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Abstract

Recent progress in music generation has been remarkably advanced by the state-
of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for
semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the Mu-
sicLM requires processing through these LMs one by one to obtain the fine-grained
acoustic tokens, making it computationally expensive and prohibitive for a real-
time generation. Efficient music generation with a quality on par with MusicLM
remains a significant challenge. In this paper, we present MeLoDy (M for music;
L for LM; D for diffusion), an LM-guided diffusion model that generates music
audios of state-of-the-art quality meanwhile reducing 95.7% to 99.6% forward
passes in MusicLM, respectively, for sampling 10s to 30s music. MeLoDy inherits
the highest-level LM from MusicLM for semantic modeling, and applies a novel
dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the
conditioning semantic tokens into waveform. DPD is proposed to simultaneously
model the coarse and fine acoustics by incorporating the semantic information
into segments of latents effectively via cross-attention at each denoising step. Our
experimental results suggest the superiority of MeLoDy, not only in its practical
advantages on sampling speed and infinitely continuable generation, but also in its
state-of-the-art musicality, audio quality, and text correlation.
Our samples are available at https://Efficient-MeLoDy.github.io/.

1 Introduction

Music is an art composed of harmony, melody, and rhythm that permeates every aspect of human life.
With the blossoming of deep generative models [1–3], music generation has drawn much attention in
recent years [4–6]. As a prominent class of generative models, language models (LMs) [7, 8] showed
extraordinary modeling capability in modeling complex relationships across long-term contexts
[9–11]. In light of this, AudioLM [3] and many follow-up works [5, 12–14] successfully applied
LMs to audio synthesis. Concurrent to the LM-based approaches, diffusion probabilistic models
(DPMs) [1, 15, 16], as another competitive class of generative models [2, 17], have also demonstrated
exceptional abilities in synthesizing speech [18–20], sounds [21, 22] and music [6, 23].

However, generating music from free-form text remains challenging as the permissible music descrip-
tions can be very diverse and relate to any of the genres, instruments, tempo, scenarios, or even some
subjective feelings. Conventional text-to-music generation models are listed in Table 1, where both
MusicLM [5] and Noise2Music [6] were trained on large-scale music datasets and demonstrated the
state-of-the-art (SOTA) generative performances with high fidelity and adherence to various aspects
of text prompts. Yet, the success of these two methods comes with large computational costs, which
would be a serious impediment to their practicalities. In comparison, Moûsai [23] building upon
DPMs made efficient samplings of high-quality music possible. Nevertheless, the number of their
demonstrated cases was comparatively small and showed limited in-sample dynamics. Aiming for a
feasible music creation tool, a high efficiency of the generative model is essential since it facilitates
interactive creation with human feedback being taken into account as in [24].
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Table 1: A comparison of MeLoDy with conventional text-to-music generation models in the literature.
We use AC to denote whether audio continuation is supported, FR to denote whether the sampling
is faster than real-time on a V100 GPU, VT to denote whether the model has been tested and
demonstrated using various types of text prompts including instruments, genres, and long-form rich
descriptions, and MP to denote whether the evaluation was done by music producers.

Model Prompts Training Data AC FR VT MP
Moûsai [23] Text 2.5k hours of music 3 3 7 7
MusicLM [5] Text, Melody 280k hours of music 3 7 3 7
Noise2Music [6] Text 340k hours of music 7 7 3 7

MeLoDy (Ours) Text, Audio 257k hours of music1 3 3 3 3

While LMs and DPMs both showed promising results, we believe the relevant question is not whether
one should be preferred over another but whether we can leverage both approaches with respect to
their individual advantages, e.g., [25]. After analyzing the success of MusicLM, we leverage the
highest-level LM in MusicLM, termed as semantic LM, to model the semantic structure of music,
determining the overall arrangement of melody, rhythm, dynamics, timbre, and tempo. Conditional
on this semantic LM, we exploit the non-autoregressive nature of DPMs to model the acoustics
efficiently and effectively with the help of a successful sampling acceleration technique [26]. All in
all, in this paper, we introduce several novelties that constitute our main contributions:

1. We present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion
model that generates music of competitive quality while reducing 95.7% and 99.6% iterations
of MusicLM to sample 10s and 30s music, being faster than real-time on a V100 GPU.

2. We propose the novel dual-path diffusion (DPD) models to efficiently model coarse and fine
acoustic information simultaneously with a particular semantic conditioning strategy.

3. We design an effective sampling scheme for DPD, which improves the generation quality
over the previous sampling method in [23] proposed for this class of LDMs.

4. We reveal a successful audio VAE-GAN that effectively learns continuous latent representa-
tions, and is capable of synthesizing audios of competitive quality together with DPD.

2 Related Work

Audio Generation Apart from the generation models shown in Table 1, there are also music
generation models [28, 29] that can generate high-quality music samples at high speed, yet they
cannot accept free-form text conditions and can only generate single-genre music, e.g., techno
music in [29]. There also are some successful music generators in the industry, e.g. Mubert [30]
and Riffusion [31], yet, as analyzed in [5], they struggled to compete with MusicLM in handling
free-form text prompts. In a more general scope of audio synthesis, some promising text-to-audio
synthesizers [12, 21, 22] trained with AudioSet [32] also demonstrated the ability to generate music
from free-form text, but the musicality of their samples is limited.

Acceleration of Autoregressive Models WaveNet [33] is a seminal work that demonstrates the
capability of autoregressive (AR) models in generating high-fidelity audio. It comes with the
drawback of extremely high computational cost in sampling. To improve its practical feasibility,
Parallel WaveNet [34] and WaveRNN [35] were separately proposed to accelerate WaveNet. With a
similar goal, our proposed MeLoDy can be viewed as an accelerated variant of MusicLM, where we
replace the last two AR models with a dual-path diffusion model. Parallel to our work, SoundStorm
[36] also exceedingly accelerates the AudioLM with a mask-based non-AR decoding scheme [37].
While it is applicable to MusicLM, the sound quality of this model is still limited by the bitrate of the
neural codec. In comparison, the proposed diffusion model in MeLoDy operates with continuous-
valued latent vectors, which by nature can be decoded into music audios of higher quality.

1We focus on non-vocal music data by using an audio classifier [27] to filter out in-house music data with
vocals. Noticeably, generating vocals and instrumental music simultaneously in one model is defective even
in the SOTA works [5, 6] because of the unnaturally sound vocals. While this work aims for generating
production-level music, we improve the fidelity by reducing the tendency of generating vocals.
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Network Architecture The architecture designed for our proposed DPD was inspired by the
dual-path networks used in the context of audio separation, where Luo et al. [38] initiated the idea of
segmentation-based dual-path processing, and triggered a number of follow-up works achieving the
state-of-the-art results [39–43]. Noticing that the objective in diffusion models indeed can be viewed
as a special case of source separation, this kind of dual-path architecture effectually provides us a
basis for simultaneous coarse-and-fine acoustic modeling.

3 Background on Audio Language Modeling

This section provides the preliminaries that serve as the basis for our model. In particular, we briefly
describe the audio language modeling framework and the tokenization methods used in MusicLM.

3.1 Audio Language Modeling with MusicLM

MusicLM [5] mainly follows the audio language modeling framework presented in AudioLM [3],
where audio synthesis is viewed as a language modeling task over a hierarchy of coarse-to-fine audio
tokens. In AudioLM, there are two kinds of tokenization for representing different scopes of audio:

• Semantic Tokenization: K-means over representations from SSL, e.g., w2v-BERT [44];
• Acoustic Tokenization: Neural audio codec, e.g., SoundStream [45].

To better handle the hierarchical structure of the acoustic tokens, AudioLM further separates the
modeling of acoustic tokens into coarse and fine stages. In total, AudioLM defines three LM tasks:
(1) semantic modeling, (2) coarse acoustic modeling, and (3) fine acoustic modeling.

We generally define the sequence of conditioning tokens as c1:Tcnd := [c1, . . . , cTcnd ] and the sequence
of target tokens as u1:Ttgt := [u1, . . . ,uTtgt ]. In each modeling task, a Transformer-decoder language
model parameterized by ✓ is tasked to solve the following autoregressive modeling problem:

p✓(u1:Ttgt |c1:Tcnd) =

TtgtY

j=1

p✓(uj |[c1, . . . , cTcnd ,u1, . . . ,uj�1]), (1)

where the conditioning tokens are concatenated to the target tokens as prefixes. In AudioLM, semantic
modeling takes no condition; coarse acoustic modeling takes the semantic tokens as conditions; fine
acoustic modeling takes the coarse acoustic tokens as conditions. The three corresponding LMs can
be trained in parallel with the ground-truth tokens, but need to be sampled sequentially for inference.

3.1.1 Joint Tokenization of Music and Text with MuLan and RVQ

To maintain the merit of audio-only training, MusicLM relies on joint audio-text embedding model,
termed as MuLan [46], which can be individually pre-trained with large-scale music data and weakly-
associated, free-form text annotations. This MuLan model is learned to project the music audio and
its corresponding text description into the same embedding space such that the paired audio-text
embeddings can be as close as possible. In MusicLM, the embeddings of music and text are tokenized
using a separately learned residual vector quantization (RVQ) [45] module. Then, to generate music
from a text prompt, MusicLM takes the MuLan tokens from the RVQ as the conditioning tokens in
the semantic modeling stage and the coarse acoustic modeling stage, following Eq. (1). Given the
prefixing MuLan tokens, the semantic tokens, coarse acoustic tokens, and fine acoustic tokens can be
subsequently computed by LMs to generate music audio adhering to the text prompt.

4 Model Description

The overall training and sampling pipelines of MeLoDy are shown in Figure 1, where, we have
three modules for representation learning: (1) MuLan, (2) Wav2Vec2-Conformer, and (3) audio
VAE, and two generative models: a language model (LM) and a dual-path diffusion (DPD) model,
respectively, for semantic modeling and acoustic modeling. In the same spirit as MusicLM, we
leverage LM to model the semantic structure of music for its promising capability of modeling
complex relationships across long-term contexts [9–11]. We also similarly pre-train a MuLan model
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Figure 1: The training and sampling pipelines of MeLoDy

to obtain the conditioning tokens. For semantic tokenization, after empirically compared against
w2v-BERT [44], we employ a Wav2Vec2-Conformer model, which follows the same architecture
as Wav2Vec2 [47] but employs the Conformer blocks [48] in place of the Transformer blocks. The
remainder of this section presents our newly proposed DPD model and the audio VAE-GAN used for
DPD model, while other modules overlapped with MusicLM are described in Appendix B regarding
their training and implementation details.

4.1 Audio VAE-GANs for Latent Representation Learning

To avoid learning arbitrarily high-variance latent representations, Rombach et al. [2] examined a KL-
regularized image autoencoder for latent diffusion models (LDMs) and demonstrated extraordinary
stability in generating high-quality image [49], igniting a series of follow-up works [50]. Such an
autoencoder imposes a KL penalty on the encoder outputs in a way similar to VAEs [51, 52], but,
different from the classical VAEs, it is adversarially trained as in generative adversarial networks
(GANs) [53]. In this paper, this class of autoencoders is referred to as the VAE-GAN. Although
VAE-GANs are promisingly applied in image generation, there are limited comparable attempts in
audio generation. In this work, we propose to use a similarly trained VAE-GAN for raw audio.

Specifically, the audio VAE-GAN is trained to reconstruct 24kHz audio with a striding factor of 96,
resulting in a 250Hz latent sequence. The architecture of the decoder is the same as that in HiFi-GAN
[54]. For the encoder, we basically replace the up-sampling modules in the decoder with convolution-
based down-sampling modules while other modules stay the same. For adversarial training, we use
the multi-period discriminators in [54] and the multi-resolution spectrogram discriminators in [55].
The implementation and training details are further discussed in Appendix B.

4.2 Dual-Path Diffusion: Angle-Parameterized Continuous-Time Latent Diffusion Models

The proposed dual-path diffusion (DPD) model is a variant of diffusion probabilistic models (DPMs)
[1, 15, 56] in continuous-time [16, 57–59]. Instead of directly operating on raw data space x ⇠

pdata(x), with reference to LDMs [2], DPD operates on a low-dimensional latent space z0 = E�(x),
such that the audio can be approximately reconstructed from the latent vectors: x ⇡ D�(z0), where
E� and D� are the encoder and the decoder in VAE-GAN, respectively. Diffusing the latent space
could significantly relieve the computational burden of DPMs [2]. Also, sharing a similar observation
with [2], we find that audio VAE-GAN performed more stabler than other VQ-based autoencoders
[45, 60] when working with the outputs from diffusion models.

Formally speaking, DPD is a Gaussian diffusion process zt that is fully specified by two strictly
positive scalar-valued, continuously differentiable functions ↵t,�t [16]: q(zt|z0) = N (zt;↵tz0,�2

t I)
for any t 2 [0, 1]. In the light of [58], we define ↵t := cos(⇡t/2) and �t := sin(⇡t/2) to benefit from
some nice trigonometric properties, i.e., �t =

p
1� ↵2

t (a.k.a. variance-preserving [16]). With this
definition, the forward diffusion process of zt can be re-parameterized in terms of angle � 2 [0,⇡/2]:

z� = cos(�)z0 + sin(�)✏, ✏ ⇠ N (0, I), (2)
which implies z� gets noisier as the angle � increases from 0 to ⇡/2.

To create a generative process, a ✓-parameterized variational model p✓(z��!|z�) is trained to reverse
the diffusion process by enabling taking any step ! 2 (0, �] backward in angle. By discretizing ⇡/2
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Figure 2: The proposed dual-path diffusion (DPD) model

into T finite segments, we can generate z0 from z⇡/2 ⇠ N (0, I) in T sampling steps:

p✓(z0|z⇡/2) =

Z

z�1:T�1

TY

t=1

p✓(z�t�!t |z�t) dz�1:T�1 , �t =

(
⇡
2 �

PT
i=t+1 !i, 1  t < T ;

⇡
2 , t = T,

(3)

where !1, . . . ,!T , termed as the angle schedule, satisfy
PT

t=1 !t = ⇡/2. Regarding the choice of
angle schedule, Schneider et al. [23] proposed a uniform one, i.e., !t =

⇡
2T for all t. Yet, we observe

that noise scheduling in the previous works [61, 62] tend to take larger steps at the beginning of the
sampling followed smaller steps for refinement. With a similar perspective, we design another linear
angle schedule, written as

!t =
⇡

6T
+

2⇡t

3T (T + 1)
, (4)

which empirically gives more stable and higher-quality results. Appendix D presents the comparison
results of this linear angle schedule against the uniform schedule used in [23].

4.2.1 Diffusion Velocity Prediction

In DPD, we model the diffusion velocity at � [58], defined as v� := dz�
d� . It can be simplified as:

v� =
d cos(�)

d�
z0 +

d sin(�)

d�
✏ = cos(�)✏� sin(�)z0. (5)

When v� is given, we can easily remedy the original sample z0 from a noisy latent z� at any �, since
z0 = cos (�)z��sin(�)v� . This suggests v� a feasible target for neural network prediction v̂✓(z�; c),
where c generally denotes the set of conditions controlling the music generation. In MeLoDy, as
illustrated in Figure 1, the semantic tokens u1, . . . ,uTST , which are obtained from the SSL model
during training and generated by the LM at inference time, are used to condition the DPD model.
In our experiments, we find that the stability of generation can be significantly improved if we use
token-based discrete conditions to control the semantics of the music and let the diffusion model
learn the embedding vector for each token itself. As in [23, 58], this velocity prediction network ✓
can be effectively trained with a mean squared error (MSE) loss:

L := Ez0⇠pdata(z0),✏⇠N (0,I),�⇠Uniform[0,1]

h
kcos(�)✏� sin(�)z0 � v̂✓(cos(�)z0 + sin(�)✏; c)k22

i
,

(6)

which forms the basis of DPD’s training loss.

4.2.2 Multi-Chunk Velocity Prediction

With reference to [23], for long-context generation, we can incrementally appending new chunks
of random noise to infinitely continue audio generation. To achieve this, the velocity prediction
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network needs to be trained to handle the chunked input, where each chunk exhibits a different scale
of noisiness. In particular, we define the multi-chunk velocity target vtgt that comprises M chunks of
velocities. Given z0, z�, ✏ 2 R

L⇥D with L representing the length of latents and D representing the
latent dimensions, we have vtgt := v1 � · · ·� vM , where � is the concatenation operation and

vm := cos(�m)✏[Lm�1 : Lm, :]� sin(�m)z0[Lm�1 : Lm, :], Lm :=

�
mL

M

⌫
. (7)

Here, we use the NumPy slicing syntax (0 as the first index) to locate the m-th chunk, and we draw
�m ⇠ Uniform[0,⇡/2] for each chunk at each training step to determine the noise scale. The MSE
loss in Eq. (6) is then extended to

Lmulti := Ez0,✏,�1,...,�M

h
kvtgt � v̂✓(z̄�1 � · · ·� z̄�M ; c)k22

i
, (8)

z̄�m := cos(�m)z0[Lm�1 : Lm, :] + sin(�m)✏[Lm�1 : Lm, :]. (9)

Different from the original setting where we use a global noise scale for the network input [1, 61, 63],
in the case of multi-chunk prediction, we need to specifically inform the network what the noise
scales are for all M chunks. Therefore, we append an angle vector � to the set of conditions
c := {u1, . . . ,uTST , �} to record the angles drawn in all M chunks aligned with the L-length input:

� := [�1]
L1

r=1 � · · ·� [�M ]LM

r=1 2 R
L, (10)

where [a]Br=1 denotes the operation of repeating a scalar a for B times to make a B-length vector.

4.2.3 Dual-Path Modeling for Efficient and Effective Velocity Prediction

To predict the multi-chunk velocity with v̂✓, we propose a dual-path modeling mechanism, which
plays a prime role in DPD for efficient parallel processing along coarse and fine paths and effective
semantic conditioning. Figure 2 presents the computation procedures of v̂✓, which comprises several
critical modules that we present one by one below.

To begin with, we describe how the conditions {u1, . . . ,uTST , �} are processed in DPD:

Encoding Angle Vector First, we encode � 2 R
L, which records the frame-level noise scales of

latents. Instead of using the classical positional encoding [1], we use a spherical interpolation [64]
between two learnable vectors estart, eend 2 R

256 using broadcast multiplications, denoted by ⌦:

E� := MLP(1) (sin(�)⌦ estart + sin(�)⌦ eend) 2 R
L⇥Dhid , (11)

where, for all i, MLP(i)(x) := RMSNorm(W(i)
2 GELU(xW(i)

1 + b
(i)
1 ) + b

(i)
2 ) projects an arbitrary

input x 2 R
Din to R

Dhid using RMSNorm [65] and GELU activation [66] with learnable W
(i)
1 2

R
Din⇥Dhid , W(i)

2 2 R
Dhid⇥Dhid , b(i)

1 ,b(i)
2 2 R

Dhid , and Dhid is hidden dimension.

Encoding Semantic Tokens The remaining conditions are the discrete tokens representing semantic
information u1, . . . ,uTST . Following the typical approach for embedding natural languages [8], we
directly use a lookup table of vectors to map any token ut 2 {1, . . . , VST} into a real-valued vector
E(ut) 2 R

Dhid , where VST denotes the vocabulary size of the semantic tokens, i.e., the number
of clusters in k-means for Wav2Vec2-Conformer. By stacking the vectors along the time axis and
applying another MLP block, we obtain EST := MLP(2) ([E(u1), . . . , E(uTST)]) 2 R

TST⇥Dhid .

Conditional on the computed embeddings E� and EST, we next show how the network input, i.e., z�t
for the case of having same noise scale �t for all chunks and z̄�1 � · · ·� z̄�M for the case of having
different noise scales, is processed in DPD for velocity prediction. For the simplicity of notation, we
use z�t to denote the network input here and below. z�t is first linearly transformed and added up with
the angle embedding of the same shape: H := RMSNorm (z�tWin +E�) , where Win 2 R

D⇥Dhid

is learnable. Then, a crucial segmentation operation is applied for dual-path modeling.

Segmentation As illustrated in Figure 3, the segmentation module divides a 2-D input into S
half-overlapping segments each of length K, represented by a 3-D tensor H := [0,H1, . . . ,HS ,0] 2

R
S⇥K⇥Dhid , where Hs := H

h
(s�1)K

2 : (s�1)K
2 +K, :

i
, and H is zero-padded such that we have
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S =
⌃
2L
K

⌥
+ 1. By choosing a segment size K ⇡

p
L, the costs of sequence processing become

sub-linear (O(
p
L)) as opposed to (O(L)). This greatly reduces the difficulty of learning a very long

sequence and permits MeLoDy to use higher-frequency latents for better audio quality. In this work,
250Hz latent sequences was used. In comparison, MusicLM [5] was built upon 50Hz codec.

Dual-Path Blocks After the segmentation, we obtain a 3-D tensor input. As shown in Figure 2,
the tensor is subsequently passed to N dual-path blocks, where each block contains two processing
stages corresponding to coarse-path (i.e., inter-segment) and fine-path (i.e., intra-segment) processing,
respectively. Similar to the observations in [40, 41], we find it superior to use an attention-based
network for coarse-path processing and to use a bi-directional RNN for fine-path processing. The goal
of fine acoustic modeling is to better reconstruct the fine details from the roughly determined audio
structure [3]. At a finer scope, only the nearby elements matter and contain the most information
needed for refinement, as supported by the modeling perspectives in neural vocoding [33, 35].
Specifically, we employ the Roformer network [67] for coarse-path processing, where we use a
self-attention layer followed by a cross-attention layer to be conditional on EST with rotary positional
embeddings. On the other hand, we use a stack of 2-layer simple recurrent units (SRUs) [68] for
fine-path processing. A feature-wise linear modulation (FiLM) [69] layer is applied to the output of
SRUs to assist the denoising with the angle embedding E� and the pooled EST. The details of inner
mechanism in each dual-path block is presented in Appendix B.

4.2.4 Music Generation and Continuation

Suppose we have a well-trained multi-chunk velocity model v̂✓, we begin with a L-length latent
generation, where L is the length of latents we used in training. According to Appendix A, the DDIM
sampling algorithm [26] can be re-formulated by applying the trigonometric identities:

z�t�!t = cos(!t)z�t � sin(!t)v̂✓(z�t ; c), (12)
which, by running from t = T to t = 1 using the defined !t in Eq. (4), we can generate a
sample of z0 of length L. To continue generation, we append a new chunk composed of random
noises to the generated z0 and drop the first chunk in z0. Recall that the inputs to v̂✓ are the M
concatenated noisy latents of different noise scales. The continuation of generation is feasible since
the conditions (i.e., the semantic tokens and the angle vector) defined in DPD have an autoregressive
nature at inference time. On one hand, the semantic tokens are generated by the semantic LM in
an autoregressive manner, therefore we can continue the generation of semantic tokens for the new
chunk. On the other hand, since the multi-chunk model v̂✓ is trained to tackle chunks of different
noise scales with respect to the angle vector, we can simply ignore the generated audio (on the first
M � 1 chunks) by zeroing the respective values and setting ones for the newly appended chunk,
i.e., �new := [0]L�dL/Me

r=1 � [�t]
dL/Me
r=1 . Then, the newly appended noise chunk can be transformed to

meaningful music audio after dT/Me step of DDIM sampling. For more details of generation, we
present the corresponding algorithms in Appendix C. Besides music continuation, based on MuLan,
MeLoDy also supports music prompts to generate music of a similar style, as shown in Figure 1.
Examples of music continuation, and music prompting are shown on our demo page.
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Table 2: The speed and the quality of our proposed MeLoDy on a CPU (Intel Xeon Platinum 8260
CPU @ 2.40GHz) or a GPU (NVIDIA Tesla V100) using different numbers of sampling steps.

Steps (T ) Speed on CPU (") Speed on GPU (") FAD (#) MCC (")

(MusicCaps) - - - 0.43

5 1472Hz (0.06⇥) 181.1kHz (7.5⇥) 7.23 0.49
10 893Hz (0.04⇥) 104.8kHz (4.4⇥) 5.93 0.52
20 498Hz (0.02⇥) 56.9kHz (2.4⇥) 5.41 0.53

5 Experiments

5.1 Experimental Setup

Data Preparation As shown in Table 1, MeLoDy was trained on 257k hours of music data (6.4M
24kHz audios), which were filtered with [27] to focus on non-vocal music. Additionally, inspired by
the text augmentation in [6], we enriched the tag-based texts to generate music captions by asking
ChatGPT [70]. This music description pool is used for the training of our 195.3M MuLan, where we
randomly paired each audio with either the generated caption or its respective tags. In this way, we
robustly improve the model’s capability of handling free-form text.

Semantic LM For semantic modeling, we trained a 429.5M LLaMA [71] with 24 layers, 8 heads,
and 2048 hidden dimensions, which has a comparable number of parameters to that of the MusicLM
[5]. For conditioning, we set up the MuLan RVQ using 12 1024-sized codebooks, resulting in 12
prefixing tokens. The training targets were 10s semantic tokens, which are obtained from discretizing
the 25Hz embeddings from a 199.5M Wav2Vec2-Conformer with 1024-center k-means.

Dual-Path Diffusion For the DPD model, we set the hidden dimension to Dhid = 768, and block
number to N = 8, resulting in 296.6M parameters. For the input chunking strategy, we divide the
10s training inputs in a fixed length of L = 2500 into M = 4 parts. For segmentation, we used a
segment size of K = 64 (i.e., each segment is 256ms long), leading to S = 80 segments. In addition,
we applied the classifier-free guidance (CFG) [72] to DPD to improve the correspondence between
samples and conditions. During training, the cross-attention to semantic tokens is randomly replaced
by self-attention with a probability of 0.1. For sampling, the unconditional prediction vuncond and the
conditional prediction vcond are linearly combined: ⇢vcond + (1� ⇢)vuncond with a scale of ⇢ = 2.5.

Audio VAE-GAN For audio VAE-GAN, we used a hop size of 96, resulting in 250Hz latent
sequences for encoding 24kHz music audio. The latent dimension D = 16, thus we have a total
compression rate of 6⇥. The hidden channels used in the encoder were 256, whereas that used in the
decoder were 768. The audio VAE-GAN in total contains 100.1M parameters.

5.2 Performance Analysis

Objective Metrics We use the VGGish-based [73] Frećhet audio distance (FAD) [74] between the
generated audios and the reference audios from MusicCaps [5] as a rough measure of generation
fidelity.2 To measure text correlation, we use the MuLan cycle consistency (MCC) [5], which
calculates the cosine similarity between text and audio embeddings using a pre-trained MuLan.3

Inference Speed We first evaluate the sampling efficiency of our proposed MeLoDy. As DPD
permits using different numbers of sampling steps depending on our needs, we report its generation
speed in Table 2. Surprisingly, MeLoDy steadily achieved a higher MCC score than that of the
reference set, even taking only 5 sampling steps. This means that (i) the MuLan model determined
that our generated samples were more correlated to MusicCaps captions than reference audios, and
(ii) the proposed DPD is capable of consistently completing the MuLan cycle at significantly lower
costs than the nested LMs in [5].

2Note that MeLoDy was mainly trained with non-vocal music data, its sample distribution could not fit the
reference one as well as in [5, 6], since about 76% audios in MusicCaps contain either vocals or speech.

3Since our MuLan model was trained with a different dataset, our MCC results cannot be compared to [5, 6].
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Table 3: The comparison of MeLoDy with the SOTA text-to-music generation models. NFE is the
number of function evaluations [58] for generating T -second audio.5 Musicality, Quality, and Text
Corr. are the winning proportions in terms of musicality, quality, and text correlation, respectively.

Model NFE (#) Musicality (") Quality (") Text Corr. (")

MLM N2M MLM N2M MLM N2M

MusicLM [5] (25 + 200 + 400)T 0.541 - 0.465 - 0.548 -
Noise2Music [6] 1000 + 800 + 800 - 0.555 - 0.436 - 0.572
MeLoDy (20 steps) 25T + 20 0.459 0.445 0.535 0.564 0.452 0.428

Comparisons with SOTA models We evaluate the performance of MeLoDy by comparing it
to MusicLM [5] and Noise2Music [6], which both were trained large-scale music datasets and
demonstrated SOTA results for a wide range of text prompts. To conduct fair comparisons, we used
the same text prompts in their demos (70 samples from MusicLM; 41 samples from Noise2Music),4
and asked seven music producers to select the best out of a pair of samples or voting for a tie (both win)
in terms of musicality, audio quality, and text correlation. In total, we conducted 777 comparisons
and collected 1,554 ratings. We detail the evaluation protocol in Appendix F. Table 3 shows the
comparison results, where each category of ratings is separated into two columns, representing
the comparison against MusicLM (MLM) or Noise2Music (N2M), respectively. Finally, MeLoDy
consistently achieved comparable performances (all winning proportions fall into [0.4, 0.6]) in
musicality and text correlation to MusicLM and Noise2Music. Regarding audio quality, MeLoDy
outperformed MusicLM (p < 0.05) and Noise2Music (p < 0.01), where the p-values were calculated
using the Wilcoxon signed-rank test. We note that, to sample 10s and 30s music, MeLoDy only takes
4.32% and 0.41% NFEs of MusicLM, and 10.4% and 29.6% NFEs of Noise2Music, respectively.

Diversity Analysis Diffusion models are distinguished for its high diversity [25]. We conduct an
additional experiment to study the diversity and validity of MeLoDy’s generation given the same text
prompt of open description, e.g., feelings or scenarios. The sampled results were shown on our demo
page, in which we obtained samples with diverse combinations of instruments and textures.

Ablation Studies We also study the ablation on two aspects of the proposed method. In Appendix
D, we compared the uniform angle schedule in [23] and the linear one proposed in DPD using the
MCC metric and case-by-case qualitative analysis. It turns out that our proposed schedule tends to
induce fewer acoustic issues when taking a small number of sampling steps. In Appendix E, we
showed that the proposed dual-path architecture outperformed other architectures [23, 31] used for
LDMs in terms of the signal-to-noise ratio (SNR) improvements using a subset of the training data.

6 Discussion

Limitation We acknowledge the limitations of our proposed MeLoDy. To prevent from having
any disruption caused by unnaturally sound vocals, our training data was prepared to mostly contain
non-vocal music only, which may limit the range of effective prompts for MeLoDy. Besides, the
training corpus we used was unbalanced and slightly biased towards pop and classical music. Lastly,
as we trained the LM and DPD on 10s segments, the dynamics of a long generation may be limited.

Broader Impact We believe our work has a huge potential to grow into a music creation tool for
music producers, content creators, or even normal users to seamlessly express their creative pursuits
with a low entry barrier. MeLoDy also facilitates an interactive creation process, as in Midjourney
[24], to take human feedback into account. For a more precise tune of MeLoDy on a musical style,
the LoRA technique [75] can be potentially applied to MeLoDy, as in Stable Diffusion [49].

4All samples for evaluation are available at https://Efficient-MeLoDy.github.io/. Note that our samples were
not cherry-picked, whereas the samples we compared were cherry-picked [6], constituting very strong baselines.

5We use + to separate the counts for the iterative modules, i.e., LM or DPM. Suppose the cost of each module
is comparable, then the time steps taken by LM and the diffusion steps taken by DPM can be fairly compared.
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