
Dynamic Non-monotone Submodular Maximization

Kiarash Banihashem∗†

kiarash@umd.edu
University of Maryland

Leyla Biabani∗
‡

l.biabani@tue.nl
TU Eindhoven

Samira Goudarzi∗
†

samirag@umd.edu
University of Maryland

MohammadTaghi Hajiaghayi∗
†

hajiagha@cs.umd.edu
University of Maryland

Peyman Jabbarzade∗
†

peymanj@umd.edu
University of Maryland

Morteza Monemizadeh∗‡

m.monemizadeh@tue.nl
TU Eindhoven

Abstract

Maximizing submodular functions has been increasingly used in many applications
of machine learning, such as data summarization, recommendation systems, and
feature selection. Moreover, there has been a growing interest in both submodular
maximization and dynamic algorithms. In 2020, Monemizadeh [46] and Lattanzi,
Mitrovic, Norouzi-Fard, Tarnawski, and Zadimoghaddam [40] initiated developing
dynamic algorithms for the monotone submodular maximization problem under the
cardinality constraint k. In 2022, Chen and Peng [15] studied the complexity of this
problem and raised an important open question: "Can we extend [fully dynamic]
results (algorithm or hardness) to non-monotone submodular maximization?". We
affirmatively answer their question by demonstrating a reduction from maximizing
a non-monotone submodular function under the cardinality constraint k to maxi-
mizing a monotone submodular function under the same constraint. Through this
reduction, we obtain the first dynamic algorithms solving the non-monotone sub-
modular maximization problem under the cardinality constraint k. We’ve derived
two algorithms, both maintaining an (8 + ϵ)-approximate of the solution. The first
algorithm requires O(ϵ−3k3 log3(n) log(k)) oracle queries per update, while the
second one requires O(ϵ−1k2 log3(k)). Furthermore, we showcase the benefits of
our dynamic algorithm for video summarization and max-cut problems on several
real-world data sets.

1 Introduction

Submodular functions are powerful tools for solving real-world problems as they provide a theoretical
framework for modeling the famous “diminishing returns” [30] phenomenon arising in a variety
of practical settings. Many theoretical problems such as those involving graph cuts, entropy-based
clustering, coverage functions, and mutual information can be cast in the submodular maximization
framework. As a result, submodular functions have been increasingly used in many applications of
machine learning such as data summarization [52, 51, 50], feature selection [17, 19, 18, 38], and
recommendation systems [24]. These applications include both the monotone and non-monotone
versions of the maximization of submodular functions.

Applications of non-monotone submodular maximization. The general problem of non-
monotone submodular maximization has been studied extensively in [27, 12, 11, 43, 5, 47]. This

∗equal contribution
†Department of Computer Science, University of Maryland, College Park, MD, USA.
‡Department of Mathematics and Computer Science, Eindhoven University of Technology, the Netherlands.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

problem has numerous applications in video summarization, movie recommendation [43], and rev-
enue maximization in viral marketing [35]4. An important application of this problem appears in
maximizing the difference between a monotone submodular function and a linear function that
penalizes the addition of more elements to the set (e.g., the coverage and diversity trade-off). An
illustrative example of this application is the maximum facility location in which we want to open
a subset of facilities and maximize the total profit from served clients plus the cost of facilities we
did not open [21]. Another important application occurs when expressing learning problems such as
feature selection using weakly submodular functions [17, 38, 25, 49].

Our contribution. In this paper, we consider the non-monotone submodular maximization problem
under cardinality constraint k in the fully dynamic setting. In this model, we have a universal ground
set V . At any time t, ground set Vt ⊆ V is the set of elements that are inserted but not deleted after
their last insertion till time t. More formally, we assume that there is a sequence of “updates” such
that each update either inserts an element to Vt−1 or deletes an element from Vt−1 to form Vt.

We assume that there is a (non-monotone) submodular function f that is defined over the universal
ground set V . Our goal is to maintain, at each point in time, a set of size at most k whose submodular
value is maximum among any subset of Vt of size at most k.

Since calculating such a set is known to be NP-hard [27] even in the offline setting (where you get all
the items at the same time), we focus on providing algorithms with provable approximation guarantees,
while maintaining fast update time. This is challenging as elements may be inserted or deleted,
possibly in an adversarial order. While several dynamic algorithms exist for monotone submodular
maximization, non-monotone submodular maximization is a considerably more challenging problem
as adding elements to a set may decrease its value.

In STOC 2022, Chen and Peng [15] raised the following open question:

Open problem: “Can we extend [fully dynamic] results (algorithm or hardness) to non-monotone
submodular maximization?”

In this paper, we answer their question affirmatively by providing the first dynamic algorithms for
non-monotone submodular maximization.

To emphasize the significance of our result, it should be considered that although monotone submod-
ular maximization under cardinality constraint has a tight e

e−1 approximation algorithm in the offline
mode and nearly tight (2 + e) approximation algorithms for both streaming and dynamic settings,
there is a hardness result for the non-monotone version stating that it is impossible to obtain a 2.04
(i.e., 0.491) approximation algorithm for this problem even in the offline setting[31], and to the best
of our knowledge, the current state of the art algorithms for this problem have 2.6 and 3.6 (i.e., 0.385
and 0.2779) approximation guarantees for offline [10] and streaming settings [2], respectively.

We obtain our result, by proposing a general reduction from the problem of dynamically maintaining
a non-monotone submodular function under cardinality constraint k to developing a dynamic thresh-
olding algorithm for maximizing monotone submodular functions under the same constraint. We first
define τ -thresholding dynamic algorithms that we use in our reduction.
Definition 1.1 (τ -Thresholding Dynamic Algorithm). Let τ > 0 be a parameter. We say a dynamic
algorithm is τ -thresholding if at any time t of sequence Ξ, it reports a set St ⊆ Vt of size at most k
such that

• Property 1: either a) St has k elements and f(St) ≥ kτ , or b) St has less than k elements
and for any v ∈ Vt \ St, the marginal gain ∆(v|St) < τ .

• Property 2: The number of elements changed in any update, i.e, |St+1\St|+ |St\St+1|, is
not more than the number of queries made by the algorithm during the update.

In the above definition, the first property reflects the main intuition of threshold-based algorithms,
while the last property is a technical condition required in our analysis. It’s worth noting that the
thresholding technique has been used widely for optimizing submodular functions [46, 41, 26, 40, 16].
We next state our main result, which is a general reduction.

4The problem of selecting a subset of people in a social network to maximize their influence in a viral
marketing campaign can be modeled as a constrained submodular maximization problem. When we introduce a
cost, then the influence minus the cost is modeled as non-monotone submodular maximization problems [9, 8, 34].

2

Theorem 1.2 (Reduction Metatheorem). Suppose that f : 2V → R≥0 is a (possibly non-monotone)
submodular function defined on subsets of a ground set V and let k ∈ N be a parameter.

Assume that for any given value of τ , there exists a τ -thresholding dynamic algorithm with an
expected (amortized) O(g(n, k)) oracle queries per update. Then, there exist the following dynamic
algorithms:

• A dynamic algorithm with an approximation guarantee of (8 + ε) using an expected (amor-
tized) O(k +min(k, g(n, k)) · g(n, k)·ε−1 log(k)) oracle queries per update.

• A dynamic algorithm maintaining a (10 + ε)-approximate solution of the optimal value of
f using an expected (amortized) O(min(k, g(n, k)) · g(n, k)·ε−1 log(k)) oracle calls per
update.

In [46], Monemizadeh developed a dynamic algorithm for monotone submodular maximization under
cardinality constraint k, which requires an amortized O(ε−2k2 log3(n)) number of oracle queries per
update. Interestingly, in the appendix, we show that this algorithm is indeed τ -thresholding (for any
given τ). Now, if we use this τ -thresholding dynamic algorithm inside our reduction Metatheorem
1.2, we obtain a dynamic algorithm that maintains a (8 + ε)-approximate solution using an expected
amortized O(ε−3k3 log3(n) log(k)) oracle queries per update.

The recent paper [6] of Banihashem, Biabani, Goudarzi, Hajiaghayi, Jabbarzade, and Monemizadeh
develops a new dynamic algorithm for monotone submodular maximization under cardinality con-
straint k, which uses an expected O(ε−1k log2(k)) number of oracle queries per update. A similar
proof shows that this new algorithm is τ -thresholding as well. We have provided its pseudocode and
a detailed explanation on why this algorithm is indeed τ -thresholding in the appendix. By exploiting
this algorithm in our Reduction Metatheorem 1.2, we can reduce the number of oracle queries
mentioned to an expected number of O(ε−2k2 log3(k)) per update.

The second result in Theorem 1.2 is also of interest as it can be used to devise a dynamic algorithm for
non-monotone submodular maximization with polylogarithmic query complexity if one can provide
a τ -thresholding dynamic algorithm for maximizing monotone submodular functions (under the
cardinality constraint k) with polylogarithmic query complexity.

1.1 Preliminaries

Submodular maximization. Let V be a ground set of elements. We say a function f : 2V → R≥0

is a submodular function if for any A,B ⊆ V , f(A)+ f(B) ≥ f(A∪B)+ f(A∩B). Equivalently,
f is a submodular function if for any subsets A ⊆ B ⊆ V and for any element e ∈ V \B, it holds that
f(A∪{e})−f(A) ≥ f(B∪{e})−f(B) . We define ∆(e|A) := f(A∪{e})−f(A) the marginal
gain of adding the element e to set A. Similarly, we define ∆(B|A) := f(A ∪B)− f(A) for any
sets A,B ⊆ V . Function f is monotone if f(A) ≤ f(B) holds for any A ⊆ B ⊆ V , and it is non-
monotone if it is not necessarily the case. In the submodular maximization problem under cardinality
constraint k, we seek to compute a set S∗ such that |S∗| ≤ k and f(S∗) = max|S|≤k f(S), where f
is a submodular function and k ∈ N is a given parameter.

Query access model. Similar to recent dynamic works [40, 15], we assume the access to a
submodular function f is given by an oracle. The oracle allows set queries such that for every
subset A ⊆ V , one can query the value f(A). In this query access model, the marginal gain
∆f (e|A)

.
= f(A ∪ {e})− f(A) for every subset A ⊆ V and an element e ∈ V \A, can be computed

using two set queries. To do so, we first query f(A ∪ {e}) and then f(A).

Dynamic model. Let Ξ be a sequence of inserts and deletes of an underlying universe V . We
assume that f : 2V → R≥0 is a (possibly non-monotone) submodular function defined on subsets
of the universe V . We define time t to be the tth update (i.e., insertion or deletion) of sequence Ξ.
We let Ξt be the sub-sequence of updates from the beginning of sequence Ξ till time t and denote by
Vt ⊆ V the set of elements that are inserted but not deleted from the beginning of the sequence Ξ till
any time t. That is, Vt is the current ground set of elements. We let OPTt = maxS⊆Vt:|S|≤k f(S).

Query complexity. The query complexity of a dynamic α-approximate algorithm is the number of
oracle queries that the algorithm must make to compute a solution St with respect to ground set Vt

3

whose submodular value is an α-approximation of OPTt. That is, |St| ≤ k and f(St) ≥ α ·OPTt.
Observe that the dynamic algorithm remembers every query it has made so far. Thus results of queries
made in previous times may help find St in current time t.

Oblivious adversarial model. The dynamic algorithms that we develop in this paper are in the
oblivious adversarial model as is common for analysis of randomized data structures such as universal
hashing [13]. The model allows the adversary, who is aware of the submodular function f and the
algorithm that is going to be used, to determine all the arrivals and departures of the elements in
the ground set V . However, the adversary is unaware of the random bits used in the algorithm and
so cannot choose updates adaptively in response to the randomly guided choices of the algorithm.
Equivalently, we can suppose that the adversary prepares the full input (insertions and deletions)
before the algorithm runs.

1.2 Related Work

Offline algorithms. The offline version of non-monotone submodular maximization was first
studied by Feige, Mirrokni, and Vondrák in [27]. They studied unconstrained non-monotone sub-
modular maximization and developed constant-factor approximation algorithms for this problem.
In the offline query access model, they showed that a subset S chosen uniformly at random has a
submodular value which is a 4-approximation of the optimal value for this problem. In addition, they
also described two local search algorithms. The first uses f as the objective function, and provides
3-approximation and the second uses a noisy version of f as the objective function and achieves an
improved approximation guarantee 2.5 for maximizing unconstrained non-monotone non-negative
submodular functions. Interestingly, they showed (2− ε)-approximation for symmetric submodular
functions would require an exponential number of queries for any fixed ε > 0.

Oveis Gharan and Vondrák [32] showed that an extension of the 2.5-approximation algorithm can
be seen as simulated annealing method which provides an improved approximation of roughly 2.4.
Later, Buchbinder, Feldman, Naor, and Schwartz [11] at FOCS’12, presented a randomized linear
time algorithm achieving a tight approximation guarantee of 2 that matches the known hardness
result of [27]. Bateni, Hajiaghayi, and Zadimoghaddam [9, 8] and Gupta, Roth, Schoenebeck, and
Talwar [34] independently studied non-monotone submodular maximization subject to cardinality
constraint k in the offline and secretary settings. In particular, Gupta et al. [34] obtained an offline
6.5-approximation for this problem.

All of the aforementioned approximation algorithms are offline, where the whole input is given in the
beginning, whereas the need for real-time analysis of rapidly changing data streams motivates the
study of this problem in settings such as the dynamic model that we study in this paper.

Streaming algorithms. The dynamic model that we study in this paper is closely related to the
streaming model [3, 36]. However, the difference between these two models is that in the streaming
model, we maintain a data structure using which we compute a solution at the end of the stream and
so, the time to extract the solution is not important as we do it once. However, in the dynamic model,
we need to maintain a solution after every update, thus, the update time of a dynamic algorithm
should be as fast as possible.

The known streaming algorithms [44, 28, 29] work in the insertion-only streaming model and they
do not support deletions as well as insertions. Indeed, there are streaming algorithms [37, 45] for the
monotone submodular maximization problem that support deletions, but the space and the update
time of these algorithms depend on the number of deletions which could be Ω(n), where n = |V | is
the size of ground set V .

For monotone submodular maximization, Badanidiyuru, Mirzasoleiman, Karbasi, and Krause [4]
proposed an insertion-only streaming algorithm with a (2+ε)-approximation guarantee under a cardi-
nality constraint k. Chekuri, Gupta, and Quanrud [14] presented (insertion-only) streaming algorithms
for maximizing monotone and non-monotone submodular functions subject to p-matchoid constraint5.
Later, Mirzasoleiman, Jegelka, and Krause [44] and Feldman, Karbasi, and Kazemi [28] devel-

5For non-monotone submodular maximization subject to cardinality constraint k, Chekuri, Gupta, and
Quanrud [14] claimed that they obtained 4.7-approximation algorithm. However, Alaluf, Ene, Feldman, Nguyen,
and Suh [1] found an error in the proof of this approximation guarantee.

4

oped streaming algorithms with better approximation guarantees for maximizing a non-monotone
function under a p-matchoid constraint. Currently, the best streaming algorithm for maximizing a
non-monotone submodular function subject to a cardinality constraint is due to Alaluf, Ene, Feldman,
Nguyen, and Suh [1] whose approximation guarantee is 3.6 + ε, improving the 5.8-approximation
guarantee that was proposed by Feldman et al. [28].

Dynamic algorithms. At NeurIPS 2020, Lattanzi, Mitrovic, Norouzi-Fard, Tarnawski, and Zadi-
moghaddam [40] and Monemizadeh [46] initiated the study of submodular maximization in the
dynamic model. They presented dynamic algorithms that maintain (2 + ε)-approximate solutions
for maximizing a monotone submodular function subject to cardinality constraint k. Later, at STOC
2022, Chen and Peng [15] studied the complexity of this problem and they proved that developing
a c-approximation dynamic algorithm for c < 2 is not possible unless we use a number of oracle
queries polynomial in the size of ground set V . In 2023, Banihashem, Biabani, Goudarzi, Hajiaghayi,
Jabbarzade, and Monemizadeh[7] developed an algorithm for monotone submodular maximization
problem under cardinality constraint k using a polylogarithmic amortized update time. Concurrent
works of Banihashem, Biabani, Goudarzi, Hajiaghayi, Jabbarzade, and Monemizadeh[6] and Duet-
ting, Fusco, Lattanzi, Norouzi-Fard, and Zadimoghaddam[22] developed the first dynamic algorithms
for monotone submodular maximization under a matroid constraint. Authors of [6] also improve the
algorithm of [46] for monotone submodular maximization subject to cardinality constraint k. There
are also studies on the dynamic model of influence maximization, which shares similarities with
submodular maximization [48].

In this paper, for the first time, we study the generalized version of their problem by presenting an
algorithm for maximizing the non-monotone submodular functions in the dynamic setting.

2 Dynamic algorithm

In this section, we explain the algorithm that we use in the reduction that we stated in Metatheorm 1.2.
The pseudocode of our algorithm is given in Algorithm 1, Algorithm 2, and Algorithm 3.

Such reductions were previously proposed in the offline model by [34], and later works extended this
idea to the streaming model [14, 44]. We develop a reduction in the dynamic model inspired by these
works, though in our proof, we require a tighter analysis to obtain the approximation guarantee in our
setting.

We consider an arbitrary time t of sequence Ξ where Vt is the set of elements inserted before time t,
but not deleted after their last insertion. Let OPT ∗

t = maxS⊆Vt:|S|≤k f(S). For simplicity, we drop
t from Vt and OPT ∗

t , when it is clear from the context.

In the following, we assume that the value of OPT is known. Although the exact value of OPT ∗ is
unknown, we can maintain parallel runs of our dynamic algorithm for different guesses of the optimal
value. By using (1 + ε′)i, where i ∈ Z as our guesses for the optimal value, one of our guesses
(1 + ε′)-approximates the value of OPT ∗. We show that the output of our algorithm satisfies the
approximation guarantee in the run whose OPT (1 + ε′)-approximates the value of OPT ∗. Later,
in the appendix, we show that it is enough to consider each element e only in runs i for which we
have ε′

k · (1 + ε′)i ≤ f(e) ≤ (1 + ε′)i. This method increases the query complexity of our dynamic
algorithm by only a factor of O(ε−1 log k).

Our approach for solving the non-monotone submodular maximization is to first run the thresholding
algorithm with input set V to find a set S1 of at most k elements. Since f is non-monotone, subsets
of S1 might have a higher submodular value than f(S1). Then, we use an α-approximation algorithm
(for 0 < α ≤ 1) to choose a set S′

1 ⊆ S1 with guarantee E[f(S′
1)] ≥ α · maxC⊆S1 f(C). Next,

we run the thresholding algorithm with the input set V \S1 and compute a set S2. At the end, we
return set S = argmaxC∈{S1,S′

1,S2} f(C). Intuitively, for an optimal solution S∗, if f(S1 ∩ S∗) is a
good approximation of OPT , then f(S′

1) is a good approximation of OPT . On the other hand, if
both f(S1) and f(S1 ∩ S∗) are small with respect to OPT , then we can ignore the elements of S1

and show that we can find a set S2 ⊆ V \ S1 of size at most k whose submodular value is a good
approximation of OPT . The following lemma proves that the submodular value of S is a reliable
approximation of the optimal solution. The formal proof of this lemma can be found in Section 2.

5

Lemma 2.1 (Approximation Guarantee). Assuming that OPT ∗ ∈ [OPT
1+ε′ , OPT], the expected

submodular value of set S is E[f(S)] ≥ (1−O(ε′))OPT∗

6+ 1
α

.

Next, we explain the steps of our reduction in detail.

Let us first fix the threshold τ = OPT
k(3+1/(2α)) . Then, we fix a τ -thresholding dynamic algorithm (for

example, [46] or [6]) and suppose we denote it by DYNAMICTHRESHOLDING. Before sequence Ξ
of updates starts, we create two independent instances I1 and I2 of DYNAMICTHRESHOLDING. The
first instance will maintain set S1 and the second instance will maintain set S2. For instance Ii where
i ∈ {1, 2}, we consider the following subroutines:

• INSERTIi
(v): This subroutine inserts an element v to instance Ii.

• DELETEIi
(v): Invoking this subroutine will delete the element v from instance Ii.

• EXTRACTIi
: This subroutine returns the maintained set (of size at most k) of Ii.

Extracting S1. After the update at time t, first, we would like to set Z = S−
1 ∪{v} or Z = S−

1 \{v},
if the update is the insertion of an element v or the deletion of an element v, respectively, where
S−
1 is the set S1 that instance I1 maintains just before this update. To find set S−

1 , we just need
to invoke subroutine EXTRACTI1

. If the update is an insertion, we insert it into instance I1 using
INSERTI1

(v, τ), and if the update is a deletion, we delete v from both I1 and I2 using DELETEI1
(v)

and DELETEI2
(v). We then invoke EXTRACTI1

once again to return set S1.

Extracting S′
1. Buchbinder et al. [11] developed a method to extract a subset S′

1 ⊆ S1 whose
submodular value is a good approximation of maxC⊆S1

f(C). In this algorithm, we start with two
solutions ∅ and S1. The algorithm considers the elements (in arbitrary order) one at a time. For
each element, it determines whether it should be added to the first solution or removed from the
second solution. Thus, after a single pass over set S1, both solutions completely coincide, which is
the solution that the algorithm outputs. They show that a (deterministic) greedy choice in each step
obtains 3-approximation of the best solution in S1. However, if we combine this greedy choice with
randomization, we can obtain a 2-approximate solution. Since we do a single pass over set S1, the
number of oracle queries is O(|S1|).
The second algorithm that we can use to extract S′

1 is a random sampling algorithm proposed by
Feige et al. [27], which choose every element in S1 with probability 1/2. They show that this random
sampling returns a set S′

1 whose approximation factor is 1/4 of maxC⊆S1 f(C), and its number of
oracle calls is O(1). We denote either of these two methods by SUBSETSELECTION.

Extracting S2. Next, we would like to update the set S2 that is maintained by instance I2. To
do this, for every element u ∈ Z\S1, we add it to I2 using INSERTI2(u, τ), and for every element
u ∈ S1\Z, we delete it from I2 using DELETEI2(u, τ). Finally, when I2 exactly includes all the
current elements other than the ones in S1, we call subroutine EXTRACTI2

to return set S2.

Corollary 2.2. We obtain the (8 + ε) approximation guaranty stated in the Metatheorem 1.2 by
using the local search method for our SUBSETSELECTION, and we get the (10 + ε) approximation
guaranty by utilizing the random sampling method for our SUBSETSELECTION subroutine.

Proof. These are immediate results of Lemma 2.1, and α being 1
2 and 1

4 in the local search method
and random sampling method, respectively.

Algorithm 1 Initialization(k,OPT)

1: τ ← OPT
k(3+1/(2α)) , where α is 1

2 or 1
4 based on the selection of algorithm for SUBSETSELECTION.

2: Instantiate two independent instances I1 and I2 of DYNAMICTHRESHOLDING for monotone
submodular maximization under cardinality constraint k using τ

6

Algorithm 2 UPDATE(v)

1: Z ← EXTRACTI1

2: if UPDATE(v) is an insertion then
3: Invoke INSERTI1(v), Z ← Z ∪ {v}
4: else
5: Invoke DELETEI1

(v), DELETEI2
(v), Z ← Z \ {v}

6: S1 ← EXTRACTI1

7: S′
1 ← SUBSETSELECTION(S1)

8: for u ∈ S1\Z do
9: DELETEI2

(u)

10: for u ∈ Z\S1 do
11: INSERTI2(u)

12: S2 ← EXTRACTI2

13: Return argmaxC∈{S1,S′
1,S2} f(C)

Algorithm 3 SUBSETSELECTION(S)

1: function UNIFORMSUBSET(S)
2: T ← ∅
3: for s ∈ S do
4: if Coin(12) then ▷ With probability 1

2
5: T ← T ∪ {s}
6: return T
7: function LOCALSEARCHSUBSET(S)
8: X0 ← ∅, Y0 ← S.
9: for i = 1 to |S| do

10: ai ← f(Xi−1 ∪ {si})− f(Xi−1), bi ← f(Yi−1 \ {si})− f(Yi−1)
11: a′i ← max(ai, 0), b′i ← max(bi, 0)
12: if a′i = b′i = 0 then a′i/(a

′
i + b′i) = 0

13: with probability a′i/(a
′
i + b′i) do:

14: Xi ← Xi−1 ∪ {si}, Yi ← Yi−1

15: else do: Xi ← Xi−1, Yi ← Yi−1 \ {si}
16: return X|S| (or equivalently Y|S|)

Analysis. In this section, we prove the correctness of our algorithms and analyze the number of
oracle queries of our algorithms, which finishes the proof of Theorems 1.2.

Consider an arbitrary time t. Let St be the reported set of DYNAMICTHRESHOLDING at time t.
Recall that Vt is the ground set at time t, and we drop the t for simplicity, so we use V and S to
denote Vt and St. We first present Lemma 2.3 whose proof is given in the appendix. Then we proceed
to prove Lemma 2.1 and Theorem 1.2

Lemma 2.3. Suppose that set S satisfies Property 1.b of Definition 1.1. It means that S has less than
k elements and for any v ∈ V \ S, the marginal gain ∆(v|S) < τ . Then, for any arbitrary subset
C ⊆ V , we have f(S) ≥ f(S ∪ C)− |C| · τ .

Proof of Lemma 2.1: Assume that at a fixed time t, OPT ∗ and S∗ are the optimal value and
an optimal solution for the submodular maximization of function f under cardinality constraint
k. This means that |S∗| ≤ k and f(S∗) = OPT ∗. Recall that τ = OPT

k(3+ 1
2α)

, where OPT is our

guess for the optimal value. Also, by assumption we have OPT ∗ ∈ [OPT
1+ϵ′ , OPT], or equivalently

OPT ∈ [OPT ∗, (1 + ϵ′)OPT ∗].

To prove the lemma, we claim that max(E[f(S1)],E[f(S′
1)],E[f(S2)]) ≥ (1−O(ε′))OPT∗

6+ 1
α

.

Suppose this claim is true. Using Jensen’s inequality [23], we have E[max(f(S1), f(S
′
1), f(S2))] ≥

max(E[f(S1)],E[f(S′
1)],E[f(S2)]) , which yields E[f(S)] ≥ (1−O(ε′))OPT∗

6+1/α .

7

To prove the claim, we consider two cases. The first case is when f(S1 ∩ S∗) ≥ τk
2α and the second

case is if f(S1 ∩ S∗) < τk
2α .

Suppose the first case is true. Then, the subset selection algorithm (either random sampling method
or local search) returns S′

1 for which E[f(S′
1)] ≥ α ·maxS⊆S1 f(S). Since S1 ∩ S∗ ⊆ S1, we have

For the latter case, we show that E[f(S1)] + E[f(S2)] ≥ (1 − O(ε′)) OPT∗

3+1/2α , inferring

max (E[f(S1)],E[f(S2)]) ≥ (1 − O(ε′))OPT∗

6+1/α . Indeed, since S1 and S2 are reported by an
τ -thresholding algorithm, if |S1| = k or |S2| = k, then max(E[f(S1)],E[f(S2)]) is at least
τk = OPT

3+1/2α by the first property of τ -thresholding algorithms.

Now suppose that |S1|, |S2| < k, which means that Property 1.b of Definition 1.1 holds for S1 and
S2. Therefore, we have f(S1) ≥ f(S1 ∪ S∗)− τ |S∗| and f(S2) ≥ f(S2 ∪ (S∗ \ S1))− τ |S∗ \ S1|
by Lemma 2.3. Besides, we have f(S1 ∩ S∗)− τk

2α < 0. Therefore,

f(S1) + f(S2) ≥ f(S1 ∪ S∗)− τ |S∗|+ f(S2 ∪ (S∗ \ S1))− τ |S∗ \ S1|+ f(S1 ∩ S∗)− τk

2α
.

Since |S∗ \ S1| ≤ |S∗| ≤ k we have

f(S1) + f(S2) ≥ f(S1 ∪ S∗) + f(S2 ∪ (S∗ \ S1)) + f(S1 ∩ S∗)− (2 + 1/(2α))τk .

Since S1 ∩ S2 = ∅ and f is submodular, we have f(S1 ∪ S∗) + f(S2 ∪ (S∗ \ S1)) ≥ f(S1 ∪
S2 ∪ S∗) + f(S∗ \ S1). Additionally, by the submodularity and non-negativity of f , we have
f(S1 ∩ S∗) ≥ f(S∗)− f(S∗ \ S1), because f(S∗ \ S1) + f(S1 ∩ S∗) ≥ f(S∗) + f(∅). By adding
the last two inequalities and using the non-negativity of f once again, we get f(S1 ∪ S∗) + f(S2 ∪
(S∗ \ S1)) + f(S1 ∩ S∗) ≥ f(S1 ∪ S2 ∪ S∗) + f(S∗) ≥ f(S∗) = OPT ∗. By putting everything
together we have,

f(S1) + f(S2) ≥ OPT ∗ − (2 + 1/(2α))τk = OPT ∗ − (
4α+ 1

2α
)(
OPT (2α)

6α+ 1
).

By using the assumption that OPT ≤ (1 + ϵ′)OPT ∗, we have,

f(S1)+f(S2) ≥ OPT ∗(1−((4α+ 1)(1 + ϵ′)

6α+ 1
)) ≥ OPT ∗(

2α− ϵ′(4α+ 1)

6α+ 1
) = (1−O(ε′))

OPT ∗

3 + 1/(2α)
.

□

Proof of Theorem 1.2:

As previously discussed, we’ve established in Lemma 2.1 and Corollary 2.2 that utilizing the local
search method for the SUBSETSELECTION subroutine results in an approximation ratio of (8 + ε),
whereas the random sampling method achieves an approximation ratio of (10 + ε). Thus, the only
remaining aspect to address in proving this theorem is proving the query complexity of our proposed
algorithm. In Lemma 2.4, we bound the number of queries made in each run of our algorithm per
update, proving the bounds given in Theorem 1.2 by considering the extra O(ε−1 log k)-factor caused
by our parallel runs. □

Lemma 2.4. Let the random variable Qt denote the number of oracle calls that our algorithm in
Theorem 1.2 makes at time t in each of the parallel runs. Depending on whether the expected or ex-
pected amortized number of oracle calls made by the thresholding algorithm DYNAMICTHRESHOLD
per each update is O(g(n, k)), if we choose the local search method as our SUBSETSELECTION
subroutine, we have

E[Qt] ∈ O(min(k · g(n, k), g(n, k)2)) +O(k) ,

or

E[

T∑
t=1

Qt] ∈ O(T ·min(k · g(n, k), g(n, k)2)) +O(k) ,

and if we choose the random sampling method as our SUBSETSELECTION subroutine, we have

E[Qt] ∈ O(min(k · g(n, k), g(n, k)2)) ,

8

or

E[

T∑
t=1

Qt] ∈ O(T ·min(k · g(n, k), g(n, k)2))

Proof. Consider the case where the expected number of oracle calls made by the thresholding
algorithm DYNAMICTHRESHOLD per each update is O(g(n, k)). Per each update, our algorithm
makes an update in instance I1 causing O(g(n, k)) oracle queries. Next, we make either O(k) or
0 oracle queries for the SUBSETSELECTION subroutine, depending on the used method. We also
make a series of updates in instance I2, each causing O(g(n, k)) oracle queries. The number of such
updates is bounded by the number of changes in the output of instance I1, which is bounded by both
k and O(g(n, k)) (according to the second property of Definition 1.1). These comprise all the oracle
queries made by our algorithm at time t. Therefore, the given bounds for this case hold. A detailed
proof for the remaining bounds is provided in the appendix.

3 Empirical results

In this section, we empirically study our (8+ε)-approximation dynamic algorithm. We implement our
codes in C++ and run them on a MacBook laptop with 8 GB RAM and M1 processor. We empirically
study the performance of our algorithm for video summarization and the Max-Cut problem.

Video summarization. Here, we use the Determinantal Point Process (DPP) which is introduced
by [42], and combine it with our algorithm to capture a video summarization. We run our experiments
on YouTube and Open Video Project (OVP) datasets from [20].

For each video, we use the linear method of [33] to extract a subset of frames and find a positive
semi-definite kernel L with size n×n where n is the number of extracted frames. Then, we try to find
a subset S of frames such that it maximizes det(LS)

det(I+L) where LS is the sub-matrix of L restricted to
indices corresponding to frames S. Since L is a positive semi-definite matrix, we have det(LS) ≥ 0.
Interestingly, [39] showed that log(det(LS)) is a non-monotone function. We use these properties
and set f(S) := log(det(LS) + 1) to make f a non-monotone non-negative submodular function.
Then we run our (8 + ε)-approximate dynamic algorithm to find the best S to maximize f(S) such
that |S| ≤ k for k ∈ [10].

Figure 1: Video summarization of Susan Boyle’s performance on Britain’s Got Talent show (video
106) from YouTube.

Figure 2: Video summarization for "Senses And Sensitivity, Introduct. to Lecture 1 presenter" (video
36) from OVP.

First, we insert all frames to observe the quality of our algorithm. Figure 1 and 2 are the selected
frames by our algorithm for Video 106 from YouTube and Video 36 from OVP, respectively, when we
limit the number of selected frames to 4. Then, we create a sequence Ξ of updates of frames of each
video. Similar to [40], we define the sequence as a sliding window model. That is, given a window of
size W for a parameter W ∈ N, a frame is inserted at a time t and will be alive for a window of size
W and then we delete that frame.

9

To evaluate the performance of our algorithm, we benchmark (See Figure 3) the total number of
query calls and the submodular value of set S of our algorithm and the streaming algorithm proposed
for non-monotone submodular maximization so-called SAMPLE-STREAMING proposed in [28]. This
algorithm works as follows: Upon arrival of an element u, with probability (1− q), for a parameter
0 < q < 1, we ignore u, otherwise (i.e., with probability q), we do the following. If the size of set S
that we maintain is less than k, i.e, |S| < k and ∆(u|S) > 0, we add u to S. However, if |S| = k, we
select an element v ∈ S for which ∆(v : S) is minimum possible, where ∆(u : S) equals to ∆(u|Su)
where Su are elements that arrived before u in sequence Ξ. If ∆(u|S) ≥ (1 + c)∆(v : S) for a
constant c, we replace v by u; otherwise, we do nothing. Now we convert this streaming algorithm
into a dynamic algorithm. To accomplish this, we restart SAMPLE-STREAMING after every deletion
that deletes an element of solution set S that is reported by SAMPLE-STREAMING’s outputs. That is,
if a deletion does not touch any element in set S, we do nothing; otherwise we restart the streaming
algorithm.

2 4 6 8 10
0

500

1,000

k

or
ac

le
ca

lls

SAMPLE-STREAMING

OUR DYNAMIC ALGORITHM

2 4 6 8 10
0

500

1,000

k

or
ac

le
ca

lls

SAMPLE-STREAMING

OUR DYNAMIC ALGORITHM

2 4 6 8 10
0

2

4

6

k

f

SAMPLE-STREAMING

OUR DYNAMIC ALGORITHM

2 4 6 8 10
0

2

4

6

8

10

k

f

SAMPLE-STREAMING

OUR DYNAMIC ALGORITHM

(a) (b) (c) (d)

Figure 3: We plot the total number of query calls and the average output of our dynamic algorithm
and SAMPLE-STREAMING on video 106 from YouTube and video 36 from OVP. In this figure, from
left to right, Sub-figures (a) and (b) are the total oracle calls for video 106 and 36, respectively.
Similarly, Sub-figures (c) and (d) are average submodular value for video 106 and 36, respectively.

We run our algorithm for ε = k/2 and compare the total oracle calls and average output of our
algorithm and SAMPLE-STREAMING in Figure 3. To prove the approximation guarantee of our
dynamic algorithm, we assumed ε ≤ 1. However, in practice, it is possible to increase ε up to a
certain level without affecting the output of the algorithm significantly. On the other hand, increasing
ε reduces the total oracle calls and makes the algorithm faster. As you can see in Figure 3 plots (b)
and (d), the submodular value of our algorithm is not worse than the SAMPLE-STREAMING algorithm
whose approximation factor is 3 + 2

√
2 ≈ 5.828 which is better than our approximation factor. Thus,

our algorithm has an outcome better than our expectation, while its total oracle calls are better than
SAMPLE-STREAMING algorithm (look at Figure 3 plots (a) and (c)).

We also empirically study the celebrated Max-Cut problem which is a non-monotone submodular
maximization function (See [27]). These experiments are given in the appendix.

4 Conclusion

In this paper, we studied non-monotone submodular maximization subject to cardinality constraint k in
the dynamic setting by providing a reduction from this problem to maximizing monotone submodular
functions under the cardinality constraint k with a certain kind of algorithms(τ -thresholding algo-
rithms). Moreover, we used our reduction to develop the first dynamic algorithms for this problem.
In particular, both our algorithms maintain a solution set whose submodular value is a (8 + ε)-
approximation of the optimal value and require O(ε−3k3 log3(n) log(k)) and O(ε−1k2 log3(k))
oracle queries per update, respectively.

5 Acknowledgements

This work is partially supported by DARPA QuICC NSF AF:Small #2218678, and NSF AF:Small
#2114269.

10

References
[1] Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh. Optimal streaming

algorithms for submodular maximization with cardinality constraints. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[2] Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh. An optimal
streaming algorithm for submodular maximization with a cardinality constraint. Mathematics
of Operations Research, 47(4):2667–2690, 2022.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[4] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
2014.

[5] Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization
in exponentially fewer iterations. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 2359–2370, Red Hook, NY, USA, 2018.
Curran Associates Inc.

[6] Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman
Jabbarzade, and Morteza Monemizadeh. Dynamic algorithms for matroid submodular maxi-
mization. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA
2024, arXiv:2306.00959.

[7] Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, Mohammadtaghi Hajiaghayi, Peyman
Jabbarzade, and Morteza Monemizadeh. Dynamic constrained submodular optimization with
polylogarithmic update time. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 1660–1691. PMLR, 23–29 Jul 2023.

[8] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadimoghaddam.
Submodular secretary problem and extensions. ACM Trans. Algorithms, 9(4):32:1–32:23, 2013.

[9] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadimoghaddam. Sub-
modular secretary problem and extensions. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and
José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International
Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, volume 6302
of Lecture Notes in Computer Science, pages 39–52. Springer, 2010.

[10] Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmet-
ric technique. Math. Oper. Res., 44(3):988–1005, 2019.

[11] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015.

[12] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Submodular maxi-
mization with cardinality constraints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’14, page 1433–1452, USA, 2014. Society for
Industrial and Applied Mathematics.

[13] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract).
In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977,
Boulder, Colorado, USA, pages 106–112, 1977.

11

[14] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodular
function maximization. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming, pages 318–330, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[15] Xi Chen and Binghui Peng. On the complexity of dynamic submodular maximization. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on
Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1685–1698. ACM, 2022.

[16] Yixin Chen and Alan Kuhnle. Practical and parallelizable algorithms for non-monotone
submodular maximization with size constraint, 2022.

[17] Abhimanyu Das and David Kempe. Algorithms for subset selection in linear regression.
In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 45–54. ACM, 2008.

[18] Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, pages 1057–1064. Omnipress, 2011.

[19] Abhimanyu Das and David Kempe. Approximate submodularity and its applications: Subset
selection, sparse approximation and dictionary selection. J. Mach. Learn. Res., 19:3:1–3:34,
2018.

[20] Sandra Eliza Fontes de Avila, Ana Paula Brandão Lopes, Antonio da Luz Jr., and Arnaldo
de Albuquerque Araújo. VSUMM: A mechanism designed to produce static video summaries
and a novel evaluation method. Pattern Recognit. Lett., 32(1):56–68, 2011.

[21] Delbert Dueck and Brendan J. Frey. Non-metric affinity propagation for unsupervised image
categorization. In IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de
Janeiro, Brazil, October 14-20, 2007, pages 1–8. IEEE Computer Society, 2007.

[22] Paul Duetting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, and Morteza Zadi-
moghaddam. Fully dynamic submodular maximization over matroids. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 8821–8835. PMLR, 23–29 Jul 2023.

[23] Rick Durrett. Probability: Theory and Examples, 4th Edition. Cambridge University Press,
2010.

[24] Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discovering relevant scientific
literature. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego,
CA, USA, August 21-24, 2011, pages 439–447. ACM, 2011.

[25] Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand N. Negahban. Restricted
strong convexity implies weak submodularity. CoRR, abs/1612.00804, 2016.

[26] Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Non-monotone sub-
modular maximization with nearly optimal adaptivity and query complexity. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 1833–1842. PMLR, 2019.

[27] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. SIAM J. Comput., 40(4):1133–1153, 2011.

[28] Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming submodular
maximization with subsampling. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 730–740, 2018.

12

[29] Moran Feldman, Joseph Naor, and Roy Schwartz. Nonmonotone submodular maximization
via a structural continuous greedy algorithm - (extended abstract). In Luca Aceto, Monika
Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, volume
6755 of Lecture Notes in Computer Science, pages 342–353. Springer, 2011.

[30] Satoru Fujishige. Theory of submodular programs: A fenchel-type min-max theorem and
subgradients of submodular functions. Math. Program., 29(2):142–155, 1984.

[31] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’11, page 1098–1116, USA, 2011. Society for Industrial and Applied Mathematics.

[32] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
1098–1116. SIAM, 2011.

[33] Boqing Gong, Wei-Lun Chao, Kristen Grauman, and Fei Sha. Diverse sequential subset
selection for supervised video summarization. In Zoubin Ghahramani, Max Welling, Corinna
Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pages 2069–2077, 2014.

[34] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-monotone
submodular maximization: Offline and secretary algorithms. In Amin Saberi, editor, Internet and
Network Economics - 6th International Workshop, WINE 2010, Stanford, CA, USA, December
13-17, 2010. Proceedings, volume 6484 of Lecture Notes in Computer Science, pages 246–257.
Springer, 2010.

[35] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing strategies over
social networks. In Proceedings of the 17th international conference on World Wide Web, pages
189–198, 2008.

[36] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006.

[37] Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-robust submod-
ular maximization: Data summarization with privacy and fairness constraints. In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 2549–2558. PMLR, 2018.

[38] Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Sahand N. Negahban, and Joy-
deep Ghosh. Scalable greedy feature selection via weak submodularity. In Aarti Singh and
Xiaojin (Jerry) Zhu, editors, Proceedings of the 20th International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54
of Proceedings of Machine Learning Research, pages 1560–1568. PMLR, 2017.

[39] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Found.
Trends Mach. Learn., 5(2-3):123–286, 2012.

[40] Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Jakub Tarnawski, and Morteza
Zadimoghaddam. Fully dynamic algorithm for constrained submodular optimization. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[41] Paul Liu and Jan Vondrák. Submodular optimization in the mapreduce model. In Jeremy T.
Fineman and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, volume 69 of OASICS, pages
18:1–18:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

13

[42] Odile Macchi. The coincidence approach to stochastic point processes. Advances in Applied
Probability, 7(1):83–122, 1975.

[43] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained
submodular maximization: Personalized data summarization. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1358–1367, New
York, New York, USA, 20–22 Jun 2016. PMLR.

[44] Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming non-monotone
submodular maximization: Personalized video summarization on the fly. In Sheila A. McIlraith
and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1379–1386. AAAI Press,
2018.

[45] Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Deletion-robust submodular
maximization: Data summarization with "the right to be forgotten". In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 2449–2458. PMLR, 2017.

[46] Morteza Monemizadeh. Dynamic submodular maximization. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[47] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat Mousav-
ifar, and Ola Svensson. Beyond 1/2-approximation for submodular maximization on massive
data streams. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 3826–3835.
PMLR, 2018.

[48] Binghui Peng. Dynamic influence maximization. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 10718–10731, 2021.

[49] Sharon Qian and Yaron Singer. Fast Parallel Algorithms for Statistical Subset Selection
Problems. Curran Associates Inc., Red Hook, NY, USA, 2019.

[50] Ian Simon, Noah Snavely, and Steven M. Seitz. Scene summarization for online image
collections. In IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio
de Janeiro, Brazil, October 14-20, 2007, pages 1–8. IEEE Computer Society, 2007.

[51] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten Joachims. Temporal cor-
pus summarization using submodular word coverage. In Xue-wen Chen, Guy Lebanon, Haixun
Wang, and Mohammed J. Zaki, editors, 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pages
754–763. ACM, 2012.

[52] Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures
of submodular functions for image collection summarization. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc., 2014.

14

	Introduction
	Preliminaries
	Related Work

	Dynamic algorithm
	Empirical results
	Conclusion
	Acknowledgements

