
A Theoretical details

This section provides an additional mathematical background that might be useful for understanding
Steerable CNNs (Section A.1). Besides, we write down the proof of the cornerstone Lemma 1, which
allows the application of implicit kernels (Section A.2). A more comprehensive introduction to
representation theory and Steerable CNNs can be found in [51]. Finally, we highlight the difference
between our method and the one described in [7] in terms of prerequisites in Section A.3.

A.1 Additional details and definitions on group theory

Definition 4 (Group). A group is an algebraic structure that consists of a set G and a binary operator

� : G ⇥ G ! G called the group product (denoted by juxtaposition for brevity g � h = gh) that

satisfies the following axioms:

• 8g, h 2 G : gh 2 G;

• 9! e 2 G : eg = ge = g 8g 2 G;

• 8g 2 G 9! g�1 2 G : gg�1 = g�1g = e;

• (gh)k = g(hk) 8g, h, k 2 G.

Example 1 (The Euclidean group E(3)). The 3D Euclidean group E(3) comprises three-dimensional

translations, rotations, and reflections. These transformations are defined by a translation vector

x 2 R3
and an orthogonal transformation matrix R 2 O(3). The group product and inverse are

defined as follows:

• g · g0 := (Rx0 + x,RR0) ; • g�1 := (R�1x,R�1) ,

where g = (x,R) and g0 = (x0, R0) are elements of E(3). These definitions satisfy the four group

axioms, establishing E(3) as a group. The action of an element g 2 E(3) on a position vector y is

given by:

g · y := Ry + x,

where g = (x,R) is an element of E(3) and y 2 R3
.

Definition 5 (Semi-direct product). Let N and H be two groups, each with their own group product,

which we denote with the same symbol · , and let H act on N by the action �. Then a (outer) semi-

direct product G = N oH , called the semi-direct product of H acting on N , is a group whose set

of elements is the Cartesian product N ⇥H , and which has group product and inverse:

(n, h) · (n̂, ĥ) = (n · (h� n̂), h · ĥ)

(n, h)�1 = (h�1 � n�1, h�1)

for all n, n̂ 2 N and h, ĥ 2 H .

A.2 Proof of the Lemma 1

Lemma. If a kernel k is parameterized by a G-equivariant MLP � with input representation ⇢st
and output representation ⇢⌦ := ⇢in ⌦ ⇢out , i.e. vec(k)(x) := �(x), then the kernel satisfies the

equivariance constraint in Equation 2 for a compact group G.

Proof. By construction, the equivariant MLP satisfies

�(⇢st(g)x) = (⇢in(g)⌦ ⇢out(g))�(x) 8g 2 G, x 2 Rn (6)

We further use the substitution and � 7! vec(k(·)) and find:

vec(k(g.x)) = (⇢in(g)⌦ ⇢out(g))vec(k(x)) (7)

Now, we make use of the following identity describing the vectorization of a product of multiple
matrices, which is the property of the Kronecker product:

vec(ABC) = (CT ⌦A) vec(B) (8)

14

Hence, identity 8 allows us to re-write the previous equation as follows:

k(g.x) = ⇢out(g)k(x)⇢in(g)
T (9)

Since we assume G to be compact, its representations can always be transformed to an orthogonal
form for which ⇢(g)T = ⇢(g)�1 via a change of basis. Hence, we find the equivariance constraint
defined in equation 2.

A.3 Additional details on the comparison with [7]

To summarize the difference between our method and [7], we provide Table A1. There, we highlight
the key ingredients required for the implementation of Steerable kernels for a group G in both methods
and estimate the "hardness" of obtaining each ingredient. As can be seen, the method described in
[7] required a G-steerable basis for L2(Rn), while implicit kernels do not. Instead, one only has
to provide G-equivariant non-linearities, which we assume are available since those are the same
non-linearities that will be used in the main model.

Table A1: Key ingredients required to build G-steerable kernels with baseline [7] (centre left) vs
implicit kernels (centre right). The left column highlights the general prerequisites of Steerable
CNNs, and the right column indicates the relative complexity of each ingredient.

Requirement Hardness
Design of Steerable CNN architecture †

irreps Ĝ of G assumed
action of G on Rn assumed
G-equivariant non-linearities assumed

Solve constraint with [7]
CG coefficients for G numerical
intertwiners EG(V) for 2 Ĝ numerical or analytical
irreps-decomposition of ⇢in and ⇢out numerical
G-steerable basis for L2(Rn) handcrafted ad-hoc for each G

Implicit Kernel (Ours)
CG coefficients for G numerical
intertwiners EG(V) for 2 Ĝ numerical or analytical
irreps-decomposition of ⇢in and ⇢out numerical
G-equivariant non-linearities available from †

B Experimental details

The section aims to provide additional details on model implementation for each particular experiment
in Section 5. First, we describe how we preprocess the input of implicit kernels (relative position
xi � xj , node features zi, zj , and edge features zij), which holds for every model (Section B.1).
Then, we report the architectural details for models used in every experiment (Section B.2).

B.1 Preprocessing kernel’s input

An implicit kernel receives as input the relative position xi � xj , node features zi and zj , and edge
features zij . The first argument is a set of 3-dimensional points transforming according to the standard
representation ⇢st. We first compute its homogeneous polynomial representation in R3 up to order
L and then batch-normalize it separately for each irrep before passing it to the implicit kernel. The
harmonic polynomial Yl(x) of order l evaluated on a point x 2 R3 is a 2l + 1 dimensional vector
transforming according to the Wigner-D matrix of frequency l (and parity l mod 2, when interpreted
as an irrep of O(3)). The vector Yl(x) is computed by projecting x⌦l 2 R3l on its only 2l + 1
dimensional subspace transforming under the frequency l Wigner-D matrix.13 We keep L = 3 as

13If Dl is the frequency l Wigner-D matrix, x transforms under Dl, which is isomorphic to the standard
representation of SO(3). Then, x⌦l transforms under D⌦l

1 , i.e. the tensor product of l copies of D1. The tensor

15

Table A2: Mean square error in the N-body system experiment vs stiffness of the strings from particles
to the XY -plane. Stiffness practically indicates the degree of breaking the SO(3) symmetry.

Stiffness 0 1 5 10 25 50 100 200 1000
MPNN 0.0022 0.0031 0.0068 0.0087 0.0030 0.0162 0.0560 0.0978 0.1065

O(3)-SEGNN 0.0009 0.0092 0.0117 0.0183 0.0291 0.0151 0.0229 0.0938 0.1313
SO(2)-CNN-IK 0.0010 0.0010 0.0009 0.0008 0.0008 0.0008 0.0014 0.0043 0.0162

we found the choice to be favourable for overall performance on validation data for ModelNet-40
and QM9 experiments. In the N-body experiment, L = 1 for a fair comparison with the baseline.
The remaining arguments form a vector with a pre-defined representation, which we concatenate to
the harmonic representation. We extensively compared different preprocessing techniques, and the
batch normalization of polynomial representation improved the performance of implicit kernels the
most. We attribute it to higher numerical stability as we discovered that the standard deviation of
MLP’s output is the lowest in the case. The output of the implicit representation is a vector which we
multiply with a Gaussian radial shell �(x) = exp(�0.5 · ||x||22/�2) where � is a learnable parameter.
This is coherent with the kernel basis typically used in literature [53] - spherical harmonics modulated
by a Gaussian radial shell.

B.2 Model implementation

N-body We used the reported configuration of the SEGNN model according to the official repository
[5], which has around 104 parameters. We only modified the input of the model such that it takes
the equilibrium length of the attached XY spring instead of the product of charges as in the original
formulation, which was a trivial representation as well. As a result, the input representation consisted
of 2 standard representations (position and velocity) and a trivial representation (spring’s equilibrium
length). The training was performed precisely according to the official configuration. For the non-
equivariant baseline, we substituted every equivariant MLP in SEGNN with its non-equivariant
counterpart and adjusted the number of parameters to match the one of the original.

To form a dataset, 3000 trajectories were generated with random initial velocities and equilibrium
lengths of XY-plane strings for training and 128 for validation and testing. G-equivariant MLPs
had 3 layers with 16 hidden fields. We used an embedding linear layer followed by 4 steerable
convolutions and a G-equivariant MLP with 2 hidden layers applied to each node separately. The
hidden representation was kept the same across every part of the model and had 16 steerable vector
fields transforming under the spherical quotient representation band-limited to maximum frequency
1. The total number of parameters was approximately equal to the one of the baseline. The model
returned a coordinate vector transforming under the standard representation for each particle as output.
We trained each model using a batch size of 128 for 200 epochs until reaching convergence. As in the
case of SEGNN, we minimized the MSE loss. We used AdamW optimizer with an initial learning
rate of 10�2. The learning rate was reduced by 0.5 every 25 epochs. The training time, on average,
was 5 min.

ModelNet-40 In the generalizability experiments described in Section 5.3, we maintained the
configuration of the G-equivariant MLP as follows: two linear layers with 8 hidden fields and
spherical quotient ELU with a maximum frequency of 2 in between. Each model consisted of an
embedding linear layer, 6 steerable convolutions followed by spherical quotient ELU and batch
normalization, and an MLP. The initial layer took the normals of each point in the point cloud
with the standard representation as input. We utilized steerable vector spaces up to order 2 in each
convolutional layer. To ensure comparability, we only varied the number of channels in each layer,
aiming for a similar overall number of parameters among the models. The number of channels
for each layer and the total number of parameters for each model are provided in Table A3. The
last layer generated a 128-dimensional vector comprising scalar features for each node. Global
max pooling was applied to obtain a 128-dimensional embedding of the point cloud. We further

product of two Wigner-D matrices is well known to decompose as Dl ⌦ Dj
⇠=

Ll+j
i=|l�j| Di. By applying

this rule recursively, one can show that D⌦l
1 contains precisely one copy of Dl. We define Yl(x) as the linear

projection of x⌦l to this subspace. Note also that, since this is a linear projection, the definition of Yl satisfies
the defining property of homogeneous polynomials Yl(�x) = �

l
Yl(x).

16

employed a 2-layer MLP (128 ELU���! 128 ELU���! 40) to calculate the class probability. In each
convolutional layer, the point cloud was downsampled, resulting in the following sequence of input
points: 1024 ! 256 ! 64 ! 64 ! 64 ! 16 ! 16.

Table A3: Number of channels in each convolutional layer of a
steerable CNN (see section 5.3).

G kernel channels #par, ·103

M
Implicit
Standard

20 20 20 20 20 128
20 20 20 20 20 128

122
144

Inv
Implicit
Standard

20 20 20 20 20 128
20 20 20 20 20 128

122
144

SO(2)o Inv
Implicit
Standard

11 11 12 12 12 128
20 25 25 30 30 128

588
557

SO(2)
Implicit
Standard

15 15 20 30 30 128
30 30 40 40 40 128

565
561

SO(2)o F
Implicit
Standard

12 12 12 12 12 128
20 25 25 30 30 128

580
557

SO(2)oM
Implicit
Standard

15 20 20 20 20 128
30 40 40 40 40 128

592
592

SO(3)
Implicit
Standard

10 10 10 10 20 128
30 30 30 30 30 128

160
154

O(3)
Implicit
Standard

10 10 10 10 20 128
30 30 30 30 30 128

140
128

For the experiment results pre-
sented in Table 1, we scaled up
the SO(2)-equivariant model by
increasing the number of layers
in implicit kernels to 3. We
also used 6 convolutional layers
with 20 channels each and em-
ployed the following downsam-
pling: 1024 ! 256 ! 128 !
128 ! 128 ! 64 ! 64 ! 64.
Additionally, skip connections
were added between the layers,
maintaining the same number of
input points.

We trained each model using
batch size 32 for 200 epochs,
which we found to be sufficient
for convergence. We minimized
the cross entropy loss with label
smoothing [48]. The position of
each point in a point cloud is normalized to the interval [�1, 1]3 during the preprocessing. We used
AdamW optimizer [30] with an initial learning rate 10�3. We also decayed the learning rate by 0.5
after every 25 epochs. The training time on average was 3h on an NVIDIA Tesla V100 GPU and
varied across different G. For the experiment reported in Table 1, the training time was around 30
hours on the same single GPU.

QM9 During the preprocessing, we normalized the target variable by subtracting the mean and
dividing it by the standard deviation computed on the training dataset. Each model has the following
structure: embedding layer ! steerable convolutional layers ! global mean pooling ! 2-layer
MLP. The embedding layer consists of 3 parts: linear layer ! learnable tensor product ! spherical
quotient ELU. First, it takes one-hot encoding of an atom type and applies a linear transformation.
The learnable tensor product computes the tensor product of each field with itself to generate an
intermediate feature map. Then, a learnable linear projection is applied to the feature map, which
yields a map from trivial representations to spherical representations up to order L = 2. In the next
step, a sequence of convolutional layers with skip-connection and quotient ELU non-linearities is
applied. We use steerable feature vectors with a maximum order of 2 in each convolutional layer.
The final classification MLP is defined as follows: 128 ELU���! 128 ELU���! 1.

For the flexibility experiment, we employ steerable CNNs with 11 convolutional layers with residual
connections and 24 channels. For the final performance indicated in Table 2, we scale the model up
and increase its overall width and length. Implicit kernels are parameterized with O(3)-equivariant
MLP with 3 linear layers with 16 fields and spherical quotient ELU in between. Concerning the
number of parameters, the model with standard steerable kernels had 140k parameters, 1-layer G-
MLP - 356k parameters, 2-layer G-MLP - 1.1M parameters, 3-layer G-MLP - 1.2M parameters.

We optimized the number of layers and channels for the "HOMO regression task and the number of
training epochs for the G regression task. We trained each model using batch size 128 for either 125
epochs (the flexibility experiment) or 250 epochs (the final experiment). Each model is optimized
with AdamW optimizer with an initial learning rate of 5 · 10�4. We use learning rate decay by 0.5
every 25 epochs. It takes around 20 minutes per epoch on an NVIDIA Tesla V100 GPU.

B.3 Depth-width trade-off.

Romero et al.[39] indicated that implicit representation of convolutional kernels allows one to build
a shallower model compared to standard CNNs. We, however, did not obtain a similar pattern.

17

Figure 5: Learning curve for different steerable kernels.

Even though the width of standard steerable convolutional kernels must be pre-specified, keeping it
sufficiently large yields the same scaling pattern as for implicit ones. We note that implicit kernels
can adapt their width and thus the field of view, which is not the case for standard steerable kernels.
We hypothesize that the result might change on different datasets where long-range dependencies
play a more important role, e.g. in sequential data, as shown in [39].

B.4 Complexity and training time

Overall, implicit kernels offer a flexible alternative to standard steerable kernels, potentially at an
increased computational cost compared to optimized implementations of handcrafted steerable bases.
However, the additional cost depends only on the MLP’s complexity and can be controlled during the
design. We demonstrate the effect of the MLP’s depth on performance and training time in Fig. 5.
In practice, we find that two layers provide the best trade-off, but increased complexity might be
beneficial when including additional attributes (Fig. 5, right). We also demonstrate that training
and inference time are approximately equal for standard steerable kernels [53] and implicit kernels
parameterized by a single layer. Finally, we only experienced training challenges (e.g. instabilities)
when using MLPs with #layers > 3. To overcome these issues, we used batch normalization of
spherical harmonics, i.e. the input of MLPs, which proved to be effective.

Importantly, implicit kernels don’t have substantially more hyperparameters compared to the method
suggested in [7]. One only has to tune the parameters of a G-MLP, which are arguably easier to
interpret than the parameters of handcrafted bases that are typically group-specific.

18

	Introduction
	Background: Steerable Convolutions
	Groups, Representations and Equivariance
	Steerable CNNs

	Implicit neural kernels
	Kernel vectorization and equivariance
	Expanding the input
	Implementing a G-equivariant MLP
	G-steerable point convolutions
	Extension to G-steerable CNNs
	Comparison with the analytical solution

	Related works
	Experiments
	Implementation
	The relevance of smaller G<O(n): N-body simulation
	Generalizability of implicit kernels: ModelNet-40
	Flexibility of implicit kernels: QM9

	Conclusion
	Theoretical details
	Additional details and definitions on group theory
	Proof of the Lemma 1
	Additional details on the comparison with Cesa2022APT

	Experimental details
	Preprocessing kernel's input
	Model implementation
	Depth-width trade-off.
	Complexity and training time

