∗ ∈ argminx∈X F (x) and x∗

r = argminx∈X Fr(x), we have that

F (xr)− F (x∗) ≤ Fr(xr)− Fr(x
∗
r) +

rD2

2
.

For the reproducibility guarantee, using r-strong-convexity of Fr(x), we can obtain that

∥xr − x′
r∥ ≤ ∥xr − x∗

r∥+ ∥x∗
r − x′

r∥

≤
√

2(Fr(xr)− Fr(x∗
r))

r
+

√
2(Fr(x′

r)− Fr(x∗
r))

r
.

Applying Lemma 3.4, if (Inexact-AGD) is used as the base algorithm A and xr is the output given
initialization y0 = x0 after T iterations, since r = ϵ/D2 ≤ ℓ, we know that

Fr(xr)− Fr(x
∗
r)

≤ exp

(
−T

2

√
r

ℓ+ r

)(
Fr(x0)− Fr(x

∗
r) +

r

4
∥x0 − x∗

r∥2
)
+

√
ℓ+ r

r

(
1

ℓ+ r
+

2

r

)
δ2

≤ exp

(
−T

2

√
r

2ℓ

)(
Fr(x0)− Fr(x

∗
r) +

r

4
∥x0 − x∗

r∥2
)
+ 5δ2

√
ℓ

2r3
.
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When setting T = O(
√
ℓ/r log(r3/2/δ2)), this means the algorithm converges to Fr(xr)−Fr(x

∗
r) ≤

6δ2
√
ℓ/(2r3) and ∥xr − x∗

r∥2 ≤ 12δ2
√

ℓ/(2r5). Therefore, since r = ϵ/D2, we have that

F (xr)− F (x∗) ≤ O
(

δ2

ϵ3/2
+ ϵ

)
,

and the reproducibility is ∥xr − x′
r∥2 ≤ O(δ2/ϵ5/2).

The results suggest that to achieve ϵ-approximation error on the function value gap, we need to set
δ ≤ O(ϵ5/4), which is a smaller regime compared to δ ≤ O(ϵ) in the previous work [1] when ϵ ≤ 1.
Furthermore, optimal reproducibility O(δ2/ϵ2) is not attained. We observe from the proof that the
additional O(

√
κ)-factor in the last term of the error bound in Lemma A.4 leads to this degradation.

Since we set r = O(ϵ) to balance the convergence rate and approximation error introduced through
regularization, this factor can be O(

√
1/ϵ). Based on the lower-bound in Devolder et al. [27] for

(δ, ℓ, µ)-oracle such that this O(
√
κ)-factor is unavoidable for an accelerated convergence rate and

the transformation between the two inexact oracles in Lemma A.3, we thus make the conjecture here
that the above results cannot be further improved. Algorithms that achieve optimal convergence and
reproducibility under this setting require better designs and we leave it for future work.

B Preliminary Results in the Minimax Case

In this section, we provide proof of some preliminary results in the minimax setting. We start with a
proof of the lower-bounds in Lemma B.3. Sub-optimal guarantees of gradient descent ascent (GDA)
in the deterministic case, as well as optimal guarantees of stochastic gradient descent ascent (SGDA),
are provided in Section B.2. Sub-optimal results of Extragradient (EG) are proved in Section B.3.

Before that, we introduce some notations and helpful lemmas that will be used in the analysis. We let
z = (x, y) and ∇̃F (z) = (∇xF (x, y),−∇yF (x, y)) for simplicity of the notation in the remaining
of the paper. The following results will be frequently used.
Lemma B.1. Under Assumption 4.1, the operator ∇̃F is monotone and ℓ-Lipschitz. That is, ∀z1, z2 ∈
X × Y , ∥∇̃F (z1)− ∇̃F (z2)∥ ≤ ℓ∥z1 − z2∥ and (∇̃F (z1)− ∇̃F (z2))

⊤(z1 − z2) ≥ 0. Moreover,
∀z ∈ X × Y , ∥∇̃F (z)∥ ≤ L where we define L := min∥∇̃F (z∗)∥ +

√
2ℓD for minimum taking

w.r.t. any saddle point z∗ = (x∗, y∗) of F (x, y).

Proof. Lipschitzness of ∇̃F directly follows from ℓ-smoothness of F (x, y). The fact that ∇̃F is
monotone when F (x, y) is convex-concave is well-known in the literature (e.g., see Theorem 1 in
Rockafellar [65]). For the last statement, taking any saddle point z∗, we have that ∀z ∈ X × Y ,

∥∇̃F (z)∥ ≤ ∥∇̃F (z∗)∥+ ∥∇̃F (z)− ∇̃F (z∗)∥
≤ ∥∇̃F (z∗)∥+ ℓ∥z − z∗∥.

The proof is complete since the domain X and Y have a diameter of D.

Lemma B.2. Under Assumption 4.1. For some integer T ≥ 1, let zt = (xt, yt) for t = 0, 1, · · · , T−1
and z̄T = (x̄T , ȳT ) = (1/T )

∑T−1
t=0 (xt, yt). If ∀z ∈ X × Y , (1/T )

∑T−1
t=0 ∇̃F (zt)

⊤(zt − z) ≤ ϵ,
then it satisfies that maxy∈Y F (x̄T , y)−minx∈X F (x, ȳT ) ≤ ϵ.

Proof. Since F (x, y) is convex-concave, we get that ∀z = (x, y) ∈ X × Y ,
F (xt, y)− F (x, yt) = F (xt, y)− F (xt, yt) + F (xt, yt)− F (x, yt)

≤ ∇xF (xt, yt)
⊤(xt − x)−∇yF (xt, yt)

⊤(yt − y)

= ∇̃F (zt)
⊤(zt − z).

Summing up from t = 0 to T − 1 and dividing both sides by T , by Jensen’s inequality, we have that

F (x̄T , y)− F (x, ȳT ) ≤
1

T

T−1∑
t=0

∇̃F (zt)
⊤(zt − z)

≤ ϵ.

Taking y = argmaxv∈Y F (x̄T , v) and x = argminu∈X F (u, ȳT ), we conclude the proof.
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B.1 Lower-bounds for Reproducibility

The lower-bounds follow from the minimization setting [1].

Lemma B.3. For smooth convex-concave minimax optimization under Assumption 4.1, the repro-
ducibility, i.e., (ϵ, δ)-deviation, of any algorithm A is at least (i) Ω(δ2) for the inexact initialization
oracle; (ii) Ω(δ2/ϵ2) for the deterministic inexact gradient oracle; (iii) Ω(δ2/(Tϵ2)) for the stochas-
tic gradient oracle, where T is the total number of iterations of the algorithm.

Proof. The lower-bound of reproducibility in Ahn et al. [1] for smooth convex minimization problems
is also a valid lower-bound for smooth convex-concave minimax problems. To show this, we consider
a special case of the minimax problem (1) where the domain Y is a singleton, i.e., Y = {y0} for
some y0. Then the original smooth convex-concave minimax problem minx∈X maxy∈Y F (x, y)
is equivalent to the smooth convex minimization problem minx∈X F (x, y0). For all three inexact
oracles, let (x̂, ŷ) and (x̂′, ŷ′) be the ϵ-approximate outputs of independent two runs of the same
algorithm, i.e., the duality gap can be upper-bounded by ϵ, then the reproducibility ∥x̂− x̂′∥2 + ∥ŷ−
ŷ′∥2 = ∥x̂ − x̂′∥2 since ŷ = ŷ′ = y0. Moreover, x̂ and x̂′ are also ϵ-approximate solutions of the
function F (x, y0) based on the definition of duality gap. Thus the lower-bound in the minimization
setting [1] directly implies the lower-bound in the minimax setting. To be specific, the lower-bound
is: (i) Ω(δ2) for the inexact initialization case; (ii) Ω(δ2/ϵ2) for the inexact deterministic gradient
case; and (iii) Ω(δ2/(Tϵ2)) for the stochastic gradient case.

B.2 Guarantees of Gradient Descent Ascent

This section provides proof of Theorem 4.2 for the sub-optimal guarantees of GDA in the deterministic
setting and Theorem 5.1 for the optimal guarantees of SGDA in the stochastic setting. We first provide
a general analysis and then expand it for three different inexact oracles in subsequent sections.

B.2.1 General Analysis

Algorithm 4 Gradient Descent Ascent
Input: Stepsize α > 0, initialization (x0, y0), number of iterations T > 0.
for t = 0, 1, · · ·T − 1 do
yt+1 = ΠY(yt + α∇yF (xt, yt)),
xt+1 = ΠX (xt − α∇xF (xt, yt)).

Output: (x̄T , ȳT ) = (1/T )
∑T−1

t=0 (xt, yt).

We consider (stochastic) gradient descent ascent (GDA/SGDA) outlined in Algorithm 4 for solving
minimax problems (1) or (3). The algorithm iteratively updates the variables xt and yt using exact
gradients∇F (xt, yt), or inexact gradients G(xt, yt), or stochastic gradients∇f(xt, yt; ξt) based on
different types of the inexact oracles in Definition 4.

We first analyze the behavior of GDA with access to exact gradients. It is well-known that the last
iterate of GDA can diverge even for bilinear functions [55, 9, 36], and the average iterates converge
with a sub-optimal rate O(1/

√
T ). We provide proof for completeness.

Lemma B.4. Under Assumption 4.1. When setting the stepsize to α = 1/(ℓ
√
T ), the average iterates

(x̄T , ȳT ) of GDA converges with

max
y∈Y

F (x̄T , y)−min
x∈X

F (x, ȳT ) ≤
ℓD2 + L2/(2ℓ)√

T
,

This suggests O(1/ϵ2) gradient complexity is required to achieve ϵ-saddle point.

Proof. Recall zt = (xt, yt) and ∇̃F (zt) = (∇xF (xt, yt),−∇yF (xt, yt)). The GDA updates in
Algorithm 4 can be simplified to

zt+1 = ΠX×Y(zt − α∇̃F (zt)). (9)
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Since the projection step is nonexpansive [12], we have that ∀z = (x, y) ∈ X × Y ,

∥zt+1 − z∥2 ≤ ∥zt − α∇̃F (zt)− z∥2

= ∥zt − z∥2 − 2α∇̃F (zt)
⊤(zt − z) + α2∥∇̃F (zt)∥2.

Rearranging terms and using Lemma B.1, we can obtain that

∇̃F (zt)
⊤(zt − z) ≤ 1

2α

(
∥zt − z∥2 − ∥zt+1 − z∥2

)
+

αL2

2
.

Taking summation from t = 0 to T − 1 and dividing both sides by T , by Lemma B.2, we thus have

max
y∈Y

F (x̄T , y)−min
x∈X

F (x, ȳT ) ≤
D2

αT
+

αL2

2
.

When setting α = 1/(ℓ
√
T ), this means the complexity is required to be T ≥ (ℓD2 + L2/(2ℓ))2/ϵ2

to achieve an ϵ-saddle point such that maxy∈Y F (x̄T , y)−minx∈X F (x, ȳT ) ≤ ϵ.

Lemma B.5. Under Assumption 4.1, the GDA update (9) is (1 + α2ℓ2)-expansive. That is, if
(xt+1, yt+1) is obtained through 1-step of the update given (xt, yt), and (x′

t+1, y
′
t+1) is obtained

given (x′
t, y

′
t), we have that

∥xt+1 − x′
t+1∥2 + ∥yt+1 − y′t+1∥2 ≤ (1 + α2ℓ2)

(
∥xt − x′

t∥2 + ∥yt − y′t∥2
)
.

Proof. Recall zt = (xt, yt) and z′t = (x′
t, y

′
t). By the updates of GDA (9), we get that

∥zt+1 − z′t+1∥2 ≤ ∥(zt − z′t)− α(∇̃F (zt)− ∇̃F (z′t))∥2

≤ ∥zt − z′t∥2 + α2∥∇̃F (zt)− ∇̃F (z′t)∥2 − 2α(∇̃F (zt)− ∇̃F (z′t))
⊤(zt − z′t)

≤ (1 + α2ℓ2)
(
∥xt − x′

t∥2 + ∥yt − y′t∥2
)
,

where we use the fact that the projection step is nonexpansive and Lemma B.1.

B.2.2 Inexact Initialization Oracle

Theorem B.6 (Restate Theorem 4.2, part (i)). Under Assumptions 4.1. The average iterate (x̄T , ȳT )
of GDA satisfies maxy∈Y F (x̄T , y) −minx∈X F (x, ȳT ) ≤ O(ϵ) with complexity T = O(1/ϵ2) if
setting stepsize α = 1/(ℓ

√
T ). The reproducibility, i.e., (ϵ, δ)-deviation between outputs (x̄T , ȳT ) and

(x̄′
T , ȳ

′
T ) of two independent runs given different initialization is ∥x̄T − x̄′

T ∥2+∥ȳT − ȳ′T ∥2 ≤ O(δ2).

Proof. The convergence analysis directly follows from Lemma B.4. For the reproducibility analysis,
by Lemma B.5 and the choice that α = 1/(ℓ

√
T ), we have that for t = 1, 2, · · · , T − 1,

∥xt − x′
t∥2 + ∥yt − y′t∥2 ≤ (1 + α2ℓ2)

(
∥xt−1 − x′

t−1∥2 + ∥yt−1 − y′t−1∥2
)

=

(
1 +

1

T

)(
∥xt−1 − x′

t−1∥2 + ∥yt−1 − y′t−1∥2
)

≤
(
1 +

1

T

)t(
∥x0 − x′

0∥2 + ∥y0 − y′0∥2
)
.

The above also trivially holds for t = 0. Therefore, by Jensen’s inequality, we can obtain that

∥x̄T − x̄′
T ∥2 + ∥ȳT − ȳ′T ∥2 ≤

1

T

T−1∑
t=0

(
∥xt − x′

t∥2 + ∥yt − y′t∥2
)

≤ δ2 · 1
T

T−1∑
t=0

(
1 +

1

T

)t

≤ eδ2.

The choice of α is to avoid exponential dependence on ℓ in the reproducibility bound.
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B.2.3 Inexact Deterministic Gradient Oracle

When only given an inexact gradient oracle in Definition 4, the updates of GDA become

zt+1 = ΠX×Y(zt − αG̃(zt)), (10)

where we let G̃(zt) = (Gx(xt, yt),−Gy(xt, yt)) for the inexact gradients.
Theorem B.7 (Restate Theorem 4.2, part (ii)). Under Assumptions 4.1. Given an inexact determin-
istic gradient oracle in Definition 4 with δ ≤ O(ϵ). The average iterate (x̄T , ȳT ) of GDA satisfies
maxy∈Y F (x̄T , y) − minx∈X F (x, ȳT ) ≤ O(ϵ) with complexity T = O(1/ϵ2) if setting stepsize
α = 1/(ℓ

√
T ). Furthermore, the reproducibility is ∥x̄T − x̄′

T ∥2 + ∥ȳT − ȳ′T ∥2 ≤ O(δ2/ϵ2).

Proof. We first show the optimization guarantee. By the GDA updates in (10) and Definition 4 such
that ∥∇̃F (zt)− G̃(zt)∥2 ≤ δ2, we have that for any z = (x, y) ∈ X × Y ,

∥zt+1 − z∥2 ≤ ∥zt − z∥2 − 2αG̃(zt)
⊤(zt − z) + α2∥G̃(zt)∥2

≤ ∥zt − z∥2 − 2α∇̃F (zt)
⊤(zt − z) + 2α2∥∇̃F (zt)∥2

+ 2α(∇̃F (zt)− G̃(zt))
⊤(zt − z) + 2α2∥G̃(zt)− ∇̃F (zt)∥2

≤ ∥zt − z∥2 − 2α∇̃F (zt)
⊤(zt − z) + 2α2L2 + 2

√
2αδD + 2α2δ2.

(11)

Taking summation from t = 0 to T − 1, we obtain that

1

T

T−1∑
t=0

∇̃F (zt)
⊤(zt − z) ≤ ∥z0 − z∥2

2αT
+ α(L2 + δ2) +

√
2δD.

Supposing δ ≤ ϵ/(2
√
2D) and setting α = 1/(ℓ

√
T ), by Lemma B.2, this means

max
y∈Y

F (x̄T , y)−min
x∈X

F (x, ȳT ) ≤
ℓD2 + (L2 + δ2)/ℓ√

T
+

ϵ

2
.

ϵ-saddle point is guaranteed when T = c/ϵ2 for some constant c ≥ 4(ℓD2 + (L2 + δ2)/ℓ)2.

We then prove the reproducibility guarantee. Let {zt}Tt=1 and {z′t}Tt=1 be the trajectories of two
independent runs of GDA with the same initial point z0 ∈ X × Y and stepsize α > 0. By the GDA
updates (10) and Lemma B.5, we have that

∥zt+1 − z′t+1∥ ≤ ∥(zt − z′t)− α(G̃(zt)− G̃(z′t))∥
≤ ∥(zt − z′t)− α(∇̃F (zt)− ∇̃F (z′t))∥+ 2αδ

≤
√
1 + α2ℓ2∥zt − z′t∥+ 2αδ.

(12)

Since the initialization z0 = z′0 is the same, we obtain that for any t = 1, 2, · · · , T − 1,

∥zt − z′t∥ ≤
(√

1 + α2ℓ2
)t
∥z0 − z′0∥+ 2αδ

(
1 +

√
1 + α2ℓ2 + · · ·+

(√
1 + α2ℓ2

)t−1
)

= 2αδ

t−1∑
i=0

(1 + α2ℓ2)i/2

≤ 2αδ · t(1 + α2ℓ2)T/2.

The above also holds for t = 0 denoting
∑−1

i=0 = 0. Setting α = 1/(ℓ
√
T ), the reproducibility is

∥x̄T − x̄′
T ∥2 + ∥ȳT − ȳ′T ∥2 ≤

1

T

T−1∑
t=0

(
∥xt − x′

t∥2 + ∥yt − y′t∥2
)

≤ 4α2δ2

T
(1 + α2ℓ2)T

T−1∑
t=0

t2

≤ 4e

3ℓ2
· δ2T,

which is O(δ2/ϵ2) when T = c/ϵ2 as required in the convergence analysis of GDA.
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B.2.4 Stochastic Gradient Oracle

For the stochastic minimax problem (3), with access to a stochastic gradient oracle in Definition 4,
SGDA updates for t = 0, 1, · · · , T − 1,

zt+1 = ΠX×Y(zt − α∇̃f(zt; ξt)), (13)

where ∇̃f(zt; ξt) = (∇xf(xt, yt; ξt),−∇yf(xt, yt; ξt)) and {ξt}T−1
t=0 are i.i.d. samples.

Proof of Theorem 5.1. We first show the convergence guarantee. By the SGDA updates in (13), given
all the information up to iteration t and taking expectation with respect to ξt, we have ∀z ∈ X × Y ,

Eξt∥zt+1 − z∥2 ≤ ∥zt − z∥2 − 2αE[∇̃f(zt; ξt)⊤(zt − z)] + α2E∥∇̃f(zt; ξt)∥2

= ∥zt − z∥2 − 2α∇̃F (zt)
⊤(zt − z) + α2E∥∇̃f(zt; ξt)∥2.

Taking full expectation, rearranging terms, and summing up from t = 0 to T − 1, we have that

1

T

T−1∑
t=0

E
[
∇̃F (zt)

⊤(zt − z)
]
≤ ∥z0 − z∥2

2αT
+

α(L2 + δ2)

2
.

Therefore, by slightly modifying the proof of Lemma B.2 through taking expectations, and then
setting x = argminu∈X E[F (u, ȳT )] and y = argmaxv∈Y E[F (x̄T , v)], we get

max
y∈Y

E[F (x̄T , y)]−min
x∈X

E[F (x, ȳT )] ≤
D2

αT
+

α(L2 + δ2)

2
.

We obtain that maxy∈Y E[F (x̄T , y)] − minx∈X E[F (x, ȳT )] ≤ (ℓD2 + (L2 + δ2)/(2ℓ))ϵ if the
inexactness δ = O(1), and we set α = 1/(ℓϵT ), T ≥ 1/ϵ2.

We then show the reproducibility guarantee. For two independent runs of SGDA (13) with output
{zt}Tt=1 and {z′t}Tt=1, by Lemma B.5, we have that for any t = 0, 1, · · · , T − 1,

Eξt,ξ′t
∥zt+1 − z′t+1∥2

≤ E∥(zt − z′t)− α(∇̃f(zt; ξt)− ∇̃f(z′t; ξ′t))∥2

= ∥zt − z′t∥2 − 2α(∇̃F (zt)− ∇̃F (z′t))
⊤(zt − z′t) + α2E∥∇̃f(zt; ξt)− ∇̃f(z′t; ξ′t)∥2

= ∥zt − z′t∥2 − 2α(∇̃F (zt)− ∇̃F (z′t))
⊤(zt − z′t) + α2E∥∇̃F (zt)− ∇̃F (z′t)∥2

+ α2E∥(∇̃f(zt; ξt)− ∇̃f(z′t; ξ′t))− (∇̃F (zt)− ∇̃F (z′t))∥2

≤ (1 + α2ℓ2)∥zt − z′t∥2 + 4α2δ2.

Unrolling the recursion, noticing z0 = z′0, we have that for any t = 0, 1, · · · , T − 1,

E∥zt − z′t∥2 ≤ 4α2δ2
t−1∑
i=0

(1 + α2ℓ2)i.

Since T ≥ 1/ϵ2, we know α = 1/(ℓϵT ) ≤ 1/(ℓ
√
T ). The reproducibility is thus

E
[
∥x̄T − x̄′

T ∥2 + ∥ȳT − ȳ′T ∥2
]
≤ 1

T

T−1∑
t=0

E
[
∥xt − x′

t∥2 + ∥yt − y′t∥2
]

≤ 4α2δ2

T

T−1∑
t=1

t−1∑
i=0

(1 + α2ℓ2)i

≤ 4α2δ2

T

T−1∑
t=1

t

(
1 +

1

T

)T

≤ 2eδ2α2T

=
2e

ℓ2
· δ2

ϵ2T
.

The last step uses the choice of α such that α2T = 1/(ℓ2ϵ2T ).
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B.3 Guarantees of Extragradient

This section provides proof of Theorem 4.3 for the sub-optimal guarantees of Extragradient (EG).

B.3.1 General Analysis

Algorithm 5 Extragradient
Input: Stepsize α > 0, initialization (x0, y0), number of iterations T > 0.
for t = 0, 1, · · ·T − 1 do
yt+1/2 = ΠY(yt + α∇yF (xt, yt)),
xt+1/2 = ΠX (xt − α∇xF (xt, yt)).
yt+1 = ΠY(yt + α∇yF (xt+1/2, yt+1/2)),
xt+1 = ΠX (xt − α∇xF (xt+1/2, yt+1/2)).

Output: (x̄T+1/2, ȳT+1/2) = (1/T )
∑T−1

t=0 (xt+1/2, yt+1/2).

For deterministic smooth convex-concave minimax optimization, Extragradient [48, 72] (EG), sum-
marized in Algorithm 5, achieves the optimal O(1/ϵ) convergence rate. When only given inexact
gradients or stochastic gradients, the true gradients are just replaced by G(xt, yt) or∇f(xt, yt; ξt).

We provide proof of its O(1/ϵ) convergence for completeness. The proof is standard in the literature,
e.g., see Nemirovski [59] or Section 4.5 of Bubeck [20].
Lemma B.8. Under Assumption 4.1. When setting the stepsize to α = 1/ℓ, the average iterates
(x̄T+1/2, ȳT+1/2) of EG converges with

max
y∈Y

F (x̄T+1/2, y)−min
x∈X

F (x, ȳT+1/2) ≤
ℓD2

T
.

This suggests O(1/ϵ) gradient complexity is required to achieve ϵ-saddle point.

Proof. Recall zt = (xt, yt) and ∇̃F (zt) = (∇xF (xt, yt),−∇yF (xt, yt)). The EG updates in
Algorithm 5 can be simplified to

zt+1/2 = ΠX×Y(zt − α∇̃F (zt)),

zt+1 = ΠX×Y(zt − α∇̃F (zt+1/2)).
(14)

By fact (i) in Lemma A.1, we have that for any z ∈ X × Y ,

∥zt+1 − z∥2 + ∥zt+1 − zt∥2 − ∥zt − z∥2 = 2(zt+1 − zt)
⊤(zt+1 − z)

≤ 2α∇̃F (zt+1/2)
⊤(z − zt+1),

where we use the optimality condition of the projection step such that (ΠC(u)− u)⊤(v −ΠC(u)) ≥
0,∀v ∈ C. For the same reason, we can obtain that

∥zt+1/2 − zt∥2 + ∥zt+1/2 − zt+1∥2 − ∥zt − zt+1∥2 = 2(zt+1/2 − zt)
⊤(zt+1/2 − zt+1)

≤ 2α∇̃F (zt)
⊤(zt+1 − zt+1/2).

Summing up the above two inequalities, we get

∥zt+1 − z∥2 ≤ ∥zt − z∥2 − ∥zt+1/2 − zt∥2 − ∥zt+1/2 − zt+1∥2 + 2α∇̃F (zt+1/2)
⊤(z − zt+1)

+ 2α∇̃F (zt)
⊤(zt+1 − zt+1/2)

= ∥zt − z∥2 − ∥zt+1/2 − zt∥2 − ∥zt+1/2 − zt+1∥2 + 2α∇̃F (zt+1/2)
⊤(z − zt+1/2)

+ 2α(∇̃F (zt)− ∇̃F (zt+1/2))
⊤(zt+1 − zt+1/2).

(15)

According to Lemma B.1, we can obtain

(∇̃F (zt)− ∇̃F (zt+1/2))
⊤(zt+1 − zt+1/2) ≤ ℓ∥zt − zt+1/2∥∥zt+1 − zt+1/2∥

≤ ℓ

2
∥zt − zt+1/2∥2 +

ℓ

2
∥zt+1 − zt+1/2∥2.
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Therefore, rearranging terms, by the choice of stepsize α ≤ 1/ℓ, we have ∀z ∈ X × Y ,

∇̃F (zt+1/2)
⊤(zt+1/2 − z)

≤ 1

2α

(
∥zt − z∥2 − ∥zt+1 − z∥2

)
− 1

2α
∥zt+1/2 − zt∥2 −

1

2α
∥zt+1/2 − zt+1∥2

+ (∇̃F (zt)− ∇̃F (zt+1/2))
⊤(zt+1 − zt+1/2)

≤ 1

2α

(
∥zt − z∥2 − ∥zt+1 − z∥2

)
−
(

1

2α
− ℓ

2

)
∥zt+1/2 − zt∥2 −

(
1

2α
− ℓ

2

)
∥zt+1/2 − zt+1∥2

≤ 1

2α

(
∥zt − z∥2 − ∥zt+1 − z∥2

)
.

(16)

Taking summation from t = 0 to T − 1, by Lemma B.2, we have

max
y∈Y

F (x̄T+1/2, y)−min
x∈X

F (x, ȳT+1/2) ≤
∥z0 − z∥2

2αT
.

Since ∥z0 − z∥2 ≤ 2D2 and α = 1/ℓ, the proof is complete.

The following results are motivated from Boob and Guzmán [16].
Lemma B.9. Under Assumption 4.1. Let zt+1 = (xt+1, yt+1) be obtained through 1-step of EG
update (14) given zt = (xt, yt), and z′t+1 is obtained given z′t. Setting α ≤ 1/ℓ, then we have

∥zt+1 − z′t+1∥ ≤ ∥zt − z′t∥+ 2Lℓ2α3.

Proof. For any z = (x, y) ∈ X × Y , we define an operator Pzt(·) : X × Y → X × Y as
Pzt(z) = ΠX×Y(zt − α∇̃F (z)), and the EG updates can be written as zt+1 = Pzt(Pzt(zt)). When
the stepsize α ≤ 1/ℓ, the operator Pzt(·) is nonexpansive, i.e., ∀z1, z2 ∈ X × Y ,

∥Pzt(z1)− Pzt(z2)∥ ≤ α∥∇̃F (z1)− ∇̃F (z2)∥
≤ αℓ∥z1 − z2∥
≤ ∥z1 − z2∥.

Since the domainX ×Y is a nonempty bounded closed convex set, by Theorem 4.19 in Bauschke et al.
[12], the nonexpansive operator Pzt(·) admits fixed points. Denote one fixed point as ut ∈ X × Y
such that ut = ΠX×Y(zt − α∇̃F (ut)) = Pzt(ut). The nonexpansiveness of Pzt(·) implies

∥zt+1 − ut∥ = ∥Pzt(Pzt(zt))− Pzt(Pzt(ut))∥
≤ (αℓ)2∥zt − ut∥
≤ α2ℓ2 · α∥∇̃F (ut)∥
≤ α3ℓ2L.

(17)

The same holds true for z′t+1 and u′
t = Pz′

t
(u′

t) defined for z′t. As a result, we can obtain that

∥zt+1 − z′t+1∥ ≤ ∥zt+1 − ut∥+ ∥ut − u′
t∥+ ∥u′

t − z′t+1∥
≤ ∥ut − u′

t∥+ 2Lℓ2α3.
(18)

By optimality conditions of ut = ΠX×Y(zt − α∇̃F (ut)) and u′
t = ΠX×Y(z

′
t − α∇̃F (u′

t)), we
obtain that for any z, z′ ∈ X × Y ,

(ut − zt + α∇̃F (ut))
⊤(z − ut) ≥ 0,

(u′
t − z′t + α∇̃F (u′

t))
⊤(z′ − u′

t) ≥ 0.

Taking z = u′
t and z′ = ut and using the fact that ∇̃F is monotone by Lemma B.1, we obtain that

∥ut − u′
t∥2 ≤ (ut − u′

t)
⊤(zt − z′t)− α(∇̃F (ut)− ∇̃F (u′

t))
⊤(ut − u′

t)

≤ ∥ut − ut∥∥zt − z′t∥.
Combined with (18), the proof is complete since ∥ut − u′

t∥ ≤ ∥zt − z′t∥.
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Remark 6. We can alternatively derive the relation between ∥zt+1 − z′t+1∥ and ∥zt − z′t∥ as follows:

∥zt+1 − z′t+1∥2

≤ ∥zt − z′t∥2 − 2α(zt − z′t)
⊤(∇̃F (zt+1/2)− ∇̃F (z′t+1/2)) + α2∥∇̃F (zt+1/2)− ∇̃F (z′t+1/2)∥

2

≤ ∥zt − z′t∥2 + 2αℓ∥zt − z′t∥∥zt+1/2 − z′t+1/2∥+ α2ℓ2∥zt+1/2 − z′t+1/2∥
2

≤ (1 + 2αℓ
√
1 + α2ℓ2 + α2ℓ2(1 + α2ℓ2))∥zt − z′t∥2

=
(
1 + αℓ

√
1 + α2ℓ2

)2
∥zt − z′t∥2.

Here, we use Lemma B.1 and B.5. The above results will lead to reproducibility that grows with
O(eT ), which is similar to the results of AGD for the minimization setting [6].

B.3.2 Inexact Initialization Oracle

Theorem B.10 (Restate Theorem 4.3, part (i)). Under Assumptions 4.1. The average iterate
(x̄T+1/2, ȳT+1/2) of EG satisfies maxy∈Y F (x̄T+1/2, y) − minx∈X F (x, ȳT+1/2) ≤ O(ϵ) with
complexity T = O(1/ϵ) if setting stepsize α = 1/ℓ. Furthermore, the reproducibility, i.e., (ϵ, δ)-
deviation between outputs of two independent runs of EG given different initialization is ∥x̄T+1/2 −
x̄′
T+1/2∥

2 + ∥ȳT+1/2 − ȳ′T+1/2∥
2 ≤ O(min{δ2e1/ϵ, δ2 + 1/ϵ2, D2}).

Proof. The convergence part directly follows from Lemma B.8 with T = c/ϵ for some constant
c ≥ ℓD2. For reproducibility, by Lemma B.5, B.9 and the stepsize α = 1/ℓ, we have that for
t = 1, 2, · · · , T − 1,

∥xt+1/2 − x′
t+1/2∥

2 + ∥yt+1/2 − y′t+1/2∥
2 ≤ (1 + α2ℓ2)

(
∥xt − x′

t∥2 + ∥yt − y′t∥2
)

≤ 2(∥z0 − z′0∥+ 2Lℓ2α3t)2

≤ 2

(
δ +

2L

ℓ
t

)2

.

The above also holds for t = 0. Therefore, by Jensen’s inequality, we obtain

∥x̄T+1/2 − x̄′
T+1/2∥

2 + ∥ȳT+1/2 − ȳ′T+1/2∥
2 ≤ 1

T

T−1∑
t=0

(
∥xt+1/2 − x′

t+1/2∥
2 + ∥yt+1/2 − y′t+1/2∥

2
)

≤ 2

T

T−1∑
t=0

(
δ +

2L

ℓ
t

)2

≤ 4δ2 +
16L2

3ℓ2
T 2.

Alternatively, by Remark 6, we know that ∥zt+1/2 − z′t+1/2∥
2 ≤ 2(1 +

√
2)2tδ2, and thus the

reproducibility is ∥x̄T+1/2 − x̄′
T+1/2∥

2 + ∥ȳT+1/2 − ȳ′T+1/2∥
2 ≤ O(eT δ2). The proof is complete

by taking the minimum between the two results and replacing T with c/ϵ.

B.3.3 Inexact Deterministic Gradient Oracle

When only given inexact gradient (Gx(xt, yt), Gy(xt, yt)), the updates of EG becomes

zt+1/2 = ΠX×Y(zt − αG̃(zt)),

zt+1 = ΠX×Y(zt − αG̃(zt+1/2)),

where exact gradients ∇̃F (zt) in (14) are replaced by G̃(zt) = (Gx(xt, yt),−Gy(xt, yt)).
Theorem B.11 (Restate Theorem 4.3, part (ii)). Under Assumptions 4.1. Given an inexact deter-
ministic gradient oracle in Definition 4 with δ ≤ O(ϵ). The average iterate (x̄T+1/2, ȳT+1/2) of EG
satisfies maxy∈Y F (x̄T+1/2, y) − minx∈X F (x, ȳT+1/2) ≤ O(ϵ) with complexity T = O(1/ϵ) if
setting stepsize α = 1/ℓ. Furthermore, the reproducibility is O(min{δ2e1/ϵ, 1/ϵ2, D2}).
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Proof. Let ∆(zt) = G̃(zt) − ∇̃F (zt). We know ∥∆(zt)∥ ≤ δ by Definition 4. Using (15) in the
proof of Lemma B.8, we have that ∀z ∈ X × Y ,

∥zt+1 − z∥2 ≤ ∥zt − z∥2 − ∥zt+1/2 − zt∥2 − ∥zt+1/2 − zt+1∥2 + 2αG̃(zt+1/2)
⊤(z − zt+1/2)

+ 2α(G̃(zt)− G̃(zt+1/2))
⊤(zt+1 − zt+1/2)

= ∥zt − z∥2 − ∥zt+1/2 − zt∥2 − ∥zt+1/2 − zt+1∥2 + 2α∇̃F (zt+1/2)
⊤(z − zt+1/2)

+ 2α(∇̃F (zt)− ∇̃F (zt+1/2))
⊤(zt+1 − zt+1/2) + 2α∆(zt+1/2)

⊤(z − zt+1/2)

+ 2α(∆(zt)−∆(zt+1/2))
⊤(zt+1 − zt+1/2)

≤ ∥zt − z∥2 − ∥zt+1/2 − zt∥2 − ∥zt+1/2 − zt+1∥2 + 2α∇̃F (zt+1/2)
⊤(z − zt+1/2)

+ 2α(∇̃F (zt)− ∇̃F (zt+1/2))
⊤(zt+1 − zt+1/2) + 6

√
2αδD.

(19)

The above is the same as (15) up to an additional error in O(δ). Following the same proof after (15),
with α = 1/ℓ, we obtain that

max
y∈Y

F (x̄T+1/2, y)−min
x∈X

F (x, ȳT+1/2) ≤
ℓD2

T
+ 3
√
2δD.

When δ ≤ ϵ/(6
√
2D) and T = c/ϵ for some constant c ≥ 2ℓD2/ϵ, we get ϵ-saddle point.

We then show the reproducibility guarantee. Let ut = ΠX×Y(zt − α∇̃F (ut)) be the same as in the
proof of Lemma B.9. Similarly to (17), we have that

∥zt+1 − ut∥ ≤ α∥G̃(zt+1/2)− ∇̃F (ut)∥
≤ α∥∇̃F (zt+1/2)− ∇̃F (ut)∥+ α∥G̃(zt+1/2)− ∇̃F (zt+1/2)∥
≤ αℓ∥zt+1/2 − ut∥+ αδ

≤ α2ℓ∥G̃(zt)− ∇̃F (ut)∥+ αδ

≤ α2ℓ2∥zt − ut∥+ (1 + αℓ)αδ

≤ α3ℓ2L+ (1 + αℓ)αδ.

As a result, the same as (18), since α = 1/ℓ, we can obtain that ∀t = 0, 1, · · · , T − 1,

∥zt − z′t∥ ≤ ∥zt−1 − z′t−1∥+ 2α3ℓ2L+ 2(1 + αℓ)αδ

≤ t(2α3ℓ2L+ 2(1 + αℓ)αδ)

≤ 2t

ℓ
(L+ 2δ).

Therefore, by Jensen’s inequality and (12) in Section B.2.3 for the guarantee of GDA, we know

∥x̄T+1/2 − x̄′
T+1/2∥

2 + ∥ȳT+1/2 − ȳ′T+1/2∥
2 ≤ 1

T

T−1∑
t=0

(
∥xt+1/2 − x′

t+1/2∥
2 + ∥yt+1/2 − y′t+1/2∥

2
)

≤ 1

T

T−1∑
t=0

2
(
(1 + α2ℓ2)∥zt − z′t∥2 + 4α2δ2

)
≤ 1

T

T−1∑
t=0

8

ℓ2
(
2t2(L+ 2δ)2 + δ2

)
≤ 128

3ℓ2
δ2T 2 +

32L2

3ℓ2
T 2 +

8

ℓ2
δ2.
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Note that T = c/ϵ and δ ≤ O(ϵ). Thus the reproducibility is O(1/ϵ2). Alternatively, by Remark 6
and similarly to (12), we have that

∥zt+1 − z′t+1∥

≤
√
∥zt − z′t∥2 + 2αℓ∥zt − z′t∥∥zt+1/2 − z′t+1/2∥+ α2ℓ2∥zt+1/2 − z′t+1/2∥+ 2αδ

≤
√(

1 + αℓ
√
1 + α2ℓ2

)2
∥zt − z′t∥2 + 4α2ℓδ

(
1 + αℓ

√
1 + α2ℓ2

)
∥zt − z′t∥+ 4α4ℓ2δ2 + 2αδ

=
(
1 + αℓ

√
1 + α2ℓ2

)
∥zt − z′t∥+ 2αδ(1 + αℓ)

= (1 +
√
2)∥zt − z′t∥+

4δ

ℓ
.

Thus ∥zt+1/2 − z′t+1/2∥ ≤
√
2∥zt − z′t∥+ 2δ/ℓ ≤ O(eT δ/ℓ) and the reproducibility is O(δ2e1/ϵ).

The proof is complete by taking the minimum between the two results.

B.3.4 More Discussions

In this section, we show that Extragradient can also be optimally reproducible by a different selection
of parameters. Although it will suffer from a sub-optimal convergence rate O(1/ϵ3/2) instead of
O(1/ϵ), this is still an improvement on the O(1/ϵ2) rate of GDA.

Theorem B.12. Under Assumptions 4.1. The average iterate (x̄T+1/2, ȳT+1/2) of EG satisfies
maxy∈Y F (x̄T+1/2, y) −minx∈X F (x, ȳT+1/2) ≤ O(ϵ) with complexity T = O(1/(δ1/2ϵ3/2)) if
setting stepsize α = min{1/ℓ, (δ/(2ℓ2T ))1/3}. The reproducibility is O(δ2).

Proof. The same as Section B.3.2, by the choice of stepsize α such that α3T ≤ δ/2ℓ2, we obtain

∥x̄T+1/2 − x̄′
T+1/2∥

2 + ∥ȳT+1/2 − ȳ′T+1/2∥
2 ≤ 2

T

T−1∑
t=0

(
δ + 2Lℓ2α3t

)2
≤ 4δ2 + 4(2Lℓ2α3T )2

≤ 4(L2 + 1)δ2.

By Lemma B.8, when the stepsize α ≤ 1/ℓ, we have that

max
y∈Y

F (x̄T+1/2, y)−min
x∈X

F (x, ȳT+1/2) ≤
D2

αT

≤ ℓD2

T
+

D2(2ℓ2/δ)1/3

T 2/3
.

This means a O(1/(δ1/2ϵ3/2)) convergence rate with reproducibility O(δ2). In the case δ = O(1),
the gradient complexity is O(1/ϵ3/2).

Theorem B.13. Under Assumptions 4.1. Given an inexact deterministic gradient oracle in Definition
4 with δ ≤ O(ϵ). The average iterate (x̄T+1/2, ȳT+1/2) of EG satisfies maxy∈Y F (x̄T+1/2, y) −
minx∈X F (x, ȳT+1/2) ≤ O(ϵ) with complexity T = O(1/(ϵ

√
δ)) if setting stepsize α =

min{1/ℓ, (δ/(2ℓ2))1/2}. The reproducibility is O(δ2/ϵ2).

Proof. The same as Section B.3.3, since αℓ ≤ 1 and α2 ≤ δ/(2ℓ2), we have that

∥x̄T+1/2 − x̄′
T+1/2∥

2 + ∥ȳT+1/2 − ȳ′T+1/2∥
2 ≤ 8α2δ2 +

4

T

T−1∑
t=0

(2α3ℓ2L+ 4αδ)2t2

≤ 8
(
(2Lℓ2α2)2α2T 2 + 8δ2α2T 2 + δ2α2

)
≤ 8(L2 + 9)δ2(αT )2.
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When the stepsize α ≤ 1/ℓ, we also have

max
y∈Y

F (x̄T+1/2, y)−min
x∈X

F (x, ȳT+1/2) ≤
D2

αT
+ 3
√
2δD

≤ ℓD2

T
+

√
2ℓD2

T
√
δ

+ 3
√
2δD.

To guarantee O(ϵ)-saddle point, we need to ensure δ ≤ O(ϵ) and αT = c/ϵ for some constant c.
This means a O(1/(ϵ

√
δ)) convergence rate with reproducibility O(δ2/ϵ2). Since δ ≤ O(ϵ), the

gradient complexity is O(1/ϵ3/2).

Finally, we want to mention that the analysis can also be extended to reproducibility under stochastic
gradient oracle and stability of Extragradient [16] that matches with SGDA. We will not provide all
details here. The key is to select stepsize α to balance the convergence O(1/(αT )) in Lemma B.8
and the error term O(α3T ) that appears according to Lemma B.9. Moreover, we also acknowledge
that it is unclear whether the analysis of EG is tight since the specific lower-bound is unknown. We
leave this problem for future exploration.

C Near-optimal Guarantees in the Minimax Case

This section discusses near-optimal guarantees for algorithmic reproducibility and gradient complexity
in smooth convex-concave minimax optimization.

C.1 Useful Lemmas

We first establish the convergence behavior of gradient descent ascent (GDA) and Extragradient (EG)
[48] for smooth and strongly-convex–strongly-concave (SC-SC) functions under the inexact gradient
oracle in Definition 4. For the sake of simplicity and to enable a general analysis, we slightly abuse
notation here to consider the minimax optimization problem

min
x∈X

max
y∈Y

f(x, y),

where f : X × Y → R satisfies the following assumption.
Assumption C.1. The function f(x, y) is ℓ-smooth and µ–strongly-convex–strongly-concave on the
closed convex domain X × Y .
Assumption C.2. We assume the existence of an inexact gradient oracle that returns a vector
g(x, y) = (gx(x, y), gy(x, y)) at any querying point (x, y) ∈ X × Y such that ∥∇f(x, y) −
g(x, y)∥2 ≤ δ2 where∇f(x, y) = (∇xf(x, y),∇yf(x, y)) is the true gradient at (x, y).

The lemma below shows the convergence behavior of GDA under the inexact gradient oracle presented
above, also referred to as Inexact-GDA.
Lemma C.3. Under Assumption C.1. Let z∗ = (x∗, y∗) ∈ X × Y be the unique saddle point of
f(x, y) and κ := ℓ/µ be the condition number. Given an inexact gradient oracle in Assumption C.2.
Denote zt = (xt, yt) and g̃(zt) = (gx(xt, yt),−gy(xt, yt)). Starting from z0 ∈ X × Y , GDA that
updates for t = 0, 1, · · · , T − 1,

zt+1 = ΠX×Y(zt − αg̃(zt)), (Inexact-GDA)

with stepsize α = µ/(4ℓ2) converges with

∥zT − z∗∥2 ≤ exp

(
− T

8κ2

)
∥z0 − z∗∥2 +

(
1

ℓ2
+

2

µ2

)
δ2.

Proof. Let ∇̃f(zt) = (∇xf(xt, yt),−∇yf(xt, yt)). It holds that z∗ = ΠX×Y(z
∗ − α∇̃f(z∗))

since the saddle point problem and the projection problem share the same optimality condition when
f(x, y) is convex-concave (see Proposition 1.4.2 in Facchinei and Pang [32]) such that

∇̃f(z∗)⊤(z − z∗) ≥ 0, ∀z = (x, y) ∈ X × Y.

32



Therefore, similarly to (11), by the GDA updates, we have

∥zt+1 − z∗∥2 = ∥ΠX×Y(zt − αg̃(zt))−ΠX×Y(z
∗ − α∇̃f(z∗))∥2

≤ ∥(zt − z∗)− α(g̃(zt)− ∇̃f(z∗))∥2

= ∥zt − z∗∥2 − 2α(g̃(zt)− ∇̃f(z∗))⊤(zt − z∗) + α2∥g̃(zt)− ∇̃f(z∗)∥2.

Since ∇̃f is µ–strongly-monotone if f(x, y) is µ–strongly-convex–strongly-concave [66, 35], i.e.,
∀z1, z2 ∈ X × Y, (∇̃f(z1)− ∇̃f(z2))⊤(z1 − z2) ≥ µ∥z1 − z2∥2, we have that

(g̃(zt)− ∇̃f(z∗))⊤(zt − z∗) = (∇̃f(zt)− ∇̃f(z∗))⊤(zt − z∗) + (g̃(zt)− ∇̃f(zt))⊤(zt − z∗)

≥ µ∥zt − z∗∥2 − δ∥zt − z∗∥

≥ µ

2
∥zt − z∗∥2 − δ2

2µ
,

where we use Assumption C.2 such that ∥g̃(zt)− ∇̃f(zt)∥ ≤ δ and fact (iii) in Lemma A.1. Then
by ℓ-smoothness of f(x, y), we can obtain that

∥g̃(zt)− ∇̃f(z∗)∥2 ≤ 2∥g̃(zt)− ∇̃f(zt)∥2 + 2∥∇̃f(zt)− ∇̃f(z∗)∥2

≤ 2δ2 + 2ℓ2∥zt − z∗∥2.
Combining all three results together, when choosing the stepsize α = µ/(4ℓ2), we get that

∥zt+1 − z∗∥2 ≤ (1− αµ+ 2α2ℓ2)∥zt − z∗∥2 +
(
α

µ
+ 2α2

)
δ2

=

(
1− 1

8κ2

)
∥zt − z∗∥2 + δ2

4ℓ2

(
1 +

1

2κ2

)
.

(20)

Unrolling the recursion, we thus obtain
∥zT − z∗∥2

≤
(
1− 1

8κ2

)T

∥z0 − z∗∥2 + δ2

4ℓ2

(
1 +

1

2κ2

)(
1 +

(
1− 1

8κ2

)
+ · · ·+

(
1− 1

8κ2

)T−1
)

≤ exp

(
− T

8κ2

)
∥z0 − z∗∥2 +

(
1

ℓ2
+

2

µ2

)
δ2.

This means a O(κ2) convergence rate to a O(δ2) neighborhood, where κ = ℓ/µ is the condition
number.

The lemma below establishes the convergence performance of EG under Assumption C.1 and C.2.
Lemma C.4. Under Assumption C.1. Let z∗ = (x∗, y∗) ∈ X × Y be the unique saddle point of
f(x, y) and κ := ℓ/µ be the condition number. Given an inexact gradient oracle in Assumption
C.2. Denote zt = (xt, yt) and g̃(zt) = (gx(xt, yt),−gy(xt, yt)). Starting from z0 ∈ X × Y ,
Extragradient that updates for t = 0, 1, · · · , T − 1,

zt+1/2 = ΠX×Y(zt − αg̃(zt)),

zt+1 = ΠX×Y(zt − αg̃(zt+1/2)),
(Inexact-EG)

with stepsize α = 1/(2ℓ) converges with

∥zT − z∗∥2 ≤ exp

(
− T

8κ

)
∥z0 − z∗∥2 + 8δ2

µ

(
2

ℓ
+

1

µ

)
.

Proof. Let ∇̃f(zt) = (∇xf(xt, yt),−∇yf(xt, yt)) and ∆(zt) = g̃(zt) − ∇̃f(zt). By (15) in the
proof of Lemma B.8, setting z = z∗, we have that,

∥zt+1 − z∗∥2 ≤ ∥zt − z∗∥2 − ∥zt+1/2 − zt∥2 − ∥zt+1/2 − zt+1∥2 + 2α∇̃f(zt+1/2)
⊤(z∗ − zt+1/2)

+ 2α(∇̃f(zt)− ∇̃f(zt+1/2))
⊤(zt+1 − zt+1/2) + 2α∆(zt+1/2)

⊤(z∗ − zt+1/2)

+ 2α(∆(zt)−∆(zt+1/2))
⊤(zt+1 − zt+1/2).

(21)
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By strong-convexity-strong-concavity of the function f(x, y), we know that

f(x∗, yt+1/2) ≥ f(xt+1/2, yt+1/2) +∇xf(xt+1/2, yt+1/2)
⊤(x∗ − xt+1/2) +

µ

2
∥xt+1/2 − x∗∥2,

−f(xt+1/2, y
∗) ≥ −f(xt+1/2, yt+1/2)−∇yf(xt+1/2, yt+1/2)

⊤(y∗ − yt+1/2) +
µ

2
∥yt+1/2 − y∗∥2.

Summing up the above two inequalities, using the definition of saddle points, we have

∇̃f(zt+1/2)
⊤(z∗ − zt+1/2) + ∆(zt+1/2)

⊤(z∗ − zt+1/2)

≤ f(x∗, yt+1/2)− f(xt+1/2, y
∗)− µ

2
∥zt+1/2 − z∗∥2 +∆(zt+1/2)

⊤(z∗ − zt+1/2)

≤ −µ

2
∥zt+1/2 − z∗∥2 + ∥∆(zt+1/2)∥∥z∗ − zt+1/2∥

≤ −µ

4
∥zt+1/2 − z∗∥2 + δ2

µ

≤ −µ

8
∥zt − z∗∥2 + µ

4
∥zt − zt+1/2∥2 +

δ2

µ
,

(22)

where we use fact (iii) in Lemma A.1 and ∥zt − z∗∥2 ≤ 2∥zt − zt+1/2∥2 + 2∥zt+1/2 − z∗∥2. By
smoothness of f(x, y) and fact (iii) in Lemma A.1, we also have that

(∇̃f(zt)− ∇̃f(zt+1/2))
⊤(zt+1 − zt+1/2) + (∆(zt)−∆(zt+1/2))

⊤(zt+1 − zt+1/2)

≤ ℓ∥zt − zt+1/2∥∥zt+1 − zt+1/2∥+ 2δ · ∥zt+1 − zt+1/2∥

≤ ℓ

2
∥zt − zt+1/2∥2 + ℓ∥zt+1 − zt+1/2∥2 +

2δ2

ℓ
.

(23)

Plugging (22) and (23) back into (21), choosing α = 1/(2ℓ), we obtain that

∥zt+1 − z∗∥2 ≤
(
1− µα

4

)
∥zt − z∗∥2 −

(
1− µα

2
− αℓ

)
∥zt+1/2 − zt∥2

− (1− 2αℓ)∥zt+1/2 − zt+1∥2 + 2αδ2
(
2

ℓ
+

1

µ

)
≤
(
1− µ

8ℓ

)
∥zt − z∗∥2 + δ2

ℓ

(
2

ℓ
+

1

µ

)
.

(24)

Unrolling the recursion, since 1 + η ≤ eη , ∀η ∈ R, we get that

∥zT − z∗∥2 ≤
(
1− µ

8ℓ

)T
∥z0 − z∗∥2 + δ2

ℓ

(
2

ℓ
+

1

µ

)(
1 +

(
1− µ

8ℓ

)
+ · · ·+

(
1− µ

8ℓ

)T−1
)

≤
(
1− µ

8ℓ

)T
∥z0 − z∗∥2 + 8δ2

µ

(
2

ℓ
+

1

µ

)
.

This means a O(κ) convergence rate to a O(δ2) neighborhood, where κ = ℓ/µ is the condition
number.

Lemma 4.5 directly follows from Lemma C.4 observing that G(x, y)+r(x−x0, y0−y) is a δ-inexact
gradient of Fr(x, y). Next, we provide a useful lemma showing how to satisfy the stopping criteria
for the auxiliary smooth SC-SC sub-problem in Algorithm 2 when presented with inexact gradients.
The results are motivated from Yang et al. [74].
Lemma C.5. Under Assumption C.1 and C.2. Suppose the domain X and Y have a diameter of D.
Denote z∗ = (x∗, y∗) be the unique saddle point of f(x, y). For any ẑ = (x̂, ŷ) ∈ X × Y , we let
g̃(ẑ) = (gx(x̂, ŷ),−gy(x̂, ŷ)) and define [ẑ]β = ([x̂]β , [ŷ]β) for β ≥ 2ℓ to be

[ẑ]β = ΠX×Y

(
ẑ − 1

β
g̃(ẑ)

)
,

which is obtained through one step of GDA starting from ẑ with inexact gradients. Denote the true
gradient as ∇̃f([ẑ]β) = (∇xf([x̂]β , [ŷ]β),−∇yf([x̂]β , [ŷ]β)). Then we have that ∀z = (x, y) ∈
X × Y ,

∇̃f([ẑ]β)⊤([ẑ]β − z) ≤ 2
√
2βD∥ẑ − z∗∥+

√
2δD

(
(2 +

√
2)

√
β

µ
+ 3

)
.
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Moreover, it also holds that ∥[ẑ]β − z∗∥ ≤ (1 +
√
2ℓ/β)∥ẑ − z∗∥+ δ(1/

√
βµ+

√
2/β).

Proof. We construct a “ghost” point ẑ1 = (x̂1, ŷ1) ∈ X × Y to be

ẑ1 = ΠX×Y

(
ẑ − 1

β
g̃([ẑ]β)

)
.

ẑ1 can be regarded as performing one update of inexact-EG with stepsize 1/β starting from ẑ.
Therefore, by (16) and (19) in the convergence analysis of EG, since 1/β ≤ 1/ℓ, we obtain that
∀z = (x, y) ∈ X × Y ,

∇̃f([ẑ]β)⊤([ẑ]β − z) ≤ β

2
∥ẑ − z∥2 − β

2
∥ẑ1 − z∥2 + 3

√
2δD

=
β

2
(ẑ − ẑ1)

⊤(ẑ − z + ẑ1 − z) + 3
√
2δD

≤ β

2
(∥ẑ − z∗∥+ ∥ẑ1 − z∗∥) · ∥ẑ − z + ẑ1 − z∥+ 3

√
2δD.

By (24) in the proof of Lemma C.4, since β ≥ 2ℓ and µ ≤ ℓ, we have that

∥ẑ1 − z∗∥2 ≤ ∥ẑ − z∗∥2 + 4δ2

βℓ
+

2δ2

βµ
.

Therefore, we can obtain that ∥ẑ1 − z∗∥ ≤ ∥ẑ − z∗∥+ 2δ/
√
βℓ+

√
2δ/
√
βµ, and thus,

∇̃f([ẑ]β)⊤([ẑ]β − z) ≤
√
2βD(∥ẑ − z∗∥+ ∥ẑ1 − z∗∥) + 3

√
2δD

≤ 2
√
2βD∥ẑ − z∗∥+

√
2δD

(
2

√
β

ℓ
+

√
2β

µ
+ 3

)
.

For the last statement, since [ẑ]β is obtained through 1-step of GDA with inexact gradients, by (20)
in the proof of GDA for SC-SC problems before, we have that

∥[ẑ]β − z∗∥2 ≤
(
1 +

2ℓ2

β2

)
∥ẑ − z∗∥2 + δ2

(
1

βµ
+

2

β2

)
.

Therefore, we obtain that ∥[ẑ]β − z∗∥ ≤ (1 +
√
2ℓ/β)∥ẑ − z∗∥+ δ(1/

√
βµ+

√
2/β).

The above lemma also applies to the case when exact gradients are available setting δ = 0 and
[ẑ]β = ΠX×Y

(
ẑ − 1

β ∇̃f(ẑ)
)

for the true gradients ∇̃f(ẑ). This implies the stopping criteria

∇̃f(ẑ)⊤(ẑ − z) ≤ ϵ̂,∀z ∈ X × Y in Algorithm 2 and 3 can be translated to ∥ẑ − z∗∥2 ≤ O(ϵ̂2),
which can be satisfied within O(log(1/ϵ̂)) complexity using Lemma C.3 and C.4 with δ = 0 (or
existing results in Tseng [72] or Facchinei and Pang [32]).

C.2 Regularization Helps!

Proof of Theorem 4.4 and 4.6 for the near-optimal guarantees of Algorithm 2 is provided here.

C.2.1 Inexact Initialization Oracle

We also use (x0, y0) as the initialization point when solving the auxiliary strongly-convex problem.
Note that the gradient steps starting from (x0, y0) remain the same on F (x, y) and Fr(x, y).

Proof of Theorem 4.4. We first show the convergence guarantee. Let zr = (xr, yr). By fact (i) in
Lemma A.1, we have that ∀z = (x, y) ∈ X × Y ,

∇̃F (zr)
⊤(zr − z) =

(
∇̃Fr(zr)− r(zr − z0)

)⊤
(zr − z)

= ∇̃Fr(zr)
⊤(zr − z) +

r

2
∥z0 − z∥2 − r

2
∥zr − z0∥2 −

r

2
∥zr − z∥2

≤ ϵr + rD2.

(25)
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According to Lemma B.2, this means maxy∈Y F (xr, y)−minx∈X F (x, yr) ≤ ϵr + rD2.

We then show the reproducibility guarantee. Denote the saddle point of Fr(x, y) given (x0, y0) as
(x∗

r , y
∗
r ), and the saddle point of F ′

r(x, y) = F (x, y) + (r/2)∥x − x′
0∥2 − (r/2)∥y − y′0∥2 given

(x′
0, y

′
0) as ((x∗

r)
′, (y∗r )

′). By Lemma B.4 in Appendix B.3 of Zhang et al. [78], we have that

∥x∗
r − (x∗

r)
′∥2 + ∥y∗r − (y∗r )

′∥2 ≤ ∥x0 − x′
0∥2 + ∥y0 − y′0∥2.

Let zr = (xr, yr), z∗r = (x∗
r , y

∗
r ) and z0 = (x0, y0) for simplicity of the notation. z′r, (z∗r )

′ and z′0
can be defined in the same way. Similarly to the minimization case, we have

∥zr − z′r∥ ≤ ∥zr − z∗r∥+ ∥z∗r − (z∗r )
′∥+ ∥(z∗r )′ − z′r∥

≤ δ + 2

√
2ϵr
r

,

where we use ∥z∗r − (z∗r )
′∥ ≤ ∥z0 − z′0∥ ≤ δ and optimality of z∗r by r strong-convexity–strong-

concavity (SC-SC) of Fr(x, y) (the same holds true for z′r and (z∗r )
′ as well):

r

2
∥xr − x∗

r∥2 +
r

2
∥yr − y∗r∥2 ≤ Fr(xr, y

∗
r )− Fr(x

∗
r , y

∗
r ) + Fr(x

∗
r , y

∗
r )− Fr(x

∗
r , yr)

≤ max
y∈Y

Fr(xr, y)−min
x∈X

Fr(x, yr)

≤ ϵr.

Thus setting r = ϵ/D2 and ϵr = ϵ · min{1, δ2/(8D2)}, we guarantee that maxy∈Y F (xr, y) −
minx∈X F (x, yr) ≤ 2ϵ and ∥xr − x′

r∥2 + ∥yr − y′r∥2 ≤ 4δ2. Applying Lemma C.5 with δ = 0,
the complexity using Extragradient (EG) [72, 57] to achieve ϵr-error on r-SC–SC (ℓ+ r)-smooth
minimax optimization isO((ℓ/r+1) log(1/ϵr)) = Õ(ℓD2/ϵ), where Õ hides logarithmic terms.

C.2.2 Inexact Deterministic Gradient Oracle

This section contains proof of Theorem 4.6 for the near-optimal guarantees in the inexact deterministic
gradient case. The proof is based on Lemma 4.5 (restated and proved as Lemma C.4 in Section C.1)
and Lemma C.5.

Proof of Theorem 4.6. For the convergence guarantee, the same as (25), we have that

max
y∈Y

F (xr, y)−min
x∈X

F (x, yr) ≤ ϵr + rD2.

For the reproducibility guarantee, we can obtain that

∥zr − z′r∥ ≤ ∥zr − z∗r∥+ ∥z∗r − z′r∥.

Let zT be the output of T -step Extragradient with initialization z0. By Lemma 4.5, we have that

∥zT − z∗r∥2 ≤ exp

(
−T

8

r

ℓ+ r

)
∥z0 − z∗r∥2 +

8δ2

r

(
2

ℓ+ r
+

1

r

)
≤ exp

(
− T

16

r

ℓ

)
∥z0 − z∗r∥2 +

16δ2

r2
.

Setting T ≥ (32ℓ/r) log(rD/δ) and r = ϵ/D2, this means the algorithm converges to ∥zT − z∗r∥ ≤
3
√
2D2(δ/ϵ). Therefore, according to Lemma C.5, if we choose zr = [zT ]2ℓ, since 1 ≤ ℓD2/ϵ, we

can guarantee that ∥zr − z∗r∥ ≤ 3(2
√
2 + 1)D2(δ/ϵ) and that

max
y∈Y

F (xr, y)−min
x∈X

F (x, yr) ≤
(
4(
√
2 + 7)

ℓD2

ϵ
+ 3
√
2

)
δD + ϵ.

The reproducibility is ∥zr − z′r∥2 ≤ 36(9 + 4
√
2)D4(δ2/ϵ2).

C.3 Inexact Proximal Point Method

Proof of Theorem 4.7 and 4.8 for the guarantees of Algorithm 3 is provided in this section.
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C.3.1 General Analysis

We first analyze the convergence of the inexact proximal point method (Inexact-PPM). Given initial-
ization (x0, y0) and α > 0, for t = 0, 1, · · · , T − 1, each step of Inexact-PPM is

(xt+1, yt+1) is an inexact solution to min
x∈X

max
y∈Y

F̂t(x, y) = F (x, y)+
1

2α
∥x−xt∥2−

1

2α
∥y−yt∥2.

Lemma C.6. If we run Inexact-PPM and make sure that for each sub-problem ∇̃F̂t(zt+1)
⊤(zt+1 −

z) ≤ ϵ̂ for all z = (x, y) ∈ X × Y , where zt+1 = (xt+1, yt+1) and ∇̃F̂t(zt+1) =

(∇xF̂t(xt+1, yt+1),−∇yF̂t(xt+1, yt+1)), then we have ∀z ∈ X × Y ,

max
y∈Y

F (x̄T+1, y)−min
x∈X

F (x, ȳT+1) ≤
∥z0 − z∥2

2αT
+ ϵ̂.

Proof. The proof is similar to Proposition 7 in Mokhtari et al. [58]. The same as (25), for any
z = (x, y) ∈ X × Y and any t = 0, 1, · · · , T − 1, we have that

∇̃F (zt+1)
T (zt+1 − z) =

(
∇̃F̂t(zt+1)−

1

α
(zt+1 − zt)

)⊤

(zt+1 − z)

=
1

2α
∥zt − z∥2 − 1

2α
∥zt+1 − z∥2 − 1

2α
∥zt+1 − zt∥2 + ∇̃F̂t(zt+1)

⊤(zt+1 − z)

≤ 1

2α
∥zt − z∥2 − 1

2α
∥zt+1 − z∥2 + ϵ̂.

Taking summation from t = 0 to T − 1 and dividing both sides by T , we conclude that

1

T

T−1∑
t=0

∇̃F (zt+1)
⊤(zt+1 − z) ≤ ∥z0 − z∥2

2αT
+ ϵ̂.

The proof is completed by Lemma B.2.

C.3.2 Inexact Initialization Oracle

This section provides proof of Theorem 4.7.

Proof of Theorem 4.7. Let z̄T+1 = (x̄T+1, ȳT+1) = (1/T )
∑T−1

t=0 (xt+1, yt+1). By Lemma C.6 and
the choice that α = 1/ℓ, ϵ̂ = δ2/(2αT 2), we immediately have

max
y∈Y

F (x̄T+1, y)−min
x∈X

F (x, ȳT+1) ≤
ℓD2

T
+

ℓδ2

2T 2
.

O(1/T ) convergence rate is guaranteed for δ ≤ O(
√
T ). Note that the condition number of F̂t(x, y)

is O(1) when α = 1/ℓ. Therefore, to guarantee an ϵ-saddle point of F (x, y), a total complexity of
O(T log(1/ϵ̂)) = O((1/ϵ) log(1/(ϵδ))) is sufficient for various algorithms including GDA [32] and
EG [72] applying Lemma C.5 with δ = 0.

Let z∗t = (x∗
t , y

∗
t ) be the unique saddle point of F̂t(x, y) with proximal center zt, and (z∗t )

′ be the
saddle point when the proximal center is z′t. For the reproducibility guarantee, similarly to Section
C.2.1, we can obtain that

∥zt+1 − z′t+1∥ ≤ ∥zt+1 − z∗t ∥+ ∥z∗t − (z∗t )
′∥+ ∥(z∗t )′ − z′t+1∥

≤ ∥zt − z′t∥+ 2

√
2ϵ̂

ℓ
,

(26)

where we use Lemma B.4 in Zhang et al. [78] and (1/α)-SC–SC of F̂t(x, y):

∇̃F̂t(zt+1)
⊤(zt+1 − z∗t ) ≥ F̂t(xt+1, y

∗
t )− F̂t(x

∗
t , yt+1) +

1

2α
∥zt+1 − z∗t ∥2

≥ ℓ

2
∥zt+1 − z∗t ∥2.
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Therefore, by induction, we have that for any t = 1, 2, · · · , T ,

∥zt − z′t∥ ≤ ∥z0 − z′0∥+ 2t

√
2ϵ̂

ℓ

≤ δ + 2δ
t

T
≤ 3δ.

The reproducibility is then ∥z̄T+1 − z̄′T+1∥2 ≤ 9δ2 using Jensen’s inequality.

C.3.3 Inexact Deterministic Gradient Oracle

For Theorem 4.8, we provide proof when using GDA as the base algorithm. According to Lemma
C.4, EG can also be applied here with a similar argument.

Proof of Theorem 4.8. When setting α = 1/ℓ, the auxiliary problem is ℓ–strongly-convex–strongly-
concave and 2ℓ-smooth. Let zKt be the output of K-step GDA with initialization z0t on the minimax
problem minx∈X maxy∈Y F̂t(x, y) at iteration t. Denote its saddle point as z∗t . By Lemma C.3, if
K ≥ 32 log(8ℓ2D2/(3δ2)), we have that

∥zKt − z∗t ∥2 ≤ exp

(
−K

32

)
∥z0t − z∗t ∥2 +

9δ2

4ℓ2

≤ 3δ2

ℓ2
.

By Lemma C.5, we can thus set zt+1 = [zKt ]2ℓ and guarantee that

∇̃F̂t(zt+1)
⊤(zt+1 − z) ≤ (4

√
6 + 5

√
2 + 4)δD, ∀z ∈ X × Y.

According to Lemma C.6, we then have

max
y∈Y

F (x̄T+1, y)−min
x∈X

F (x, ȳT+1) ≤
ℓD2

T
+ 21δD.

When δ ≤ ϵ/(42D), T ≥ 2ℓD2/ϵ is required to obtain an ϵ-saddle point, and the total gradient
complexity is TK = (64ℓD2/ϵ) log(8ℓ2D2/(3δ2)) = Õ(1/ϵ) with Õ hiding logarithmic terms.

We then show the reproducibility guarantee. From Lemma C.5, we know that ∥zt+1 − z∗t ∥ ≤
(1 +

√
2/2)∥zKt − z∗t ∥+

√
2δ/ℓ ≤ 4.5δ/ℓ. By (26), we have that

∥zt+1 − z′t+1∥ ≤ ∥zt − z′t∥+
9δ

ℓ
.

By induction, we conclude that ∥zt−z′t∥ ≤ 9t(δ/ℓ), and thus the reproducibility is ∥z̄T+1−z̄′T+1∥2 ≤
81δ2T 2/ℓ2 = 324D4(δ2/ϵ2).

D Numerical Experiments

Some numerical experiments that demonstrate the effectiveness of regularization to improve repro-
ducibility are provided in this section. We test the algorithms on two problems: a minimization
problem with a quadratic objective and a minimax problem with a bilinear objective. The experiments
are conducted on a single local machine.

Minimization. We first compare the performance of gradient descent (GD), accelerated gradient
descent (AGD), Algorithm 1 with GD as the base algorithm (Reg-GD), and Algorithm 1 with AGD
as the base algorithm (Reg-AGD) on a quadratic minimization problem

min
x∈Rd

1

2
∥Ax− b∥2.

Here, b ∈ Rd with each entry sampled from the Gaussian distribution with mean 0 and standard
deviation 10 and A ∈ Rd×d is a random positive semi-definite matrix with rank d − 1 that makes
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Figure 1: Comparisons among GD, AGD, and their regularized version on the quadratic minimization
problem with δ-inexact gradients. The left figure plots the convergence behavior and the right shows
the reproducibility. Both axes are plotted utilizing a logarithmic scale.

sure the problem is convex but not strongly-convex. To be specific, we let A = UΣU⊤ where U is a
random orthogonal matrix drawn from the Haar distribution, and Σ is a diagonal matrix with 1 entry
being 0 and the others uniformly sampled from [0.1, 10]. This ensures that the problem is smooth
with a parameter smaller than 100.

We implement an inexact gradient oracle that returns A⊤(Ax − b) + δe where e ∈ Rd is an all-
one vector and δ ∈ R controls the inexactness level. We test the aforementioned four algorithms
with this inexact gradient oracle on both convergence performance measured by function value and
reproducibility performance measured by the deviation compared to the trajectory obtained from
using the true gradient when δ = 0. In the experiments, we let d = 100 and δ = 0.1. For all four
algorithms, we set the number of iterations to be T = 10000, and the stepsize to be 0.01 based on the
fact that the smoothness parameter is at most 100. For the regularization-based methods, we set the
regularization parameter of the auxiliary problem to 0.05. All other parameters are set according to
the theoretically suggested values. The results are illustrated in Figure 1.

In Figure 1, we see AGD converges faster than GD, but the deviation in iterates is much larger. When
introducing regularization, i.e., Reg-AGD, the reproducibility guarantee is greatly improved with
only a small degradation in the convergence performance. It is worth mentioning that Reg-GD also
has a smaller deviation bound compared to GD. All the results align with our theoretical analysis.
Changing the inexactness level δ or the random seed for sampling the matrix A and the vector b does
not influence the phenomenon too much, so we do not report the results with different selections.

Minimax. We also test the performance of gradient descent ascent (GDA), Extragradient (EG), and
their regularized counterparts (Reg-GDA and Reg-EG) in Algorithm 2 on a bilinear matrix game

min
x∈X

max
y∈Y

x⊤Ay.

Here, A ∈ Rd×d is generated the same as in the quadratic minimization example, X = {x ∈
Rd | ∥x∥ ≤ D} and Y = {y ∈ Rd | ∥y∥ ≤ D} are d-dimensional balls with diameter 2D measured
by the Euclidean norm. The projection onto these balls can be easily achieved. We implement an
inexact gradient oracle that returns Ay + δe and A⊤x + δe for the partial gradients w.r.t. x and y
respectively, where e ∈ Rd is an all-one vector and δ ∈ R controls the inexactness level.

We test the aforementioned four algorithms with this inexact gradient oracle on both convergence
performance measured by the duality gap (computable due to bounded domain) and reproducibility
performance measured by the deviation compared to the trajectory obtained from using the true
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Figure 2: Comparisons among GDA, EG, and their regularized version on the bilinear matrix game
with δ-inexact gradients. The left figure plots the convergence behavior and the right shows the
reproducibility. Both axes are plotted utilizing a logarithmic scale.

gradient when δ = 0. In the experiments, we let d = 500 and δ = 0.1. For all four algorithms, we
set the number of iterations to be T = 10000, and the stepsize is 0.1 for EG, 0.05 for Reg-EG, 0.001
for GDA, and 0.0001 for Reg-GDA. The choice of stepsizes here adheres to our theoretical analysis
noticing that the smoothness parameter is no larger than 10. Larger stepsize for GDA will make the
trajectory easily diverge. For the regularization-based methods, we set the regularization parameter
of the auxiliary problem to 0.05. The results are plotted in Figure 2. We see again the effectiveness of
regularization to improve the reproducibility of the algorithms. Reg-EG largely reduces the deviation
of EG even with respect to magnitude (note the figure is logarithmically scaled), with only a small
degradation in terms of the convergence speed.
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