
Understanding the Detrimental Class-level

Effects of Data Augmentation:

Supplementary Material

A Training details517

Following [1], we train ResNet-50 models for 88 epochs with SGD with momentum 0.9, using batch518

size 1024, weight decay 10�4, and label smoothing 0.1. We use cyclic learning rate schedule starting519

from the initial learning rate 10�4 with the peak value 1 after 2 epochs and linearly decaying to 0520

until the end of training. We use PyTorch [45], automatic mixed precision training with torch.amp521

package5, ffcv package [34] for fast data loading. We use image resolution 176 during training,522

and resolution 224 during evaluation, following Touvron et al. [61] and torchvision training523

recipe6. Balestriero et al. [1] also use different image resolution at training and test time: ramping524

up resolution from 160 to 192 during training and evaluating models on images with resolution525

256. We train 10 independent models with different random seeds for each augmentation strength526

s 2 {8, 20, 30, 40, 50, 60, 70, 80, 90, 99} where s = 8% corresponds to the strongest and default527

augmentation.528

B Evaluation metrics529

To understand the biases introduced or exacerbated by data augmentation, we use a number of530

fine-grained metrics and evaluate them for models trained with different augmentation levels. We531

compute these metrics using original ImageNet validation labels and ReaL multi-label annotations532

[4]. We use fs(·) to denote a neural network trained with augmentation parameter s, lReaL(x) a533

set of ReaL labels for a validation example x, X a set of all validation images, Xk the validation534

examples with the original label k.535

Accuracy. The average accuracy across for original and ReaL labels is defined as:

aor(s) = 1/|X|
X

x2X

I[fs(x) = k] and aReaL = 1/|X|
X

x2X

I[fs(x) 2 lReaL(x)],

while for per-class accuracies aor
k (s) and aReaL

k (s) the summation is over the set Xk instead of all536

validation examples X . The accuracy on class k with original labels aor
k (s) also correspond to recall537

of the model on that class.538

Confusion. In Section 5 we looked at class confusions, in particular for a pair of classes k and l the539

confusion rate (CR) is defined as:540

CRk!l(s) = 1/|Xk|
X

x2Xk

I[fs(x) = l],

i.e. the ratio of examples from class k misclassified as l. We are only discussing confusions CRk!l541

in the context of original labels.542

False Positive and False Negative mistakes. In Section 6, we emphasized the importance of looking543

at how data augmentation impacts not only per-class accuracy but also the number of False Positive544

(FP) mistakes for a particular class:545

FP or
k (s) =

X

(x2X)\(x/2Xk)

I[fs(x) = k] and FPReaL
k (s) =

X

(x2X)\(k/2lReaL(x))

I[fs(x) = k]

5https://pytorch.org/docs/stable/amp.html
6https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
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for original and Real labels respectively. The number of False Negative mistakes on class k in terms546

of the original labels are directly related to the accuracy, or recall, on that class:547

FNor
k (s) =

X

x2Xk

I[fs(x) 6= k] = |Xk|(1 � aor(s)),

while for multi-label annotations we define it as:548

FNReaL
k (s) =

X

(x2X)\(k2lReaL(x))

I[fs(x) /2 lReaL(x)],

i.e. the number of examples x which were misclassidied by the model where k was in the ReaL label549

set lReaL(x). In Section 6 we explored s⇤k = argminFNk(s) + FNk(s) as a proxy for optimal550

class-conditional augmentation level which emphasizes the inherent tradeoff between class-level551

accuracy and the number of False Positive mistakes.552

Affected classes. We are focusing on analyzing model’s behavior on the classes which were negatively553

affected by strong (default) augmentation in terms of original or ReaL accuracy, i.e. classes where554

the accuracy drop �ak = ak(s⇤k) � ak(s = 8%) from ak(s⇤k) = maxs ak(s) to ak(s = 8%) is the555

highest. We focus on 5% of classes (50 classes) with the highest �ak following Balestriero et al. [1]556

and measure the average accuracy on this set of classes as a function of s and after interventions in557

Section 6.558

In Section 6, we also look at classes where the number of FP mistakes increased the most with strong559

DA, i.e. with the highest �FPk = FPk(s = 8%) � FPk(s⇤k) where FPk(s⇤k) = mins FPk(s).560

C Additional related work561

Adaptive and learnable data augmentation. Xu et al. [66] showed that data augmentation562

may exacerbate data bias which may lead to model’ suboptimal performance on the original data563

distribution. They propose to train the model on a mix of augmented and unaugmented samples and564

then fine-tune it on unaugmented data after training which showed improved performance on CIFAR565

dataset. Raghunathan et al. [47] showed standard error in linear regression could increase when566

training with original data and data augmentation, even when data augmentation is label-preserving.567

Rey-Area et al. [49] and Ratner et al. [48] learn DA transformation using GAN framework, while568

Hu and Li [28] study the bias of GAN-learned data augmentation. Fujii et al. [16] take into account569

the distances between classes to adapt mixed-sample DA. Hauberg et al. [20] learn class-specific570

DA on MNIST. Numerous works, e.g. Cubuk et al. [12], Lim et al. [36], Ho et al. [24], Hataya et al.571

[19], Li et al. [35], Cubuk et al. [13], Tang et al. [58], Müller and Hutter [42] and Zheng et al. [69]572

find dataset-dependent augmentation strategies. Benton et al. [3] proposed Augerino framework to573

learn augmentation form training data. Zhou et al. [70], Cheung and Yeung [11], Mahan et al. [39]574

and Miao et al. [40] learn class- or input-dependent augmentation policies. Yao et al. [67] propose to575

modify mixed-sample augmentation to improve out-of-domain generalization.576

Robustness and model evaluation beyond average accuracy. While Miller et al. [41] showed577

that model’s average accuracy is strongly correlated with its out-of-distribution performance, there578

have been a number of works that showed that only evaluating average performance can be deceptive.579

Teney et al. [60] showed counter-examples for “accuracy-on-the-line” phenomenon. Kaplun et al.580

[32] show that while model’s average accuracy improves during training, it may decrease on a581

subset of examples. Sagawa et al. [51] show that training with Empirical Risk Minimization may582

lead to suboptimal performance in the worst case. Bitterwolf et al. [6] evaluated ImageNet models’583

performance in terms of a number of metrics beyond average accuracy, including worst-class accuracy584

and precision.585

D Accuracy of the classes most negatively affected by data augmentation586

We show the per-class accuracies as a function of data augmentation strength s for (1) the 50 classes587

most negatively affected in original accuracy, i.e. with the highest �aor
k in Figure 5, and (2) 50588

classes most negatively affected in ReaL accuracy In Figure 6.589
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E Class confusion types590

In Table 1 we show the classes most negatively affected in accuracy by strong data augmentation
(column “Affected class k”) and the confusions the model starts making more frequently with stronger
augmentation (“Confused class l”). In particular, we study the union of 50 classes most affected in
original accuracy and 50 classes most affected in ReaL accuracy (see Section D) which do not belong
to the animal subtree in WordNet tree. We focus on the confusions l where confusion rate difference

�CRk!l = CRk!l(s = 8%) � min
s

CRk!l(s)

is the highest for class k and above 2.5% (see Section B for definition of confusion rate CRk!l(s)).
Additionally for each pair of confused classes k and l we also look at

�CR⇤
l!k = max

s
CRl!k(s) � CRl!k(s = 8%)

which characterizes to what extent the model trained with weaker augmentation starts making the591

reverse confusion more often compared to the strong DA model.592

To quantitatively estimate the confusion type for each pair of classes, we measure the intrinsic
distribution overlap of the classes and their semantic similarity. We compute one sided overlap for
classes k and l, which is the ratio of examples that have both labels k and l among the examples with
the label k:

Ckl =
X

x2X

I[k 2 lReaL(x)] ⇥ I[l 2 lReaL(x)]/
X

x2X

I[k 2 lReaL(x)]

and intersection-over-union of the two classes:

IoUkl =
X

x2X

I[k 2 lReaL(x)] ⇥ I[l 2 lReaL(x)]/
X

x2X

I[k 2 lReaL(x) or l 2 lReaL(x)].

We use WordNet class similarity and similarity of word embeddings from spacy [25] to measure593

semantic similarity. Note that these metrics only serve as approximate measures of distribution594

overlap and semantic distance since (1) the ReaL labels still contain some amount of label noise and595

may contain mislabelled examples or examples that are missing some of the plausible labels, (2) the596

WordNet distance sometimes is low for classes that are semantically very similar, and (3) spacy597

doesn’t have a representation for all words and is underestimating the similarity of closely related598

concepts. However, all together these metrics can point towards one of the appropriate confusion599

type categories.600

In Figure 7 we show more examples of the confusion rates for different pairs of classes k and l as601

a function of data augmentation strength s where k is among the ones most negatively affected in602

accuracy and l is the class the model misclassified examples from the class k to. We show example603

pairs from different confusion types defined in Section 5.604

F Additional details for the class-conditional augmentation intervention605

experiments606

In Figures 8 and 9 we show how the number of False Positive (FP) mistakes changes with data607

augmentation strength for the set of classes where FP number increased the most with strong DA (see608

Figure 8 for the set of classes where original FP mistakes increased the most and Figure 9 for ReaL609

FP mistakes). In Section 6, we conducted class-conditional data augmentation interventions changing610

the DA strength for these sets of classes and showed that it improved the accuracy on the classes611

negatively affected in accuracy. While in Section 6 we show results for adapting augmentation level612

for classes using original labels to evaluate False Positive and False Negative mistakes, in Table 2 we613

show analogous results when using ReaL labels which also shows that this targeted intervention into614

augmentation policy for a small number of classes leads to improvement in ReaL average accuracy615

on the affected classes (we specifically consider the set of classes affected in ReaL accuracy).616

We also experimented with fine-tuning the model from the checkpoint trained with the strongest617

augmentation s = 8% using either regular augmentation policy which was used during training or618

class-conditional policy with augmentation strength changed for k = 10 classes as in Section 6: we619
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fine-tuned the model for 5 epochs with linearly decaying learning rate starting from the value 10�4.620

However, both regular and class-conditional DA lead to slight drop in average accuracy on all classes621

(from 76.79% to 76.73% for either DA) and in particular the accuracy dropped more significantly622

for negatively affected classes: from 53.93% to 53.4%. We hypothesize that this is due to model623

memorizing train examples so even class-conditional augmentation policy is not able to recover624

performance on the affected classes if we re-use the same data for fine-tuning. In the future analysis,625

we will explore whether it is possible to alleviate DA bias if we fine-tune the model from an earlier626

checkpoint as opposed to fully trained model or if we use additional held-out data for fine-tuning.627

G Multi-label annotations628

In this work we use ReaL labels released in Beyer et al. [4] to account for the label noise in evaluation629

of per-class accuracy effects of data augmentation. A more recent work Vasudevan et al. [64] released630

re-assessed multi-label annotations for a half of the ImageNet validation set. Since they did not631

release the annotations for the entire validation set, we decided to use older and more commonly used632

ReaL labels. However, one could merge the two multi-label annotation sets from Beyer et al. [4] and633

Vasudevan et al. [64] for more accurate evaluation. In particular, Vasudevan et al. [64] discussed the634

class mappings that they collapsed, and among those classes are the ones negatively affected in ReaL635

accuracy by data augmentation, e.g. “siberian huskies are also eskimo dogs”, “coffee mug is also636

a cup”, “maillot and maillot, tanksuit are the same class” “monitor and screen are the same class”,637

“cassette player is also a tape player” [64].638

H Broader impact and limitations639

Limitations. In this paper we consider the impact of Random Resized Crop (RRC) data augmen-640

tation which is the most commonly used augmentation transformation which is also often used641

in combination with other automatic augmentation policies [12, 42]. RRC DA also leads to most642

substantial improvements in average accuracy, unlike other transformations such as color-based aug-643

mentation which usually leads to limited improvements. For the main analysis we focus on ResNet-50644

architecture and study per-class accuracies of EfficientNet-B0 [57] in Section I, however, Balestriero645

et al. [1] showed that per-class biases persist in other architectures like Vision Transformers [14] and646

DenseNets [29] and for colorjitter augmentation. While we provide a deep analysis of RRC per-class647

effects in ResNet models, the same framework can be extended to better understand the biases of648

other augmentations and other architectures in the future work.649

As discussed in Section E while we provide quantitative metrics to describe each confusion type650

affected by data augmentation, the categorization is not strict due to the remaining noise in ReaL651

labels (also see Section G) and imprecise word similarity metrics.652

Broader impact. A potential negative outcome that can result from misinterpretation of our analysis653

in Section 4 is if the practitioners assume that data augmentation does not have any negative effects654

since we discover that previously reported performance drops were overestimated due to label noise.655

We emphasize that while some of the class-level accuracy drops were indeed due to label ambiguity or656

co-occurring objects, data augmentation does exacerbate model’s bias and introduces class confusions657

(often between fine-grained categories but sometimes even for semantically unrelated classes that658

share visually similar features). We encourage researchers to carefully study the negative impact of659

DA using fine-grained metrics beyond average accuracy (such as per-class accuracy, False Positive660

mistakes and class confusions) to better understand its biases.661

Compute. We estimate the total compute used in the process of working on this paper at roughly662

5000 GPU hours. The compute usage is dominated by training models for different augmentation663

strengths (Section 4). The experiments were run on GPU clusters on Nvidia Tesla V100, Titan RTX,664

RTX8000, 3080 and 1080Ti GPUs.665

I Additional architecture results666

On Figures 10 and 11 we show the per-class accuracy trends for classes most affected in original and667

ReaL accuracy of EfficientNet-B0 [57] model, trained using a similar setup to the main ResNet-50668
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model (see Section A). We can see that many affected classes are the same for ResNet-50 and669

EfficientNet models.670
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Figure 5: Per-class class validation accuracies of ResNet-50 trained on ImageNet computed with
original and ReaL labels as a function of Random Resized Crop data augmentation scale lower
bound s. We show the accuracy trends for the classes with the highest difference between the
maximum accuracy on that class across augmentation levels maxs aor

k (s) and the accuracy of the
model trained with s = 8%. On each subplot below the name of the class we show the accuracy
drops with respect to original and ReaL labels: �aor

k and �aReaL
k . We report the mean and standard

error over 10 independent runs of the network.
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Figure 6: Per-class class validation accuracies of ResNet-50 trained on ImageNet computed with
original and ReaL labels as a function of Random Resized Crop data augmentation scale lower
bound s. We show the accuracy trends for the classes with the highest difference between the
maximum ReaL accuracy on that class across augmentation levels maxs aReaL

k (s) and the ReaL
accuracy of the model trained with s = 8%. On each subplot below the name of the class we show
the accuracy drops with respect to original and ReaL labels: �aor

k and �aReaL
k . We report the mean

and standard error over 10 independent runs of the network.

20



Table 1: Confusions on the classes most affected by data augmentation.

Affected
class k

Confused
class l

� conf. rate (%) Label co-occur. Semantic sim. Confusion
type�CRk!l �CR⇤

l!k Clk IoU WN spacy

overskirt hoopskirt 5.80 3.60 0.31 0.17 0.91 – fine-gr. (ambig.)
bonnet 4.20 0.00 0.03 0.02 0.73 0.32 fine-gr.
gown 4.00 2.40 0.50 0.21 0.73 0.37 fine-gr. (ambig.)

trench coat 3.60 0.40 0.00 0.00 0.75 0.42 fine-gr.

academic gown mortarboard 18.40 7.00 0.72 0.50 0.73 0.10 co-occur.

sunglass sunglasses 13.00 22.40 0.87 0.81 0.64 0.84 ambig.

maillot maillot 15.00 7.20 0.73 0.63 0.70 1.00 ambig.

Windsor tie suit 7.20 4.00 0.61 0.32 0.82 0.24 co-occur.

screen desktop computer 7.80 7.00 0.59 0.29 0.64 0.62 ambig.
monitor 3.20 6.40 0.87 0.37 0.63 0.44 ambig.

tobacco shop barbershop 5.20 2.80 0.00 0.00 0.91 0.56 fine-gr.
bookshop 6.80 6.40 0.00 0.00 0.91 0.53 fine-gr.

monastery church 2.80 6.80 0.11 0.03 0.70 0.71 fine-gr.
castle 2.80 11.20 0.00 0.00 0.60 0.69 fine-gr.

thresher harvester 6.60 16.40 0.04 0.01 0.90 0.49 fine-gr.

parallel bars horizontal bar 3.20 2.80 0.00 0.00 0.90 0.75 fine-gr.
balance beam 3.00 4.00 0.02 0.01 0.90 0.45 fine-gr.

mailbag purse 12.80 2.00 0.10 0.06 0.89 0.19 fine-gr.
backpack 4.00 5.60 0.00 0.00 0.89 0.16 fine-gr.

chain necklace 9.40 4.40 0.15 0.09 0.53 0.31 ambig.

bulletproof vest military uniform 5.60 3.40 0.31 0.13 0.76 0.38 co-occur. (ambig.)
assault rifle 3.20 0.40 0.32 0.17 0.40 0.35 co-occur.

sombrero cowboy hat 7.40 4.80 0.15 0.05 0.91 0.51 fine-gr.

velvet purse 3.60 2.60 0.00 0.00 0.62 0.29 unrelated
necklace 3.00 0.00 0.00 0.00 0.62 0.51 unrelated

tape player radio 3.20 4.60 0.00 0.00 0.67 0.27 fine-gr.
cassette player 3.00 0.20 0.08 0.01 0.89 0.85 fine-gr.

assault rifle military uniform 8.40 0.40 0.47 0.24 0.42 0.42 co-occur.

cornet trombone 4.80 2.40 0.23 0.14 0.91 0.41 fine-gr.

pole traffic light 4.00 0.40 0.05 0.03 0.12 0.21 unrelated

muzzle sandal 3.20 0.00 0.00 0.00 0.56 0.23 unrelated

ear corn 5.40 4.40 0.81 0.52 0.78 0.23 ambig.

vault altar 6.40 4.40 0.21 0.12 0.62 0.41 fine-gr. (ambig.)

frying pan Dutch oven 6.00 3.00 0.00 0.00 0.40 0.59 fine-gr.
wok 3.40 2.60 0.09 0.05 0.92 0.72 fine-gr.

French loaf bakery 4.40 1.80 0.10 0.06 0.24 0.42 co-occur.

barrel rain barrel 7.60 2.20 0.16 0.07 0.76 0.70 fine-gr. (ambig.)

spatula wooden spoon 4.40 2.80 0.24 0.12 0.57 0.62 fine-gr.

sax flute 3.20 0.40 0.00 0.00 0.83 0.65 fine-gr.

seashore sandbar 3.80 2.80 0.64 0.47 0.57 0.69 co-occur.

coffee mug cup 7.80 0.80 0.61 0.34 0.19 0.63 ambig.
espresso 3.00 2.60 0.18 0.13 0.21 0.72 co-occur.

breastplate cuirass 6.00 6.40 0.71 0.50 0.67 0.48 ambig.
shield 3.20 1.20 0.07 0.05 0.70 0.59

beacon breakwater 7.80 0.60 0.07 0.04 0.71 0.33 co-occur.

suit miniskirt 3.20 1.60 0.02 0.01 0.86 0.32 fine-gr.

hand-held computer cellular telephone 8.80 5.60 0.22 0.06 0.50 0.42 ambig.
notebook 4.60 0.40 0.03 0.01 0.92 0.32 fine-gr.

stopwatch digital watch 4.80 0.60 0.00 0.00 0.83 0.62 fine-gr.

strawberry trifle 4.40 1.40 0.06 0.03 0.32 0.40 co-occur.

trimaran catamaran 4.80 1.40 0.18 0.09 0.92 0.60 fine-gr.

digital clock digital watch 3.00 7.00 0.02 0.01 0.83 0.71 fine-gr.

hair slide necklace 5.60 0.60 0.00 0.00 0.50 0.42 fine-gr.

hook necklace 3.60 0.00 0.00 0.00 0.53 0.33 unrelated

backpack purse 3.00 0.00 0.02 0.01 0.89 0.56 fine-gr.

home theater monitor 2.80 0.00 0.03 0.00 0.56 0.18 co-occur.

bath towel pillow 4.40 0.60 0.00 0.00 0.59 0.56 unrelated
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Figure 7: Confusion rate for classes most negatively affected by strong data augmentation and
the corresponding classes they get confused with. We categorize confusions into ambiguous, co-
occurring, fine-grained and unrelated.

Table 2: Class-conditional augmentation intervention using ReaL labels.

# classes with
adapted aug.

ReaL
avg acc

ReaL avg acc of
50 aff. classes

ReaL avg acc of
remaining 950 classes

0 83.70±0.01 70.66±0.08 84.00±0.01

10 83.63±0.01 72.01±0.04 83.86±0.01

30 83.64±0.01 72.28±0.05 83.86±0.01

50 83.57±0.01 72.20±0.03 83.78±0.01
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Figure 8: The number of per-class False Positive (FP) mistakes for the set of classes where FP
computed with original labels increases the most when using strong data augmentation. We show the
trends using both original and ReaL labels.
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Figure 9: The number of per-class False Positive (FP) mistakes for the set of classes where FP
computed with ReaL labels increases the most when using strong data augmentation. We show the
trends using both original and ReaL labels.
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Figure 10: Per-class class validation accuracies of EfficientNet-B0 trained on ImageNet computed
with original and ReaL labels as a function of Random Resized Crop data augmentation scale lower
bound s. We show the accuracy trends for the classes with the highest difference between the
maximum accuracy on that class across augmentation levels maxs aor

k (s) and the accuracy of the
model trained with s = 8%. On each subplot below the name of the class we show the accuracy
drops with respect to original and ReaL labels: �aor

k and �aReaL
k .
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Figure 11: Per-class class validation accuracies of EfficientNet-B0 trained on ImageNet computed
with original and ReaL labels as a function of Random Resized Crop data augmentation scale
lower bound s. We show the accuracy trends for the classes with the highest difference between
the maximum ReaL accuracy on that class across augmentation levels maxs aor

k (s) and the ReaL
accuracy of the model trained with s = 8%. On each subplot below the name of the class we show
the accuracy drops with respect to original and ReaL labels: �aor

k and �aReaL
k .
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