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Abstract

Text-attributed graphs (TAGs) are prevalent in various real-world scenarios, where
each node is associated with a text description. The cornerstone of representation
learning on TAGs lies in the seamless integration of textual semantics within indi-
vidual nodes and the topological connections across nodes. Recent advancements in
pre-trained language models (PLMs) and graph neural networks (GNNs) have facil-
itated effective learning on TAGs, garnering increased research interest. However,
the absence of meaningful benchmark datasets and standardized evaluation proce-
dures for TAGs has impeded progress in this field. In this paper, we propose CS-
TAG, a comprehensive and diverse collection of challenging benchmark datasets for
TAGs. The CS-TAG datasets are notably large in scale and encompass a wide range
of domains, spanning from citation networks to purchase graphs. In addition to
building the datasets, we conduct extensive benchmark experiments over CS-TAG
with various learning paradigms, including PLMs, GNNs, PLM-GNN co-training
methods, and the proposed novel topological pre-training of language models. In
a nutshell, we provide an overview of the CS-TAG datasets, standardized evalua-
tion procedures, and present baseline experiments. The entire CS-TAG project is
publicly accessible at https://github.com/sktsherlock/TAG-Benchmark.

1 Introduction

Graphs are ubiquitous in modeling the relational and structural aspects of real-world objects across
various domains, such as social networks, transportation system networks, and biological protein-
protein networks [1, 2, 3, 4]. In many real-world graphs, nodes are often associated with text
attributes, giving rise to the text-attributed graphs (TAGs) [5, 6]. TAGs are prevalent in various
scenarios, such as social graphs where each user is accompanied by a textual description and paper
citation graphs where textual content is linked to each respective paper [7, 8]. The exploration of
learning methodologies applied to TAGs has emerged as a prominent research area within multiple
fields, including graph learning, information retrieval, and natural language processing [9].

The nucleus of learning on TAGs lies in the effective integration of both the node attributes (textual
semantics) and graph topology (structural connections) to facilitate the learning of node represen-
tations. The textual information associated with each node offers a wealth of semantic content,
enabling the characterization of individual node properties, which could be captured by the pre-
trained language models (PLMs) [10, 11, 12, 13, 14]. Meanwhile, the structural information encoded
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Figure 1: The traditional text attributed graph representation learning pipeline.

within the graph topology presents the inherent proximity relationships between nodes. Graph neural
networks (GNNs) have proven to be effective in capturing such structural relations based on the
message-passing mechanism [7, 15, 16, 17, 18, 19, 20, 21, 22].

PLM-based and GNN-based methods are two prevalent types of learning paradigms on TAGs as
illustrated in Figure 1. PLM-based methods generally input the textual content derived from the
target node into a pre-trained language model. However, the knowledge of topology resulting
from the high non-linearity of graph structure within TAGs is largely discarded by the PLM-based
methods [9]. Conversely, GNN-based methods are capable of preserving the intricate graph topology
information with greater fidelity. Nevertheless, an inherent limitation plaguing GNN-based methods
lies in the disconnected modeling process of node attributes and graph topology. Specifically, most
GNNs pre-model node attributes as static representations, treating them as fixed and unlearnable
parameters during the message passing process. Consequently, the gradients stemming from the
learning objective of GNNs cannot be effectively back-propagated into the attribute modeling. This
discrepancy in the training procedure hinders the attainment of an optimal solution, as it fails to
guarantee end-to-end training, thereby impeding the overall effectiveness of the approach.

To simultaneously enjoy the merits of GNNs and LMs, several recent endeavors shed light on the
co-training paradigm as shown in Figure 1. LMs and GNNs are combined in a cascaded [23, 24, 25]
or nested [5] manner, establishing a unified end-to-end training paradigm to model the node attributes
and graph topology jointly. Despite its theoretical appeal, the co-training method suffers from severe
scalability issues as its memory complexity is proportional to the graph size as neighborhood texts
are also encoded [9]. Motivated by the recent advancements in pre-training techniques, a novel
inquiry emerges: Can we pre-train the language models to understand the graph topology? If we
can effectively encode topological information into LMs through appropriate pre-training tasks, LMs
could serve as the foundational model for learning on TAGs. Topological pre-trained LMs eliminate
the explicit GNN aggregations, thereby circumventing the efficiency challenges encountered in the
co-training paradigm. However, the design of suitable and effective pre-training tasks to encode
valuable knowledge derived from intricate graph topology into LMs remains an open question.

In order to delve deeply into the intricate interplay between textual semantics and graph topology
within TAGs, we embark on an unprecedented exploration to investigate the optimal training paradigm
for various TAGs. Existing text-attributed graph datasets (e.g., Cora [8], WikiCS [26], Amazon-
Photo [27]) cannot meet our requirements, as they solely offer node attribute embeddings, devoid of
the original textual sentences. To overcome this limitation, we meticulously curate a novel and com-
prehensive dataset, dubbed CS-TAG, comprising eight distinct TAGs sourced from diverse domains.
This carefully crafted dataset serves as a solid foundation for future research endeavors, facilitating
in-depth investigations in this burgeoning field. Moreover, extensive experiments are conducted on
the CS-TAG dataset to provide comprehensive and reliable benchmarks. All aforementioned learning
paradigms are thoroughly evaluated and analyzed. Experimental results and detailed discussions
further reveal the underlying correlations between graph topology and textual attributes, drawing deep
insight into the inherent characteristics of the TAGs. Our contributions are summarized as follows:

1. To the best of our knowledge, CS-TAG is the first open dataset specifically designed for text-
attributed graphs. TAGs from a variety of fields are collected, cleaned, and organized as the final
structured dataset. We provide researchers with original links and data cleaning codes to facilitate
their access and reprocessing of these datasets in accordance with their research interests and
requirements. The entire CS-TAG project is publicly accessible as an open source repository on
Github, accessible at https://github.com/sktsherlock/TAG-Benchmark.

2. In contrast to previous topology-driven graph learning models, our work underscores the vital
significance of deep node attribute modeling. This novel perspective sheds light on the design of
next-generation GNNs by emphasizing the incorporation of deep node attribute understanding.
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3. We investigate the novel problem of topological pre-training of language models, aiming at
teaching LMs to understand topological structures. This innovative training paradigm exhibits
remarkable performance on the CS-TAG dataset in terms of effectiveness and efficiency, which
contributes to broadening the scope of language model pre-training.

4. Extensive experiments are conducted across eight diverse datasets, focusing on two downstream
tasks: node classification and link prediction. Such experiments serve as a rigorous evaluation of
various learning paradigms, providing precise and dependable benchmarks for future endeavors.

2 Related Work

In this section, we first briefly introduce three popular learning paradigms for TAGs. After that,
the comparisons between the existing graph learning benchmarks and the proposed CS-TAG are
also discussed. Refer to Appendix A for more detailed reviews of the related models. We have
implemented most of the algorithms discussed in this section in the repository.

PLM-based methods. The PLMs refer to universal language models that possess enhanced semantic
understanding due to their pre-training on a vast corpus [28]. The early works on modeling textual
attributes were based on shallow networks, e.g., Skip-Gram[29] and GloVe[30]. In recent years, the
backbone networks dominated by the pre-training-fine-tuning paradigm are rapidly scaling up: from
ELMo[31], GPT[32], to BERT [10], RoBERTa [12], DeBERTa [13]. The large-scale models, which
get fully trained with massive data, demonstrate superior performances on general NLP tasks. One of
the most critical usages of PLMs is text representation, where the underlying semantics of texts are
captured by low-dimensional embeddings. On the TAGs, the PLMs use the local textual information
of each node to learn a good representation for the downstream task [9].

GNN-based methods. As graph representation learning enjoys explosive growth in machine learning,
numerous research works have been proposed for various tasks including node classification [15],
link prediction [21], and so on. Graph neural networks are recognized as powerful tools for modeling
graph data. Such methods (e.g., GCN [15], GAT [16], GraphSAGE [7], GIN [17], RevGAT [33]) learn
effective message-passing mechanisms such that information between the nodes can get aggregated
for expressive graph representations. GNNs generally adopt the "cascade architecture" suggested by
GraphSAGE for textual graph representation: node features are encoded independently using text
modeling tools (e.g. PLMs) and subsequently aggregated by GNNs to produce the final representation.

Co-training methods. The aforementioned two types of paradigms primarily focus on modeling
partial information, which limits their ability to learn comprehensive features. Several recent endeav-
ors propose to co-train GNNs and LMs to enjoy the merits from both sides. Specifically, LMs and
GNNs are combined in the cascaded [24] or nested manner [5]. The outputs generated by LMs serve
as inputs for GNNs, and vice versa. The parameters of both LM and GNN are updated through the
back-propagation of gradients from downstream tasks. However, this co-training paradigm suffers
from serious scalability problems, as all neighbors need to be encoded from scratch by the LMs,
incurring significant additional computational costs [9].

Benchmarks for graph representation learning. Several established graph benchmarks have been
developed and widely adopted [34, 35, 27, 36]. However, when it comes to learning on TAGs, these
benchmarks exhibit notable deficiencies. Firstly, a majority of these datasets suffer from the absence
of raw textual information, limiting the investigation of attribute modeling’s effectiveness. Secondly,
these datasets often neglect to explore the impact of text attribute modeling on GNNs. Thirdly,
these datasets are predominantly small in scale. Thus, there is a compelling necessity to construct a
comprehensive large-scale dataset for TAGs.

3 CS-TAG: A Comprehensive Dataset and Benchmark for TAGs

In this section, we commence by providing a concise summary of the constructed CS-TAG benchmark
in Section 3.1. Subsequently, we present the details of the construction of CS-TAG in Section 3.2,
including data collection, cleaning, and labeling. Moreover, we elucidate the details of GNN-based,
PLM-based, and Co-training learning paradigms in Section 3.3. Finally, the proposed topological
pre-training of LMs is presented in Section 3.4.
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3.1 Overview of CS-TAG

In order to address the limitations inherent in prior researches, we propose the establishment of
the text-attributed graph benchmark, dubbed CS-TAG, which serves as a standardized evaluation
framework for assessing the efficacy of representation learning techniques on TAGs. To ensure
scalability, CS-TAG includes datasets of varying sizes and incorporates scalable baselines consisting
of PLMs, GNNs, and co-training methods. This enables researchers to evaluate the performance
of their models across a broad range of dataset scales. To enhance usability, we provide a modular
pipeline that simplifies the implementation of different models within the CS-TAG. Such a modular
architecture enables researchers to easily integrate their novel methods and compare them with
existing approaches. In addition, we are committed to maintaining a public leaderboard for TAGs,
serving as a repository for the latest advancements in the field. This platform will continuously update
text-attributed graph datasets that possess practical and research value, fostering ongoing progress
and collaboration within the community. Overall, CS-TAG serves as a scalable, unified, modular, and
consistently updated evaluation framework for assessing the performance of representation learning
methods on text-attributed graphs.

3.2 Dataset Construction

Figure 2: The differences between the TAGs
datasets in CS-TAG (used for node classification)
and the previous datasets.

In order to thoroughly investigate the perfor-
mance of different learning paradigms on TAGs,
we conduct an extensive survey of various text-
attributed graph datasets that have been pre-
viously utilized in the literature. Our obser-
vations reveal that many commonly employed
node-level datasets are essentially text-attributed
graphs. For instance, well-known citation
graphs such as Cora, PubMed, Citeseer [8], and
ogbn-arxiv [34] are all TAGs. These datasets
derive node attributes from textual information,
such as the title and abstract of papers. Addi-
tionally, academic collaboration networks such
as Coauthor CS/Physics [27] set node attributes
derived from keywords defined in the papers.

However, while these datasets are frequently
employed by GNNs, they possess obvious inad-
equacies when exploring representation learning
on TAGs. Firstly, most of these datasets lack the availability of raw textual information, bringing
challenges to investigating the effectiveness of attribute modeling on these datasets. Secondly, these
datasets generally overlook the exploration of text attribute modeling’s impact on GNNs. A majority
of these datasets employ simplistic bag-of-words models or traditional text encoding techniques like
GloVe or Skip-Gram to represent text attributes, which are kind of outdated. Lastly, these datasets are
predominantly small in scale, leading to a lack of differentiation between different learning models
across numerous datasets.

To address these limitations, we have taken proactive steps to collect and construct some novel
datasets of TAGs. Figure 2 illustrates the number of nodes/edges in the previous datasets and the
proposed CS-TAG. One can clearly see that the TAGs within CS-TAG are comparatively larger
than the counterparts. Here, we present the details of shopping graphs as an example. We extract
datasets from the Amazon dataset [37], including Books-Children/History, Ele-Computers/Photo, and
Sports-Fitness. Nodes represent different types of items, while edges indicate items that are frequently
purchased or browsed together. Node labels are assigned based on the product category. To explore
the influence of attributes in the text-attribute graphs, distinct text attributes have been provided for
each of these datasets. For example, in the Books-Children/History dataset, node attributes are derived
from the title and description of the respective books, such as "Description: Collection of Poetry; Title:
The golden treasury of poetry". The Sports-Fitness dataset only incorporates node attributes from
the title of the sports items, such as "Girls Ballet Tutu Neon Orange". In the Ele-Computers/Photo
dataset, node attributes are obtained from high-rated reviews and product summaries, for instance,
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Table 1: Statistics of text-attributed graph dataset used in CS-TAG.
Dataset Nodes Edges Class Domain Modeling Scale Tasks Raw Text

Previous

WikiCS 11,701 216,123 10 Wikipedia GloVe Medium Node classification ✗
Cora 2,708 5,429 7 Academic Bag of words Small Node classification ✗
Citeseer 3,327 4,732 6 Academic Bag of words Small Node classification ✗
Pubmed 19,717 44,338 3 Academic Bag of words Medium Node classification ✗
ogbn-arxiv 169,343 1,166,243 40 Academic Skip-Gram Large Node classification ✔
Coauthor CS 18,333 81,894 15 Academic Bag of words Medium Node classification ✗
Coauthor Physics 34,493 247,962 5 Academic Bag of words Medium Node classification ✗
Amazon Photo 7,487 119,043 10 E-commerce Bag of words Small Node classification ✗
Amazon Computers 13,381 245,778 8 E-commerce Bag of words Medium Node classification ✗

Ours

ogbn-arxiv-TA 169,343 1,166,243 40 Academic PLMs Large Node classification ✔
Books-Children 76,875 1,554,578 24 E-commerce PLMs Large Node classification ✔
Books-History 41,551 358,574 12 E-commerce PLMs Large Node classification ✔
Ele-Computers 87,229 721,081 10 E-commerce PLMs Large Node classification ✔
Ele-Photo 48,362 500,928 12 E-commerce PLMs Large Node classification ✔
Sports-Fitness 173,055 1,773,500 13 E-commerce PLMs Large Node classification ✔
CitationV8 1,106,759 6,120,897 - Academic PLMs Large Link Prediction ✔
GoodReads 676,084 8,582,324 - E-commerce PLMs Large Link Prediction ✔

"Great camera for the price! This camera takes crystal clear photos and is cheap too!". Further details
on the dataset construction process can be found in Appendix B.

Additionally, we construct two other datasets, CitationV8 and GoodReads, for the link prediction
task. The CitationV8 dataset represents a citation network extracted from DBLP [38]. Node attributes
in CitationV8 are derived from the titles and abstracts of research papers. Each edge signifies a
citation relationship between two papers. The GoodReads dataset, on the other hand, originates
from a prominent book review website.3 This dataset captures the "similar item" linking relationship
between books and provides valuable information about the attributes of each book, such as the
title and description. Therefore, we leverage the GoodReads dataset to construct link prediction
tasks, which involve predicting relationships between similar books. Detailed descriptions of all the
aforementioned datasets can be found in Appendix B.

3.3 Conventional Learning Paradigms on TAGs

Existing learning paradigms on TAGs can be broadly classified into three distinct categories: 1) GNN-
based methods: These methods primarily leverage GNNs as the foundational model for capturing the
underlying graph topology structures through message-passing mechanisms. 2) PLM-based methods:
These approaches rely on prevalent pre-trained language models to capture the semantics from the
textual node attributes, which excel in their ability to comprehend text semantics and exhibit strong
transferability. 3) Co-training methods: This paradigm involves the joint learning of GNNs and LMs
under a unified framework [23] to enjoy the merits from both sides. Next, we will give the formulaic
definitions of these three paradigms.

GNN-based Paradigm. GNNs are employed to propagate information across the graph nodes,
allowing for the extraction of meaningful representations via message passing, which are formally
defined as follows:

h(k+1)
u = UPDATE(k)

ω

(
h(k)
u ,AGGREGATE(k)

ω

({
h(k)
v , v ∈ N (u)

}))
(1)

where k represents the layers of GNNs, N denotes the set of neighbors, u denotes the target node, ω
means the learning parameters in GNNs. Please note that, the initial node feature vector h(0)

u using
pre-learned by PLMs or other shallow text encoder (e.g., Skip-Gram). Such attribute modeling phase
is performed independently of the subsequent training of GNNs. Gradients from the GNN training
objectives are unable to be back-propagated into the PLMs to update their parameters. And this
decoupling of PLMs and GNNs impedes the overall effectiveness.

PLM-based Paradigm. PLM-based methods leverage the effectiveness of pre-training techniques to
enhance the modeling of text within each node. The formulation of these methods is as follows:

h(k+1)
u = UPDATE

(k)
ψ

(
h(k)
u

)
(2)

where ψ denotes the learnable parameters in PLMs. PLMs advance the modeling of node text
attributes. However, incorporating crucial topological context into PLM-based paradigms remains a
challenge, particularly when the available textual data is limited.

3https://www.goodreads.com/
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Figure 3: Illustrations of different topological pre-training methods.

Co-training Paradigm. GNNs and LMs are jointly trained under a unified training framework:

fΘ(A, T ) = GNNω (A,PLMψ(T )) ,Θ = {ω,ψ} (3)

where f denotes the learning function and Θ denotes the entire learnable parameters, which are
derived from both the GNN and PLM modules. The outputs generated by the LM serve as input
to the GNN. Notably, the gradients obtained from the GNN can be back-propagated to the LM,
enabling the update of its parameters. However, the co-training method faces significant scalability
challenges. This is primarily due to the memory complexity associated with encoding neighborhood
texts, resulting in a memory requirement that scales linearly with the size of the graph [9].

3.4 Topological Pre-training of Language Models

The incorporation of explicit GNN aggregations in the co-training paradigm introduces inherent
challenges in terms of training complexity and resource requirements. This is primarily due to the
simultaneous modeling of texts from both the center node and its neighbors. Therefore, this brings us
to a question: is there a training paradigm to enjoy the merits of graph topology while avoiding the
explicit GNN operations? Inspired by the recent advancements in pre-training techniques [39, 40],
our motivation lies in teaching language models to understand the topological structures. Three
topological pre-training tasks are proposed to impart graph structures into the LMs, enabling them to
better comprehend and capture the underlying topology.

Topological Masked Language Model (TMLM). Inspired by the task of masked language modeling,
we propose a novel topological masked language model (TMLM) to capture the first-order connections
on the token level. Given a center node c and one of its neighbors n, their corresponding text is
formally defined as T (c) = {t(c)1 , t

(c)
2 , . . . , t

(c)
k } and T (n) = {t(n)1 , t

(n)
2 , . . . , t

(n)
u }, respectively. We

randomly replace a subset of tokens in the center node T (c) and T (n) with a special token [MASK].
The objective of TMLM is to predict the masked tokens. Let Φ(s) = {ϕ(c)

1 , ϕ
(c)
2 , ..., ϕ

(n)
m−1, ϕ

(n)
m }

represents the indexes of the m masked tokens in the sentence T (c) and T (n). Let T (s)
Φ denote the

set of masked tokens in T (c) and T (n), and T (s)
−Φ denote the set of observed (unmasked) tokens. The

objective of TMLM is:

Ltmlm(T
(s)
Φ |T (s)

−Φ) =
1

m

m∑
i=1

log p(tϕi
|T (s)

−Φ; θ). (4)

in which θ denotes the learnable parameters.

Topological Contrastive Learning (TCL). Inspired by contrastive learning [41, 42, 43, 44], we
propose a novel topological contrastive learning (TCL) task to capture the first-order topological
information in the node level. Given a center node c and one of its neighbors n, their corresponding
node-level (sentence/document-level) embedding is derived from their CLS token in the T (c)

Φ and
can be formally defined as hc,hn. The objective of TCL is to bring the center node hc closer to
its neighbors hn while pushing itself farther away from other nodes. Denoting the cosine similarity
function as sim(hc,hn) = hcThn/∥hc∥∥hn∥. The objective of TCL is:

Ltcl = −log
exp(sim(hc,hn)/τ)∑N

n′=1,n′ ̸=n exp(sim(hc,hn′)/τ)
, (5)

where τ denotes the temperature parameter, N denotes the batch size.

Topological Deepwalk Learning (TDK). TMLM and TCL mainly capture low-order structural
information, while the higher-order structural information still needs to be captured by designing
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Table 2: Accuracy comparison among GNNs on the ogbn-arxiv-TA within different PLMs’ node
features. "Scale" means the different versions of PLMs (number of parameters). "Diff" denotes the
performance gap between the best and worst performers. We mark the best performer in each row
with blue bold font and mark the best performer in each column with black bold font.

Scale PLMs
Arxiv

GCN GAT SAGE RevGAT NFormer GIN JKNet APPNP MoNet MLP

Small
BERT-Tiny 72.03 72.25 72.35 72.52 71.91 68.42 69.50 71.63 45.13 57.22
ELECTRA 68.45 70.97 69.63 71.12 69.45 58.09 62.87 59.55 36.65 36.58
DistilBERT 73.39 73.48 74.48 74.68 73.56 72.30 71.44 74.01 50.51 68.11

Base

ELECTRA 70.81 71.67 70.82 71.96 70.43 64.88 63.41 65.62 38.91 48.56
BERT 73.30 73.40 74.14 74.59 72.80 71.94 70.08 73.90 46.90 67.35
RoBERTa 73.56 73.38 74.52 74.82 73.12 72.63 69.40 74.01 44.53 69.31
DeBERTa 68.15 66.56 67.58 68.26 67.11 62.05 44.16 52.37 29.67 47.07

Large

ELECTRA 70.44 71.01 70.72 72.56 70.04 64.47 58.34 64.52 37.26 47.72
BERT 73.25 73.37 74.15 74.68 73.12 71.88 68.70 73.53 43.31 66.85
RoBERTa 73.95 73.72 74.64 74.99 73.12 73.10 68.10 74.17 44.01 69.51
DeBERTa 72.57 71.50 73.22 73.59 71.88 71.25 54.41 69.28 33.53 66.28

Diff 5.80 7.16 7.06 7.54 6.45 15.01 27.28 21.80 20.84 32.93

suitable tasks. Considering that algorithms like Deepwalk [45] can capture higher-order structural
information in the graph, we try to use the node representations learned by Deepwalk to augment
the representations learned by LM. We first feed the whole graph structure into Deepwalk to get the
corresponding representation kc of each node c. The objective of TDK is to bring the center node hc

closer to its representation learned from Deepwalk kc. The objective of TDK is:

Ltdk = −log
exp(sim(hc,kc)/τ)∑N

c′=1,c′ ̸=c exp(sim(hc,kc′)/τ)
, (6)

4 Experiments

Baselines. (1) For GNN-based methods, we select 9 popular GNN models: GCN [15], GAT [16],
GraphSAGE [7], RevGAT [33], NodeFormer [46], GIN [17], JKNet [18], MoNet [47] and
APPNP [48]. (2) For PLM-based methods, we select 5 different PLMs with different scales: a) Small
parameter scale models including BERT-Tiny [10], ELECTRA-Small [11], and DistilBERT [14]. b)
Base parameter scale models including BERT-Base [10], ELECTRA-Base [11], RoBERTa-Base [12],
and DeBERTa-Base [13]. c) Large parameter scale models including BERT-Large [10], ELECTRA-
Large [11], RoBERTa-Large [12], and DeBERTa-Large [13]. (3) For Co-training methods, due
to scalability constraints, we only explore the effectiveness of this pipeline on combinations of
BERT-Tiny with GCN and GraphSAGE. (4) For the topological pre-training of LMs, we conduct
experiments on various datasets and different PLM basic models. In addition, we iteratively train the
proposed three pre-training tasks at batch level (named TMDC) in a multi-task learning framework.
Please refer to Appendix A.2 for more details.

Implementation details. GNNs are mainly implemented based on the DGL toolkit [49]. PLMs
are obtained from Huggingface [50] and trained under a unified framework. Considering the recent
rise of parameter-efficient fine-tuning, we only fine-tune the last four encoder layers of large-scale
language models. Implementation details and hyperparameter selections are provided in Appendix C.

Evaluations metric. We investigate the performance of different baselines through two tasks: node
classification and link prediction. For the node classification task, we use Accuracy and F1-Score to
evaluate the model performance. For the link prediction task, we use MRR, Hits@10, Hits@50, and
Hits@100 as metrics. Due to space limitations, we present the results of some node classification
experiments in the main paper, and the remaining node-level experiments with link prediction results
are presented in Appendix D.1 and D.2. In addition to the aforementioned datasets, we also conduct
experiments on other types of datasets, as described in Appendix D.6 (a large-scale ogbn-papers100M
dataset) and Appendix D.7 (two social network datasets), where readers can find detailed information
on these datasets and the corresponding experimental results.
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Table 3: Node classification of the three learning paradigms on six datasets. Sports corresponds to
the F1 score as an indicator of experimental results and Accuracy for the rest of the data. We bold the
best results for each dataset.

Way PLM-Based GNN-Based Co-Training Based

Tiny Base T-GCN B-GCN T-SAGE B-SAGE GCN(T) SAGE(T)

Arxiv 70.83 72.96 72.03 73.30 72.35 74.14 69.22↓ 73.57↑
Children 49.85 59.91 57.07 58.11 57.57 58.74 54.75↓ 59.70↑
History 83.06 86.09 84.52 85.04 84.79 85.12 83.52↓ 85.09↑
Photo 73.75 77.53 82.42 82.70 83.25 83.27 83.32↑ 86.64↑
Computers 58.32 60.40 87.43 87.86 87.90 88.30 83.93↓ 86.04↓
Sports 81.47 86.02 84.93 86.16 87.06 87.34 85.06↑ 85.87↓

4.1 Impact of Static Modeling of Attributes on GNNs

In this subsection, we analyze the impact of different node attribute modeling methods for downstream
GNNs. Table 2 represents the effect of node classification on ogbn-arxiv-TA for different GNNs given
different PLMs’ features. The results on other datasets can be found in Appendix D.1. Observing
Table 2, we find that RevGAT performs the best among all initial node features, while GAT and SAGE
exhibit the second-best performance. They are relatively less affected by the different node features,
7.54%, 7.16%, and 7.06% respectively. JKNet, APPNP, MoNet, and MLP are more influenced by
the initial node features, which all come above 20. On the other hand, the node features encoded
by RoBERTa, BERT, and DistilBERT generally perform better on all types of baselines. DeBERTa,
which performs better on many downstream NLP-related tasks, is less effective. This may be because
DeBERTa sees less corpus during pre-training, resulting in their inability to understand the semantics
well when modeling the text directly on downstream tasks. Furthermore, we compare traditional
shallow text encoders (e.g., Skip-Gram) with PLMs in Appendix D.4 for a more comprehensive
analysis of the impact of text modeling on downstream GNNs.

Recently, LLMs (Large-Language Models) are continuing to energize areas such as knowledge
graphs [51] and recommender systems [52]. It is still an open question on how to successfully apply
LLMs to text-attributed graph learning. We have conducted a preliminary exploration of how to use
LLMs to advance the representation learning on TAGs. Please refer to Appendix D.8 for the detailed
results and discussions.

4.2 Pitfalls of Co-Training Paradigm

In this subsection, we analyze the performance of the Co-training paradigm versus the PLM-based,
GNN-based paradigm in terms of node classification tasks. Tiny and Base in the PLM column repre-
sent BERT-Tiny and BERT-Base, respectively. T-GCN, T-SAGE, and B-GCN, B-SAGE represent the
node features of BERT-Tiny and BERT-Base fed to downstream GCN and GraphSAGE respectively.
GCN(T) and SAGE(T) then denote co-training BERT-Tiny with GCN and SAGE, respectively. We
compare GCN(T), and SAGE(T) with the corresponding T-GCN, T-SAGE respectively. As shown in
Table 3, SAGE(T) improves in four of the datasets compared to the T-SAGE methods, with a maxi-
mum improvement of 3.39% on the Photo dataset. However, GCN(T) performs worse than T-GCN
on most datasets and is even weaker than BERT-Tiny 1.61% on ogbn-arxiv-TA. The Co-training
framework requires simultaneous training of PLMs and GNNs. The memory requirement and time
cost of this paradigm are significantly increased. In order to facilitate the co-training of PLMs and
GNNs, we reduce either the batch size or the number of neighbors. The limited scalability leads to a
significant reduction in the number of neighbors for GNN aggregation, which may compromise the
effectiveness of message passing. To analyze the impact of scalability on the Co-Training method,
we analyze the effect of the number of neighbors sampled per GNN layer on Co-training in Fig 4.
As can be seen from it, the effect of the model mainly tends to increase as the number of neighbors
increases. The detailed discussions on efficiency and scalability can be found in Appendix D.3.

4.3 Comparing PLM-based Methods with GNN-based Methods

In this subsection, we compare the PLM-based methods and the GNN-based methods in different
datasets. As shown in Table 4, the column GNNs indicates the best results on all GNNs for a given
PLM node feature. On the Children and History dataset, the PLM-based methods works better than
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Table 4: Node classification accuracy comparison among PLM-based, GNN-based, and topological
pre-training based on four datasets. The best method for each PLM on each dataset is shown in bold.

Scale Model Arxiv History

PLM GNNs TMLM TDK TCL TMDC PLM GNNs TMLM TDK TCL TMDC

Small
BERT-Tiny 70.83 72.52 70.83 71.50 71.55 71.17 83.06 85.03 85.76 85.79 86.06 86.88
ELECTRA 71.26 71.12 72.65 72.83 73.06 73.71 84.18 83.11 84.54 84.42 84.57 85.18
DistilBERT 72.50 74.68 73.53 74.38 74.89 75.50 85.81 85.67 85.76 86.29 86.28 86.88

Base

ELECTRA 72.67 71.96 73.51 74.33 74.26 75.56 85.64 83.79 85.77 85.88 86.62 86.41
BERT 72.96 74.59 73.97 74.23 74.87 76.11 86.09 85.28 86.24 86.46 86.80 86.82
RoBERTa 73.10 74.82 74.25 74.57 75.37 75.97 85.85 85.69 86.19 86.32 86.95 86.96
DeBERTa 73.82 68.26 74.26 75.01 75.15 75.99 86.16 82.31 86.00 86.46 87.01 86.94

Large

ELECTRA 72.42 72.56 74.76 73.82 74.17 75.58 86.13 83.56 86.39 86.49 86.82 86.28
BERT 73.24 74.68 75.01 74.31 75.15 75.75 86.24 85.15 86.47 86.73 86.93 86.94
RoBERTa 73.83 74.99 75.18 74.58 75.48 75.73 86.41 85.23 86.72 86.75 87.11 87.22
DeBERTa 74.57 73.59 75.92 75.20 75.58 76.20 87.00 84.89 87.11 87.26 87.30 87.32

Scale Model Children Photo

PLM GNNs TMLM TDK TCL TMDC PLM GNNs TMLM TDK TCL TMDC

Small
BERT-Tiny 49.85 57.86 54.27 53.43 54.11 54.66 73.75 84.12 74.30 73.99 73.86 74.92
ELECTRA 57.03 56.42 57.35 56.92 56.88 58.55 76.58 83.12 76.09 76.89 77.74 77.83
DistilBERT 59.90 59.33 60.03 60.23 60.60 61.38 77.51 84.34 77.81 79.69 81.85 82.52

Base

ELECTRA 59.09 56.42 59.93 60.27 60.21 60.83 77.84 82.98 78.27 80.18 81.47 82.82
BERT 59.91 58.74 60.34 60.43 60.73 61.43 77.53 84.46 78.54 81.04 82.85 84.09
RoBERTa 59.80 59.01 60.19 60.71 61.47 61.83 78.11 84.59 78.33 81.26 82.47 83.04
DeBERTa 60.26 50.72 60.73 61.39 61.92 62.20 78.37 81.44 79.27 81.34 83.07 83.80

Large

ELECTRA 58.28 56.59 60.51 59.31 59.29 61.31 77.25 83.00 79.21 78.44 79.56 81.32
BERT 60.65 58.90 60.84 61.15 61.50 62.06 77.72 84.21 78.95 79.26 80.74 81.14
RoBERTa 60.93 59.26 62.11 61.95 62.06 63.24 79.60 85.12 80.32 80.82 81.47 82.55
DeBERTa 61.61 56.34 61.91 62.51 62.37 62.46 79.63 82.55 80.45 81.33 82.33 82.70
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Figure 4: Node classification on four datasets are conducted to analyse the sensitivity of the two
Co-Traing models, GCN(T) and SAGE(T) to the number of neighbors sampled per GNN layer.
"Fanout" denotes the number of neighboring nodes to which the center node is directly connected.

the GNN-based. This is probably because their text attributes are more fully informative and thus the
text attributes largely reflect the linking relationships between the nodes. Therefore the PLM-based
methods model text attributes more strongly would be more advantageous in this case. And on the
Photo dataset, the GNN-based method outperforms the PLM-based method across the board. This
may be because the text attributes of the Photo dataset are composed of information from user reviews
of the product. Some lower-quality reviews introduce a certain amount of noise to the text attributes,
which will reduce the effectiveness of the PLM-based methods. In order to analyze the importance of
node text attribute selection, we further conduct relevant experiments in Appendix D.9.

4.4 Validity of Topological Pre-training

In this subsection, we compare the three different pre-training methods with the PLM-based and GNN-
based methods. We observe that on almost all PLMs and all datasets, different degrees of improvement
can be achieved with the proposed pre-training methods. For these three individual pre-training
tasks, we find that TCL leads to greater improvement in most cases. The difference in performance
between TMLM and TCL, which both capture low-order topological structure information, indicates
that learning topological structure knowledge from a node-level perspective may work better than a
token-level. TDK, on the other hand, performs second only to TCL in most cases, which reflects to
some extent the fact that PLMs can benefit from knowledge of the complex topology. Further, we
try to combine these three pre-training tasks to optimize the model together (name TMDC). We first
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perform token-level TMLM tasks on PLMs. The enhanced PLMs are then jointly optimized using
both TCL and TDK tasks. (Detailed implementation can be found in Appendix A.2) Observing from
the Table 4, we find that TMDC further improves performance in most cases. This indicates that
different pre-training strategies can teach the PLM different topological knowledge from different
perspectives, and this leads us to explore more pre-training tasks on TAGs in the future. To further
analyze the effectiveness of these topological pre-training methods, we also test the performance of
such topological pre-training models in other scenarios (e.g., semi-supervised learning and few-shot
learning). Please refer to Appendix D.5 for detailed experimental results and discussions.

5 Discussion on the Practical Values

Text-attributed graphs have emerged as a prominent graph format, which finds extensive applications
in modeling real-world tasks, such as the mentioned recommender systems. Our research concentrates
on achieving a comprehensive understanding of the textual attributes embedded within a single node
and the topological structural connections between nodes. For example, a famous example in
recommender systems is the association between "diaper" and "beer", commonly co-purchased by
customers, thereby establishing links between these items in the item-item graph. To achieve the
optimal item representation, a prerequisite is to capture the inherent characteristics of a given item by
modeling its metadata, such as title and descriptions. Simultaneously, it is imperative to incorporate
valuable and unique signals derived from the graph’s topological connections into the representation
learning process. Given that real-world graph topology is usually shaped by human behaviors,
there exist unique human perceptions and knowledge in the topology beyond the pure semantics
(e.g., "diaper" and "beer" are semantically different but are connected in the co-purchased graph).
Consequently, it is imperative to delve into the effective and efficient fusion of intrinsic semantics
within individual nodes and the topological connections among different nodes on the text-attributed
graphs. Moreover, the scope of our research also includes domains like user behavior-enhanced
sponsored search, including AdsGNN [24], HBGLR [53], and PASS [54].

6 Conclusion

We establish the first comprehensive benchmark CS-TAG specifically designed to explore represen-
tation learning on TAGs. We collect and provide eight available text-attributed graph datasets to
facilitate the NLP and GNN communities to focus and investigate the data together. Our benchmark
provides a more comprehensive evaluation of different learning paradigms, validating their effective-
ness and limitations. We will also continue to mine and construct more research-worthy TAGs to
advance the continued healthy development of the field.

Acknowledgement

This research was funded by the National Science Foundation of China (No. 62172443), Open
Project of Xiangjiang Laboratory (22XJ03010, 22XJ03005), the Science and Technology Major
Project of Changsha (No. kh2202004), Hunan Provincial Natural Science Foundation of China (No.
2022JJ30053), and the High Performance Computing Center of Central South University.

10



References
[1] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A

survey on deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714,
2022.

[2] Hao Miao, Jiaxing Shen, Jiannong Cao, Jiangnan Xia, and Senzhang Wang. Mba-stnet:
Bayes-enhanced discriminative multi-task learning for flow prediction. IEEE Transactions on
Knowledge and Data Engineering, 2022.

[3] Zijian Zhang, Xiangyu Zhao, Hao Miao, Chunxu Zhang, Hongwei Zhao, and Junbo Zhang.
Autostl: Automated spatio-temporal multi-task learning. arXiv preprint arXiv:2304.09174,
2023.

[4] Peiyan Zhang, Yuchen Yan, Chaozhuo Li, Senzhang Wang, Xing Xie, Guojie Song, and
Sunghun Kim. Continual learning on dynamic graphs via parameter isolation. In Proceedings
of SIGIR, 2023.

[5] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. Advances in Neural Information Processing Systems, 2021.

[6] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as features:
Llm-based features for text-attributed graphs. arXiv preprint arXiv:2305.19523, 2023.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of NeurIPS, 2017.

[8] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 2008.

[9] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian
Tang. Learning on large-scale text-attributed graphs via variational inference. arXiv preprint
arXiv:2210.14709, 2022.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, 2018.

[11] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In Proceedings of ICLR, 2020.

[12] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.
Unsupervised cross-lingual representation learning at scale. In Proceedings of ACL, 2020.

[13] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. In Proceedings of ICLR, 2021.

[14] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv, 2019.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proceedings of ICLR, 2017.

[16] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. In Proceedings of ICLR, 2018.

[17] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of ICLR, 2019.

[18] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
Proceedings of ICML, 2018.

11



[19] Jinlong Du, Senzhang Wang, Hao Miao, and Jiaqiang Zhang. Multi-channel pooling graph
neural networks. In IJCAI, 2021.

[20] Zhongyu Huang, Yingheng Wang, Chaozhuo Li, and Huiguang He. Going deeper into
permutation-sensitive graph neural networks. In Proceedings of ICML, pages 9377–9409,
2022.

[21] Rui Li, Jianan Zhao, Chaozhuo Li, Di He, Yiqi Wang, Yuming Liu, Hao Sun, Senzhang Wang,
Weiwei Deng, Yanming Shen, et al. House: Knowledge graph embedding with householder
parameterization. In Proceedings of ICML, 2022.

[22] Yi Zhao, Chaozhuo Li, Jiquan Peng, Xiaohan Fang, Feiran Huang, Senzhang Wang, Xing Xie,
and Jibing Gong. Beyond the overlapping users: Cross-domain recommendation via adaptive
anchor link learning. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1488–1497, 2023.

[23] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang, Liangjie
Zhang, Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural
network in sponsored search. In Proceedings of WebConf, 2021.

[24] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi Yang, Yanling
Cui, Liangjie Zhang, and Qi Zhang. Adsgnn: Behavior-graph augmented relevance modeling in
sponsored search. In Proceedings of SIGIR, 2021.

[25] Shuxian Bi, Chaozhuo Li, Xiao Han, Zheng Liu, Xing Xie, Haizhen Huang, and Zengxuan Wen.
Leveraging bidding graphs for advertiser-aware relevance modeling in sponsored search. In
Proceedings of EMNLP, 2021.
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A Baselines and Model Implementation Details

A.1 Baselines

We provide detailed descriptions on the GNNs and PLMs baselines used in the main experiments as
follows.

• GCN. [15] Graph Convolutional Network (GCN) is a classical model that works by performing a
linear approximation to spectral graph convolutions.

• GraphSAGE. [7] GraphSAGE is a GNN model that focuses on inductive node classification, but
can also be applied for transductive settings.

• GAT. [16] Graph Attention Network (GAT) introduces the attention mechanism to capture the
importance of neighboring nodes when aggregating information from the graph.

• RevGAT. [33] RevGAT combines reversible connectivity with a deep network architecture to form
a deep and efficient GNN.

• NodeFormer. [46] NodeFormer is a scalable graph Transformer for large-scale graphs, which
achieves all-pair message passing with linear complexity. In the table, we denote NodeFormer by
NFormer.

• GIN. [17] Graph Isomorphism Network (GIN) overcomes the drawbacks of previous MPNN-based
methods, which struggles to differentiate various graph structures based on the generated graph
embeddings.

• JKNet. [18] Jumping knowledge Network (JKNet) adaptively varies the neighborhood ranges for
individual node, enabling enhanced structure-aware node representation.

• MoNet. [47] Mixture Model Network (MoNet) captures and represents the structural properties of
graphs by incorporating multiple localized perspectives of each node’s neighborhood.

• APPNP. [48] Approximate Personalized Propagation of Neural Predictions (APPNP) is specifically
developed for semi-supervised learning tasks on graph-structured data. It utilizes personalized
propagation to iteratively enhance node predictions by incorporating comprehensive information
from both local and global contexts.

• DistilBERT. [14] DistilBERT is another distilled version of BERT. The student model DistillBert
shares a similar overall architecture with the teacher model BERT. DistillBert differs from BERT
by removing the token-type embeddings and pooler components, and also reducing the number of
layers.

• ELECTRA. [11] ELECTRA is a pre-training model for NLP tasks that introduces Discriminative
Pre-training. ELECTRA enhances the efficiency and effectiveness by generating more efficient
representations through a discriminative approach.

• BERT. [10] Bidirectional encoder representations from Transformers (BERT) utilizes a transformer
architecture that employs self-attention mechanisms to capture word relationships within sentences.
This enables the model to effectively consider both the preceding and succeeding contexts of a word,
facilitating bidirectional language comprehension. BERT undergoes unsupervised pre-training on
an extensive text corpus, where it predicts masked words within sentences and acquires the ability
to encode contextual information.

• RoBERTa. [12] Robustly Optimized BERT (RoBERTa) is a variant of the BERT. RoBERTa
incorporates additional modifications during pre-training to optimize its performance. In the pre-
training phase, it trains on a vast corpus of unlabeled text data by employing masked language
modeling (MLM) while excluding the next sentence prediction (NSP) task. RoBERTa significantly
expands the amount of training data used, enabling the acquisition of more comprehensive and
robust language representations.

• DeBERTa. [13] Decoding-enhanced BERT with Disentangled Attention (DeBERTa) brings forth
two significant enhancements: disentangled attention and heterogeneous layer integration. By
dividing the attention heads into distinct groups, disentangled attention empowers the model to
better capture dependencies among words, enabling more targeted and specialized attention. This
enhancement greatly improves the model’s ability to capture long-range dependencies in a more
effective manner.

In our work, we categorize three types of models, namely BERT-Tiny (4.4M), ELECTRA-Small
(13.5M), and DistilBERT (66.4M), as small scale PLMs. ELECTRA-Base (109M), BERT-Base
(110M), RoBERTa-Base (125M), and DeBERTa-Base (139M) are classified as base scale PLMs.
ELECTRA-Large (334M), BERT-Large (340M), RoBERTa-Large (355M), and DeBERTa-Large
(405M) are categorized as large scale PLMs.
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A.2 Topological Pre-training Implementation

We introduce the implementation details on 4 topological pre-training tasks, TLM, TCL, TDK and
TMDC on text-attributed graphs.

TMLM. We adopt the Masked Language Model (MLM) training implementation in huggingface []
for the TMLM task. For a given TAG, we first pre-sample each node with five neighbors, and
subsequently concatenate the text of the original node with the text of the sampled neighboring nodes.
Five corresponding center-neighbor pairs are obtained for each node. We then disorganize the dataset
to form a new topologically augmented dataset. The new dataset is passed into the MLM training
code to pre-train the language model. The learning rate of the TMLM is set to 5e-05 on all datasets
and language models. For detailed code and implementation, please refer to the project repository.

TCL. Traditional Contrastive Learning (CL) focuses on the central node itself (using the augmented
nodes to construct the positive pairs) [42]. For our Topological Contrastive Learning (TCL) task, we
consider the central node and its neighbors to form the positive pairs. In particular, when loading the
data in batches, we sample one of its neighbor nodes for each central node through the adjacency
matrix of the TAG. For the central node and its sampled neighbor, we compute the contrasting loss by
mapping the textual representations into the contrastive space through a projection head with shared
parameters by following [41]. Therefore the Ltcl in the main text can be rewritten as

Ltcl = −log
exp(sim(zc, zn)/τ)∑N

n′=1,n′ ̸=n exp(sim(zc, zn′)/τ)
, (7)

where zc is the representation of the node c in the contrastive space. The main learning parameters
include the learning rate lr and epoch e. For all datasets and all language models we set e = 5, lr =
5e − 05. The projection head is a two-layer MLP with a hidden layer set to 128. The τ in the
contrastive loss is set to 0.2. Detailed pre-training commands on each dataset can be found in the
CS-TAG GitHub repository.

TDK. For the TDK task, we first run the Deepwalk [45] algorithm over the TAG to obtain its
topological-level representation (only the topology information of TAG is fed into Deepwalk). Then
we pull the representation of the center node close to the representation learned from Deepwalk. In
particular, when loading the data in batches, we load the representation learned from Deepwalk at the
same time. Subsequently, we from the textual representation of the center node with its corresponding
topological structure representation to form the positive pairs in contrastive learning. We follow the
same contrastive learning process with TCL presented above. Therefore the Ltdk in the main text can
be rewritten as

Ltdk = −log
exp(sim(zc,kc)/τ)∑N

c′=1,c′ ̸=c exp(sim(zc,kc′)/τ)
, (8)

For all datasets in CS-TAG, we use a uniform code to obtain the corresponding topological-level
representation. The relevant parameters are consistent with the parameter settings in TCL. Detailed
pre-training commands on each dataset can be found in the CS-TAG GitHub repository.

TMDC. TMDC attempts to pre-train the language models jointly by combining the three pre-training
tasks proposed above. As the forms of the TMLM and TCL, TDK tasks differ a lot, we use an
iterative training way to perform the multi-task learning. In particular, we first obtain a token-level
topologically augmented language model PLMtmlm by TMLM. Subsequently, we combine TCL
and TDK to jointly optimize the PLMtmlm. The loss function of the joint optimization is shown as
follows

Ltcl+tdk = −(log
exp(sim(zc,kc)/τ)∑N

c′=1,c′ ̸=c exp(sim(zc,kc′)/τ)
+ log

exp(sim(zc, zn)/τ)∑N
n′=1,n′ ̸=n exp(sim(zc, zn′)/τ)

). (9)

A.3 Code License

The code of CS-TAG uses the MIT license. Please refer to the GitHub repository for license details.
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B Datasets

B.1 Dataset Format

For each dataset in CS-TAG, we provide three different files. We store the graph-type data available
to dgl in the .pt format in Pytorch. For the node classification dataset, two types of features are
stored, the adjacency matrix and the node labels. For the Ele-Computers and Ele-Photo datasets, we
also store the year features of the nodes (the year of the comments posted by the user). For the link
prediction dataset, it contains only the adjacency matrix information. We use a .txt file to store the
text attributes of each dataset. The .csv file stores node-id, node-label, category, and text to provide a
clearer picture of the dataset for subsequent researchers.

B.2 Dataset Construction

The construction of the text-attributed graph datasets includes the following three steps. First, pre-
processing the text attributes in the original dataset, including removing missing values, removing
non-English statements, removing abnormal symbols, length truncation, etc. Second, building the
graph. The linking relationship between nodes has been provided in the original data of the dataset
constructed in CS-TAG, such as the information of "also view", and "also buy" of the products in
the Amazon dataset (indicating the two product ids that are jointly purchased or viewed), and the
citation relationship between papers in DBLP, etc. Note that when obtaining the final graph data,
self-edges and isolated nodes need to be removed. Third, refining the constructed graph. For the node
classification dataset, the nodes in the graph need corresponding numerical node labels. We convert
the categories of nodes in the original data to numerical node labels in the graph. For some datasets
that are divided in a specific form (e.g., by the year of publication of a paper), we also need to store
additional information about the nodes.

B.3 Dataset Details

CS-TAG includes 8 datasets, whose details are described as follows. The statistics of the datasets is
shown in Table 5.

ogbn-arxiv-TA dataset is derived from ogbn-arxiv. The corresponding task is to predict the categories
of the papers, which is formulated as a 40-class classification problem. The text attributes of each
paper node are extracted from its title and abstract in ogbn-arxiv. Note that ogbn-arxiv solely provides
node embeddings acquired through shallow text encoders like Skip-Gram. Different from them, we
use different PLMs to model the node attributes to get the initial node features and delve into the
performance of employing multiple PLM features in downstream GNNs.

Books-Children/History datasets are extracted from the Amazon-Books dataset. Books-Children
consists of items with the second-level label "Children", while Books-History consists of items with
the second-level label "History". The nodes in the dataset are books, and the edges mean two books
are frequently co-purchased or co-viewed. The label of each dataset is the three-level label of the
book. We choose the title and description of the book itself as the text attributes of the node. The task
is to classify books into 24 and 12 categories, respectively.

Ele-Computers/Photo datasets are extracted from the Amazon-Electronics dataset. Ele-Computers
consists of items with the second-level label "Computers", while Ele-Photo consists of items with the
second-level label "Photo". The two datasets are extracted from the updated 2018 Amazon Computer
and Amazon Photo datasets [27]. The nodes in the dataset are electronics related products, and the
edge between two products means that they are frequently co-purchased or co-viewed. The label of
each dataset is the three-level label of the electronics products. We adopt user reviews on the item as
its text attribute. Since the item has multiple reviews, we mainly adopt the review with the highest
number of votes. For some items lacking highly votes reviews, we randomly adopt a user review
as the text attribute. The task on the two datasets is to classify electronics products into 10 and 12
categories, respectively.

Sports-Fitness dataset is extracted from the Amazon-Sports dataset. It consist of items with the
second-level label "Fitness". The nodes in the dataset are the fitness-related items, and the edge
between two items means that they are frequently co-purchased or co-viewed. The label of the dataset
is the three-level label of the items. The task on this dataset is to classify items into 13 categories.
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Table 5: Statistics of text-attributed graph dataset used in CS-TAG.
Dataset Nodes Edges Class Split Scheme Split Ratio Task Type Metric Max length
ogbn-arxiv-TA 169,343 1,166,243 40 Time 54/18/28 Node Class. Acc, F1 512
Books-Children 76,875 1,554,578 24 Random 60/20/20 Node Class. Acc, F1 256
Books-History 41,551 358,574 12 Random 60/20/20 Node Class. Acc 256
Ele-Computers 87,229 721,081 10 Time 72/17/11 Node Class. Acc, F1 256
Ele-Photo 48,362 500,928 12 Time 60/20/20 Node Class. Acc, F1 512
Sports-Fitness 173,055 1,773,500 13 Random 20/10/70 Node Class. F1 64
CitationV8 1,106,759 6,120,897 - Time 99/1/1 Link Prediction MRR 256
GoodReads 676,084 8,582,306 - Random 90/2/8 Link Prediction Hits@K 24

CitationV8 is a directed graph dataset, representing the citation relationship among a subset of
papers extracted from DBLP [38]. It is constructed following the form of ogbl-citation2 [34]. The
corresponding task is to predict the missing citations given some existing citations. Specifically, for
each source paper, two of its references are randomly dropped, and the prediction model tries to rank
the missing two references higher than 2,000 negative reference candidates. The negative references
are randomly-sampled from all the previously published papers that are not referenced by the source
paper. We adopt the title and abstract of each paper as its node text attributes.

GoodReads dataset is extracted from the world’s largest book review site Goodreads. Its nodes are
books and edges are identified by similarity relationships between books provided in the website.
The corresponding task is to predict the similar relationships between books. We expect the model to
rank the true correlations over the false ones. Specifically, we rank each true correlation among a set
of 5,000 randomly-sampled negative correlation.

B.4 Datasets License

The datasets follow the MIT license. Please refer to the GOOD GitHub repository for license details.

C Experiment Settings

C.1 Experimental Settings of GNNs

We conduct experiments on 9 GNN models described in A.1 on 6 node classification datasets. We
use the aforementioned 5 PLMs with different parameter scales to model the node attributes and
form the initial node features of the graph data. Each experiment is repeated three times and the
evaluation metrics are accuracy and F1-score. The parameters shared by all GNN models include
epochs, model layers, hidden units, learning rate, and dropout ratio, and their values are set to 1000,
{2,3}, {64,128,256},{1e-04 ~1e-02}, 0.2, respectively. Besides these hyperparameters, for GAT
we freeze the number of heads to 3 and set the ratio of attention-drop out to 0 by default. For
GraphSAGE model, we use mean pool to aggregate the neighbor information, and for JKNet, we
use cat to aggregate the features. For APPNP, we set the teleport probability to 0.1 by default and
the number of propagation steps is set to 2. For MoNet, we set the pseudo coordinate dimensions in
GMMConv to 2 and 3, and we set the number of kernels in GMMConv layer to 2. Since it mostly
does not converge at epoch=1000, we set its maximum epoch to 2000. For GIN, we set the number
of mlp layers as 2. The eval patience of all models is set to 1. We use cross-entropy loss with the
AdamW optimizer to train and optimize all the above models. GNNs are mainly derived from the
implementation in the DGL library.

C.2 Experimental Settings of PLMs

We conduct experiments on 5 PLMs with different parameters described in A.1 on 6 node classification
dataset. Considering the efficiency of the language models, we conduct experiments on each dataset
only once. The parameters shared by all the PLMs in A.1 include epochs e, label smoothing factor
lsf , learning rate lr, warm-up epochs w, batch size, and eval patience. The label smoothing factor
is used to calculate the cross-entropy loss which is set in GNN as well. The w denotes the duration
of the warm-up phase, and w = 1 means the duration of the warm-up is in one epoch. For all
datasets we set e, lsf , w, lr to 4, 0.1, 1, {5e-06 ~5e-04 }, respectively. Due to different model
parameters and different dataset sizes, we list the eval patience, batch size of different models on
each dataset in Table 6. For PLMs at the same scale, we use the same batch size. For large-scale
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Table 6: Batch size and eval patience of the different scale PLMs.

Datasets
Small Scale Base Scale Large Scale

Batch Size Eval Patience Batch Size Eval Patience Batch Size Eval Patience

ogbn-arxiv-TA 100 50000 60 50000 60 50000
Books-Children 240 15000 90 15000 90 15000
Books-History 240 8000 90 8000 90 8000

Ele-Computeres 300 20000 180 20000 180 20000
Ele-Photo 100 5000 60 5000 60 5000

Sports-Fitness 800 10000 400 10000 400 10000

models, since full parameter fine-tuning is costly, we only fine-tune the last four encoder layers
and its’ effect is sometimes better than full parameter tuning. The experimental setup of several
topological pre-training methods has been mentioned in the previous section, and for the topological
pre-trained language models, we follow the same tuning strategy as the PLM-based methods.

C.3 Reproducibility

For all experiments, we select the best checkpoints according to the validation sets, and report
the results. All the datasets and codes to reproduce the results in this paper are available at
https://github.com/sktsherlock/TAG-Benchmark.

D Additional Experiment Results

D.1 Experimental Results for Node Classification

GNN-based methods. Table 3-5 lists all the experimental results for the node classification task. We
first analyze the performance of different GNN-based methods on the tasks of node classification.
Over the evaluation metric accuracy, one can see that RevGAT, GraphSAGE, and GAT perform the
best on these datasets, which are less affected by the node features learned by different PLMs. While
for the other GNN models, their performance is affected by the PLMs to different extents. GIN,
which is commonly used for graph-level tasks, does not achieve better performance on node-level
tasks. MoNet’s performance on Books-Children and History datasets is even lower than MLP in most
cases.

By investigating the impact of node features encoded by different PLMs on the downstream models,
one can see that node features encoded by ELECTRA typically produce a larger gap between GNN
and MLP. The failure of the ELECTRA model to generate higher quality node features may be due
to its discriminative pre-training way. In contrast, the RoBERTa-Base model seems to have a better
semantic understanding, with a difference between GNN and MLP of only 1.91 and 4.44 on the
Books-History and Books-Children datasets. It is worth noting that the node features encoded by
DeBERTa also perform poorly. However, DeBERTa performs better on NLP-related tasks, which
indicates that the node features encoded by a language model cannot be judged by its performance on
downstream tasks alone. The ineffectiveness of the DeBERTa to obtain better node features may be
mainly due to its reduced corpus during pre-training.

Similar experimental conclusions can be drawn on the F1-score results as shown in Table 4. Note that
the F1 score of downstream models is more significantly affected by different PLMs. For example,
on Books-Children, the score of JKNet ranges from 19.79 to 30.94 under different PLMs.

PLM-based methods and Topological Pre-training Between Table 3 to 5, PLMs denote PLM-based
methods, i.e., fine-tuning directly on the dataset without considering the topology. While TLM, TDK,
TCL, and TMDC denote fine-tuning on models pre-trained for these four topological pre-training
tasks. Observing the experimental results on these datasets, the PLM-basd method performs the worst
on all models with all datasets. This indicates that it is not sensible to ignore topology and use only
text attributes for representation learning on TAGs. In contrast, TMDC, a multi-task form of topology
pre-training, performs the best, achieving the best on both metrics in the majority of experiments.
This indicates that combining different topological structure pre-training methods can teach language
models topological structure knowledge from different perspectives.
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Table 7: Node classification accuracy on ogbn-arxiv-TA, Books-Children, Books-History and Ele-
Photo. We bold the best results for each row.

Methods ogbn-arxiv-TA
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 70.83 71.26 72.50 72.67 72.96 73.10 73.82 72.42 73.24 73.83 74.57

GNNs

GCN 72.03 68.45 73.39 70.81 73.30 73.56 68.15 70.44 73.25 73.95 72.57
GAT 72.25 70.97 73.48 71.67 73.40 73.38 66.56 71.01 73.37 73.72 71.50
SAGE 72.35 69.63 74.48 70.82 74.14 74.52 67.58 70.72 74.15 74.64 73.22
RevGAT 72.52 71.12 74.68 71.96 74.59 74.82 68.26 72.56 74.68 74.99 73.59
NFormer 71.91 69.45 73.56 70.43 72.80 73.12 67.11 70.04 73.12 73.12 71.88
GIN 68.42 58.09 72.30 64.88 71.94 72.63 62.05 64.47 71.88 73.10 71.25
JKNet 69.50 62.87 71.44 63.41 70.08 69.40 44.16 58.34 68.70 68.10 54.41
APPNP 71.63 59.55 74.01 65.62 73.90 74.01 52.37 64.52 73.53 74.17 69.28
MoNet 45.13 36.65 50.51 38.91 46.90 44.53 29.67 37.26 43.31 44.01 33.53
MLP 57.22 36.58 68.11 48.56 67.35 69.31 47.07 47.72 66.85 69.51 66.28

Co-Training
GCN 69.22 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 73.57 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 70.83 72.65 73.53 73.51 73.97 74.25 74.26 74.76 75.01 75.18 75.92
TDK 71.50 72.83 74.38 74.33 74.23 74.57 75.01 73.82 74.31 74.58 75.20
TCL 71.55 73.06 74.89 74.26 74.87 75.37 75.15 74.17 75.15 75.48 75.58
TMDC 71.17 73.71 75.50 75.56 76.11 75.97 75.99 75.58 75.75 75.73 76.20

Methods Books-Children
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 49.85 57.03 59.90 59.09 59.91 59.80 60.26 58.28 60.65 60.93 61.61

GNNs

GCN 57.07 54.35 58.19 55.31 58.11 58.62 50.72 54.66 57.70 57.11 54.89
GAT 57.22 56.18 57.91 55.89 57.70 57.83 47.63 55.72 57.50 57.35 55.45
SAGE 57.57 55.32 59.33 55.84 58.74 58.97 49.61 55.52 58.40 58.21 56.29
RevGAT 57.86 56.42 59.28 56.42 58.67 59.01 49.63 56.59 58.90 59.26 56.34
NFormer 56.89 55.12 58.03 55.12 57.42 57.26 48.89 54.59 57.10 56.43 54.48
GIN 53.12 47.26 55.86 50.45 55.62 55.62 47.08 49.85 55.22 55.37 51.90
JKNet 53.48 48.36 51.25 45.90 52.33 49.12 34.19 42.56 51.18 44.47 36.89
APPNP 56.19 49.63 57.83 52.42 57.73 57.49 41.13 50.24 57.76 54.73 46.51
MoNet 36.81 35.18 37.57 34.87 36.43 36.02 32.29 34.22 35.60 34.70 33.16
MLP 48.34 40.33 53.18 43.14 52.55 54.57 43.55 43.11 52.43 52.61 48.55

Co-Training
GCN 54.75 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 59.70 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 54.27 57.35 60.03 59.93 60.34 60.19 60.73 60.51 60.84 62.11 61.91
TDK 53.43 56.92 60.23 60.27 60.43 60.71 61.39 59.31 61.15 61.95 62.51
TCL 54.11 56.88 60.60 60.21 60.73 61.47 61.92 59.29 61.50 62.06 62.37
TMDC 54.66 58.55 61.38 60.83 61.43 61.83 62.20 61.31 62.06 63.24 62.46

Methods Books-History
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 83.06 84.18 85.81 85.64 86.09 85.85 86.16 86.13 86.24 86.41 87.00

GNNs

GCN 84.52 82.08 85.14 82.46 85.04 85.15 82.31 82.54 84.95 84.51 84.22
GAT 84.21 82.85 84.68 82.97 84.49 84.76 80.71 83.10 84.36 84.47 83.78
SAGE 84.79 82.12 85.56 82.53 85.12 85.47 82.00 82.45 85.08 84.92 84.51
RevGAT 85.03 83.11 85.67 83.79 85.26 85.69 81.98 83.56 85.15 85.23 84.89
NFormer 83.59 80.96 84.49 81.16 84.59 84.46 81.46 80.15 84.29 84.23 82.99
GIN 82.62 73.69 83.60 76.29 83.19 84.01 79.81 76.47 83.29 83.34 82.89
JKNet 82.97 80.25 84.01 79.88 83.53 83.31 69.26 76.77 83.45 82.17 77.36
APPNP 84.31 78.65 85.49 79.91 85.28 85.35 78.16 79.18 84.97 84.86 82.68
MoNet 71.24 69.67 70.41 66.17 71.28 72.72 59.17 60.48 70.66 66.26 60.79
MLP 79.86 64.36 83.00 68.09 82.84 83.78 74.60 68.88 83.18 82.73 80.46

Co-Training
GCN 83.52 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 85.09 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 85.76 84.54 85.76 85.77 86.24 86.19 86.00 86.39 86.47 86.72 87.11
TDK 85.79 84.42 86.29 85.88 86.46 86.32 86.46 86.49 86.73 86.75 87.26
TCL 86.06 84.57 86.28 86.62 86.80 86.95 87.01 86.82 86.93 87.11 87.30
TMDC 86.88 85.18 86.88 86.41 86.82 86.96 86.94 86.28 86.94 87.22 87.32

Methods Ele-Photo
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 73.75 76.58 77.51 77.84 77.53 78.11 78.37 77.25 77.72 79.60 79.63

GNNs

GCN 82.42 78.86 82.91 79.99 82.70 82.99 80.07 79.20 82.01 83.82 80.76
GAT 83.82 82.83 83.75 82.82 83.74 83.99 79.47 83.00 83.48 83.97 82.55
SAGE 83.25 80.90 83.50 81.79 83.27 83.81 81.44 81.05 82.77 84.15 81.88
RevGAT 84.12 83.12 84.34 82.98 84.46 84.59 80.98 82.59 84.21 85.12 81.12
NFormer 79.98 80.45 82.69 80.02 81.79 82.44 79.66 79.96 81.23 82.96 80.62
GIN 76.09 64.89 77.22 68.56 76.55 77.76 69.91 66.98 75.32 79.37 70.93
JKNet 79.68 75.29 80.41 76.53 79.72 79.13 60.13 74.35 79.18 78.61 69.57
APPNP 79.24 70.77 81.45 73.56 80.68 81.82 67.52 72.89 79.21 82.02 76.86
MoNet 76.24 66.55 72.84 68.89 73.17 73.67 57.48 66.24 71.08 73.57 61.87
MLP 58.43 47.69 64.47 51.24 62.51 65.64 54.12 49.98 60.88 66.26 58.76

Co-Training
GCN 83.32 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 86.64 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 74.30 76.09 77.81 78.27 78.54 78.33 79.27 79.21 78.95 80.32 80.45
TDK 73.99 76.89 79.69 80.18 81.04 81.26 81.34 78.44 79.26 80.82 81.33
TCL 73.86 77.74 81.85 81.47 82.85 82.47 83.07 79.56 80.74 81.47 82.33
TMDC 74.92 77.83 82.52 82.82 84.09 83.04 83.80 81.32 81.14 82.55 82.70
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Table 8: Node classification f1 score on ogbn-arxiv-TA, Books-Children, Ele-Photo, and Sports-
Fitness. We bold the best results for each row.

Methods ogbn-arxiv-TA
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 50.48 52.15 53.01 54.81 54.39 55.41 56.40 55.71 55.88 57.52 57.64

GNNs

GCN 51.38 44.40 54.08 48.91 53.44 54.32 32.38 47.17 53.14 54.35 50.97
GAT 52.26 49.33 53.97 51.41 54.11 53.61 41.04 53.79 50.62 53.88 51.32
SAGE 51.81 45.58 55.22 49.38 54.57 55.86 38.56 48.37 54.39 55.79 52.41
RevGAT 52.34 49.88 55.12 52.21 54.68 55.91 42.06 54.11 55.21 56.04 53.01
NFormer 49.95 45.56 51.02 47.75 51.16 51.58 39.55 41.12 50.03 51.16 47.89
GIN 46.92 22.56 52.28 41.88 52.24 52.31 32.76 39.14 51.39 52.58 49.88
JKNet 47.10 36.82 47.07 37.25 48.49 45.75 29.56 31.27 44.54 43.29 28.55
APPNP 50.63 33.67 54.32 41.50 54.35 54.26 40.90 40.58 53.68 54.12 42.69
MoNet 38.62 20.15 35.26 24.56 36.57 39.22 28.45 20.12 31.26 34.28 26.51
MLP 34.71 15.35 47.37 25.33 45.88 48.05 24.39 45.58 23.38 48.37 43.03

Co-Training
GCN 51.55 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 52.76 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 50.81 52.43 54.41 55.02 54.89 56.67 56.92 55.83 56.42 58.60 58.73
TDK 50.96 52.88 54.96 55.52 55.21 57.03 57.23 56.22 56.96 59.44 59.59
TCL 51.46 53.11 55.36 56.01 55.96 57.68 57.96 57.03 57.69 60.02 60.13
TMDC 51.79 53.45 55.96 56.45 56.39 58.11 58.45 57.64 58.12 60.56 60.78

Methods Books-Children
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 26.26 38.09 46.17 46.44 47.55 48.25 49.54 40.70 50.51 50.67 51.34

GNNs

GCN 51.38 44.40 54.08 41.90 46.35 46.99 33.97 41.57 46.16 45.89 40.93
GAT 52.26 49.33 53.97 45.60 46.55 48.54 29.88 46.16 48.46 45.98 43.46
SAGE 51.81 45.58 55.22 43.49 47.31 48.77 33.30 43.60 46.74 47.77 42.94
RevGAT 52.35 49.96 55.52 45.78 47.56 49.01 33.41 46.26 48.59 47.82 46.29
NFormer 50.30 43.32 51.63 42.23 44.43 44.12 28.55 40.06 44.15 44.26 40.96
GIN 46.92 22.56 52.28 38.16 44.21 44.92 27.92 37.56 44.20 43.22 41.09
JKNet 47.10 36.82 47.07 30.15 38.92 30.35 7.98 23.14 36.22 26.56 13.54
APPNP 50.63 33.67 54.32 37.53 46.08 44.22 16.16 32.00 45.46 40.95 23.53
MoNet 36.89 21.56 43.38 28.56 34.45 36.51 23.65 31.12 36.64 37.99 29.92
MLP 34.71 15.35 47.37 20.75 34.88 38.87 22.54 21.14 34.15 36.85 29.97

Co-Training
GCN 52.03 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 52.96 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 36.47 42.04 48.16 44.79 47.87 48.37 49.42 46.75 48.89 51.80 51.59
TDK 33.22 40.26 46.80 47.16 49.40 49.42 51.84 45.82 50.06 52.07 52.21
TCL 34.15 40.43 48.46 42.93 49.77 49.72 51.85 44.59 50.62 52.63 51.85
TMDC 35.78 44.21 49.31 46.96 50.89 50.09 52.38 49.96 51.21 52.55 52.28

Methods Ele-Photo
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 66.11 69.31 70.82 70.48 70.04 71.21 72.10 67.97 70.96 73.69 74.30

GNNs

GCN 75.03 69.32 76.44 72.12 75.38 76.49 70.22 70.90 74.91 76.84 72.93
GAT 77.24 76.22 77.26 76.54 76.97 77.30 73.02 75.99 76.77 77.47 75.66
SAGE 75.75 72.97 76.22 73.96 75.26 76.71 73.25 73.53 74.86 77.31 74.11
RevGAT 77.34 76.55 77.31 76.81 77.23 77.35 73.55 76.12 76.94 77.51 76.21
NFormer 72.26 68.12 73.22 69.57 72.15 73.28 68.12 73.49 73.56 74.45 70.12
GIN 67.95 53.35 68.75 60.26 69.45 63.50 51.77 55.90 62.82 70.48 57.46
JKNet 69.99 64.72 69.92 65.5 69.5 67.02 40.33 62.51 69.72 68.11 54.92
APPNP 69.86 56.59 72.84 61.91 71.53 73.37 48.02 59.36 68.74 73.88 63.26
MoNet 45.51 44.12 51.12 48.86 52.26 55.51 34.56 42.56 53.35 57.11 38.69
MLP 39.60 14.98 48.32 24.56 44.86 50.65 29.30 23.25 41.91 51.75 37.18

Co-Training
GCN 74.59 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 76.98 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 65.19 66.62 71.50 70.94 71.34 71.76 72.27 72.77 73.23 73.96 74.61
TDK 66.15 68.08 72.92 73.60 74.98 75.08 75.84 73.79 71.71 74.85 75.85
TCL 64.94 69.34 75.03 74.93 76.59 76.62 76.92 71.95 75.05 75.48 76.95
TMDC 66.23 70.02 76.82 76.97 78.18 77.45 78.69 74.47 75.27 77.08 76.10

Methods Sports-Fitness
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 81.47 76.58 85.31 83.94 86.02 83.04 84.28 76.85 85.06 84.16 86.21

GNNs

GCN 84.93 82.24 86.15 83.46 86.16 85.83 77.96 83.54 85.70 86.07 83.71
GAT 86.45 85.46 86.58 85.57 86.65 86.26 74.23 86.85 85.80 85.77 84.56
SAGE 87.06 85.06 87.51 85.70 87.34 87.39 76.86 85.86 87.46 87.58 85.60
RevGAT 87.55 85.96 87.88 85.89 87.46 87.56 77.79 87.02 87.68 87.96 86.62
NFormer 83.69 81.15 84.56 82.20 84.42 84.66 74.12 82.26 84.49 85.02 82.26
GIN 81.59 71.31 74.91 71.51 81.95 72.47 67.06 71.80 68.77 83.83 79.86
JKNet 80.70 73.56 75.69 71.70 80.31 74.37 15.38 66.20 80.96 77.24 48.73
APPNP 83.62 71.84 83.54 73.10 84.59 82.61 36.81 73.37 85.18 84.31 77.37
MoNet 59.95 45.56 68.89 51.23 69.02 69.56 55.56 58.59 70.01 72.12 65.13
MLP 68.47 43.66 76.09 49.56 73.69 74.90 52.86 56.33 74.48 77.37 71.41

Co-Training
GCN 85.06 83.21 OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 85.87 86.21 OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 81.56 80.15 86.22 84.45 86.35 83.95 85.16 79.89 85.45 84.85 86.51
TDK 81.40 82.33 86.48 85.51 86.88 84.92 86.04 80.47 85.65 85.50 86.75
TCL 82.04 83.20 87.44 86.72 88.08 86.67 87.29 82.05 86.64 85.80 87.57
TMDC 83.15 84.21 88.56 87.69 89.01 88.89 88.56 84.51 87.89 86.43 88.78
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Table 9: Node classification accuracy and f1 score on Ele-Computers. We bold the best results for
each row.

Methods Ele-Computers (Accuracy)
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 58.32 59.88 60.51 60.80 60.40 61.10 61.68 59.63 60.70 61.22 61.96

GNNs

GCN 87.43 84.13 88.37 86.10 87.86 88.50 82.30 84.79 87.38 88.56 85.75
GAT 88.57 87.86 89.07 88.14 88.63 88.80 83.42 88.07 88.64 88.88 87.40
SAGE 87.90 86.43 88.67 86.97 88.30 88.87 82.81 87.16 88.35 88.66 86.85
RevGAT 88.66 87.92 89.32 88.22 88.72 88.91 84.12 88.45 88.86 89.03 87.56
NFormer 86.81 85.43 87.96 86.05 86.95 87.12 81.56 86.26 87.23 87.65 84.46
GIN 78.07 83.18 83.18 73.36 83.02 83.98 71.53 71.64 81.20 84.09 75.13
JKNet 85.05 85.31 85.31 79.37 85.08 83.91 55.15 73.67 83.32 83.66 70.39
APPNP 83.62 84.96 84.96 78.15 84.51 84.97 62.09 76.51 83.02 83.83 74.90
MoNet 78.30 77.76 77.76 62.08 77.67 74.53 47.68 60.24 68.18 70.63 59.67
MLP 46.02 53.76 53.76 36.21 50.85 55.11 42.45 36.25 47.59 55.03 46.74

Co-Training
GCN 83.93 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 86.04 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 58.32 60.20 61.42 61.53 63.43 61.30 61.74 61.99 62.41 63.12 63.43
TDK 58.18 60.42 63.38 63.13 62.95 63.80 64.97 60.96 62.49 62.92 62.95
TCL 58.80 61.04 66.50 67.02 64.93 67.94 70.08 61.50 63.34 64.55 64.93
TMDC 58.86 61.17 66.94 68.24 69.45 67.50 69.71 65.02 65.74 65.79 66.08

Methods Ele-Computers (F1 score)
Small Scale Base Scale Large Scale

BERT-Tiny ELECTRA DistilBERT ELECTRA BERT RoBERTa DeBERTa ELECTRA BERT RoBERTa DeBERTa

LMs PLM 44.55 47.65 51.47 48.77 52.53 53.39 52.10 48.46 51.57 55.28 55.04

GNNs

GCN 80.88 75.73 82.24 79.11 81.03 82.13 72.97 78.10 80.93 82.85 76.56
GAT 83.49 83.52 84.14 83.35 83.99 83.14 78.30 83.33 83.55 83.43 83.06
SAGE 82.85 81.38 84.21 82.18 83.67 84.44 76.42 81.81 82.93 83.13 80.98
RevGAT 83.65 83.76 84.55 83.56 84.43 84.69 79.02 83.46 83.69 87.79 83.51
NFormer 80.57 75.12 80.26 77.56 80.01 81.16 71.03 76.56 79.65 81.51 75.55
GIN 71.56 57.99 76.46 67.39 77.00 78.09 61.03 64.63 75.43 77.57 62.25
JKNet 77.01 67.90 73.99 67.83 75.02 70.26 41.49 63.58 72.35 69.78 58.30
APPNP 75.49 62.04 78.02 69.04 76.99 73.46 42.05 68.22 77.79 72.96 59.96
MoNet 48.56 35.22 52.69 40.03 49.86 53.60 43.65 39.88 45.65 54.12 48.55
MLP 32.20 16.23 40.06 21.00 37.41 41.22 26.21 19.88 34.25 42.34 32.73

Co-Training
GCN 80.79 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SAGE 83.67 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

TPT

TMLM 44.91 48.01 51.51 52.01 52.51 53.00 53.86 55.47 55.71 55.81 57.56
TDK 44.50 48.48 52.97 55.80 55.15 56.53 59.39 50.44 55.53 55.94 54.05
TCL 44.46 48.81 54.66 55.44 59.25 60.58 57.69 50.22 54.48 57.86 55.67
TMDC 45.05 49.19 54.91 55.93 59.12 61.35 59.39 58.10 58.44 60.52 60.06

D.2 Experimental Results for Link Prediction

We further show the experiment results for link prediction in Table 10. We mainly follow the code
used for link prediction in OGB. We choose GCN and GraphSAGE as the backbone model in the link
prediction experiments.

Table 10: Link Prediction results on CitationV8 and GoodReads.

Methods
CitationV8 GoodReads

Hits10 Hits50 Hits100 MRR Hits10 Hits50 Hits100 MRR

PLM
BERT-Tiny 33.56 ± 1.56 48.15 ± 2.02 66.56 ± 0.56 41.23 ± 1.39 36.86 ± 2.04 52.45 ± 1.69 76.23 ± 1.11 42.15 ± 0.86
BERT-Base 38.86 ± 2.53 57.53 ± 1.96 72.44 ± 0.98 44.56 ± 1.23 43.96 ± 2.26 60.87 ± 1.43 79.22 ± 0.46 44.43 ± 1.15

GNN

T-GCN 50.89 ± 3.56 74.26 ± 2.16 90.23 ± 0.89 60.79 ± 0.28 61.47 ± 4.65 84.14 ± 2.15 90.43 ± 0.60 69.44 ± 0.56
T-SAGE 45.12 ± 3.26 66.23 ± 1.56 89.36 ± 0.99 54.64 ± 1.03 64.52 ± 3.18 82.65 ± 1.45 88.53 ± 0.61 74.36 ± 0.84
B-GCN 50.39 ± 4.56 75.12 ± 2.56 90.16 ± 0.46 60.04 ± 0.86 55.42 ± 5.83 85.04 ± 2.34 91.49 ± 1.25 65.12 ± 0.48
B-SAGE 44.12 ± 4.12 71.26 ± 1.67 89.12 ± 0.75 53.96 ± 1.24 54.05 ± 3.03 82.87 ± 0.89 89.61 ± 0.33 65.68 ± 1.13

TCL

BERT-Tiny 41.26 ± 1.49 57.26 ± 1.59 72.62 ± 0.96 47.26 ± 1.23 45.47 ± 2.53 61.56 ± 1.56 82.43 ± 0.49 55.12 ± 0.84
BERT-Base 46.58 ± 1.69 65.77 ± 2.01 72.46 ± 0.56 52.78 ± 2.03 52.59 ± 2.27 65.97 ± 1.23 85.56 ± 0.34 61.21 ± 1.23
T-GCN 65.23 ± 2.36 81.23 ± 1.36 92.56 ± 0.56 65.69 ± 0.42 69.58 ± 2.29 88.89 ± 0.56 93.12 ± 0.57 83.16 ± 1.04
T-SAGE 61.89 ± 3.21 80.12 ± 1.46 90.23 ± 0.89 55.70 ± 0.15 70.28 ± 2.36 85.12 ± 0.47 90.38 ± 0.57 81.12 ± 1.23
B-GCN 68.26 ± 2.66 84.56 ± 0.56 93.68 ± 0.26 70.16 ± 0.38 73.87 ± 3.36 92.82 ± 0.16 95.85 ± 0.15 85.12 ± 1.56
B-SAGE 62.36 ± 3.46 80.56 ± 1.56 92.56 ± 0.68 60.18 ± 0.15 75.16 ± 2.26 90.74 ± 0.16 94.01 ± 0.11 82.15 ± 1.15

On the CitationV8 dataset, the parameters shared by the GCN and GraphSAGE include epochs,
model layers, hidden units, learning rate, and batch size, and their values are set to 200, {2, 3}, {128,
256},{1e-04 ~1e-03}, 65536. We validate the model performance with the Hits@K and MRR metrics.
We bold the best results on each row. In Table 10, the PLM indicates that we use LMs directly for link
prediction. In GNN, we use the features generated by BERT-Tiny and BERT-Base to feed into GCN
and SAGE, respectively. In TCL, we are subdivided into two approaches. The first is to pre-train
LMs with TCL tasks and then finetune LMs for downstream link prediction tasks. The second is
to use LMs pre-trained by TCL to encode text attributes. T-GCN(SAGE) denotes the node features
obtained by BERT-Tiny. B-GCN(SAGE) denotes the node features obtained by BERT-Base. When
we use TCL to pre-train the language models, we find that BERT-Tiny and BERT-Base improve on
MRR by 6.03 and 8.22, respectively. We also find that the features obtained using TCL-BERT-Base
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can significantly improve the results on downstream GNNs. For example, B-GCN improves by 10%
on average on all evaluation criteria.

On the GoodReads dataset, the parameters shared by the GCN and GraphSAGE include epochs, model
layers, hidden units, learning rate, and batch size, and their values are set to 200, {2}, {128},{1e-04
~5e-03}, 524288. We validate the model performance with the Hits@K and MRR metrics. We bold
the best results on each row. Observing from Table 10 we can find that after using TCL to pre-train
the language models and obtaining the corresponding node features, the significant improvements
are obtained in all experiments. In addition to the improvement in performance, the variance of the
model is also reduced in most experiments. This indicates that the node features generated by the
language model trained by a suitable pre-training task can not only enhance the performance of the
downstream model but also improve the stability of the downstream model to some extent.

D.3 Efficiency and Scalability of Co-Training Paradigm

Table 11: Effectiveness and Scalability of Co-Training with TCL.
BERT-Tiny BERT-Base

Datasets Co-Training TCL Co-Training TCL

Acc Memory Time Acc Memory Time Acc Memory Time Acc Memory Time

Arxiv 73.57 76.27% 44.0 71.55 27.59% 7.0 - OOM - 74.87 70.73% 130
Children 59.70 97.28% 15.5 54.11 19.76% 2.0 - OOM - 60.73 80.99% 30
History 85.09 85.74% 5.7 86.06 14.69% 1.3 - OOM - 86.80 98.73% 18
Photo 86.64 97.83% 14.6 73.86 22.75% 3.1 - OOM - 82.85 70.65% 120
# Average 76.25 89.38% 19.95 71.40 21.20% 3.4 - OOM - 76.31 80.28% 74.50

In this subsection, we present the accuracy, GPU memory cost on a single 32GB V100, and the
total training time (min) of the co-training paradigm and topological PLMs across five datasets.
BERT-Tiny+SAGE and BERT-Base+SAGE are selected as the co-training approaches. As one of
the best topological pre-training tasks, topological contrastive learning (TCL) is selected to enhance
the PLMs. The experimental results are presented in the Table 11. For the small language model
BERT-Tiny, the co-training paradigm costs more memories (∼ 4X) compared to the TCL and is much
slower (∼ 6X) than TCL. If we use the larger language model like BERT-Base, co-training models
will be out-of-memory in a single 32GB V100. Thus, the proposed topological pre-training paradigm
is more efficient and practical than the co-training ones.

D.4 Comparison between Shallow Text Encoders and PLMs

The traditional GNN pipelines generally encode the textual attributes of each node using a shallow
model such as the Skip-Gram. Therefore, we extend our node text encoding approach by incorporating
shallow models like Skip-Gram [29] and GloVe [30]. Experimental results (accuracy) on node
classification task over ogbn-arxiv-TA and Books-Children datasets are presented in the Table 12.
One can clearly see that GNNs equipped with deeper text encoders consistently outperform those
with shallow encoders, verifying the importance of node attribute understanding.

Table 12: Node classification performance on shallow text encoders and PLMs. We bold the best
result for each row.

Text Attribute Encoder ogbn-arxiv-TA Books-Children
GCN GAT SAGE RevGAT NFormer GCN GAT SAGE RevGAT NFormer

Shallow
Skip-Gram 71.97 72.22 72.02 73.42 71.03 56.23 55.84 56.49 57.13 56.03
GloVe 72.12 72.54 72.48 73.51 72.04 57.02 56.58 57.22 58.12 56.86

PLMs
DistilBERT 73.39 73.48 74.48 74.68 73.56 58.19 57.91 59.33 59.28 58.03
BERT-Base 73.30 73.40 74.14 74.59 72.80 58.11 57.70 58.74 58.67 57.42
RoBERTa-Base 73.56 73.38 74.52 74.82 73.12 58.62 57.83 58.97 59.01 57.26

D.5 Topological Pre-training under Semi-supervised and Few-shot Learning Scenarios

In order to provide the more comprehensive evaluation and deeper insights into our topological
pre-training strategies, we evaluate them in different scenarios.
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D.5.1 Semi-supervised Learning

To effectively evaluate the performance of various methods within semi-supervised settings, we’ve
adjusted the training ratio from 20% to 100%. 20% implies that only 20% of training samples are
used in the model training process. BERT-Base is selected as the foundational text encoder model.
Detailed experimental results concerning the node classification task across four datasets have been
presented in Table 13. Notably, as the training ratio decreases, the benefits of topological pre-training
approaches become even more significant. Among these strategies, TMDC demonstrates superior
performance across all datasets within the semi-supervised context.

Table 13: Topological pre-training methods under semi-supervised scenarios with different training
ratios

Methods Arxiv History
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

PLM 57.76 62.56 67.12 70.15 72.96 70.86 75.61 80.18 83.28 86.09

TMLM 62.15 65.51 69.01 71.76 73.97 74.39 77.70 81.21 84.03 86.24
TDK 63.86 66.78 70.01 71.95 74.23 75.46 78.93 82.17 84.18 86.46
TCL 64.98 67.89 71.22 73.56 74.87 77.12 80.53 83.46 85.49 86.80
TMDC 65.48 68.91 72.92 75.09 76.11 78.24 81.48 84.23 85.80 86.82

Methods Children Photo
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

PLM 44.21 49.12 53.80 56.97 59.91 56.61 63.28 69.45 73.86 77.53

TMLM 48.52 51.88 55.38 58.13 60.34 66.72 70.08 73.58 76.33 78.54
TDK 49.46 52.98 56.21 58.15 60.43 70.07 73.59 76.82 78.76 81.04
TCL 51.21 54.67 57.59 59.55 60.73 73.20 76.66 79.58 81.54 82.85
TMDC 52.88 56.17 58.91 60.41 61.43 75.54 78.83 81.57 83.07 84.09

D.5.2 Few-shot Learning

Table 14: Topological Pre-training methods under few-shot scenarios

Methods
Arxiv Children History Sports

3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

PLM 37.76 41.56 26.55 30.15 32.52 37.78 42.56 46.22

TMLM 40.08 45.21 31.86 36.89 35.51 40.15 44.18 50.15
TDK 41.15 47.42 34.56 39.26 36.58 42.26 45.69 52.68
TCL 43.26 49.58 38.26 42.12 38.95 44.12 48.58 55.64
TMDC 45.68 51.52 40.05 44.62 40.86 46.69 50.26 58.95

We’ve undertaken few-shot learning experiments over four datasets. The term "K-shot" denotes
that merely K samples correspond to each category within the training set. Based on the results in
the Table 14, topological pre-training consistently enhances the performance of LMs across diverse
few-shot scenarios.

D.6 Experimental Results on Large-scale Text-attributed Graphs

Considering the existence of large text-attributed graphs, we further execute preliminary experiments
on the ogbn-papers100M dataset [34] with 111,059,956 nodes and 1,615,685,872 edges. Given the
substantial scale of this dataset, which poses challenges for many existing GNNs, we have chosen a set
of scalable GNNs (SGC [55], GAMLP [56] and SIGN [57]). Additionally, we have selected several
prominent LMs including BERT-Tiny, ELECTRA, and DistilBERT. Different training paradigms
are systematically evaluated under the node classification task. Experimental results (accuracy) are
demonstrated in the Table 15. GAMLP achieves the best performance among all the GNN models
due to its adaptive node-wise feature combination. Furthermore, it is noteworthy that the topological
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pre-training (referred to as TPT) methods obtain the SOTA performance over this large dataset,
demonstrating the superiority of the proposed pre-training tasks.

Table 15: Node classification results on ogbn-papers100M

Models
LMs GNNs TPT
PLM SGC SIGN GAMLP MLP TMLM TDK TCL TMDC

BERT-Tiny 62.11 62.51 64.26 65.12 49.32 63.55 63.98 64.78 65.31
ELECTRA-Small 61.01 61.07 63.06 64.98 47.26 62.24 63.13 63.98 65.16
DistilBERT 64.18 63.58 65.81 67.73 51.26 65.36 65.89 66.76 68.12

Table 16: Statics information of the Cresci-2015 and TwiBot-20

Datasets User Tweet Edge Human Bot

Cresci-2015 5,301 2,827,757 7,086,134 1,950 3,351
TwiBot-20 229,580 33,488,192 33,716,171 5,237 6,589

D.7 Text-attributed Graphs in Social Networks

In the realm of text-attributed graphs (TAGs), two prominent and prevalent categories are academic
and e-commerce graphs. For example, all text-attributed graphs within the OGB benchmark [34]
belong to these two domains. To boost the impact of our benchmark, we have broadened the spectrum
of TAG domains by introducing a new dimension, social networks, into our benchmark. To this
end, we have incorporated two text-attributed graphs sourced from the widely-used social platform
Twitter, named Cresci-2015 [58] and TwiBot-20 [59]. These two datasets are collected for social bot
detection. Each node corresponds to a user within Twitter, intrinsically linked to the tweets they have
published. The underlying graph topology is shaped by the relationships (e.g., following relations)
among users. The labels attributed to each node signify whether the respective user is classified
as a bot or not. It is worth noting that, owing to privacy concerns intrinsic to social network data,
we provide a summarized representation of the outcomes and insights. The original datasets are
available upon request through email, pending the acceptance of this paper. The detailed statistics of
the datasets are presented in Table 16.

Table 17: Node classification results on Cresci-2015 and TwiBot-20 dataset (accuracy)
Datasets Models LMs GNNs Co-Training TPT

PLM GCN SAGE GAT GCN SAGE GAT TMLM TDK TCL TMDC

Cresci-2015

BERT-Tiny 91.0 93.3 93.6 94.1 93.6 93.9 OOM 91.5 92.1 93.0 94.3
ELECTRA-Small 92.0 93.0 93.4 93.9 OOM OOM OOM 92.3 92.9 93.8 94.6
DistilBERT 95.5 95.3 95.5 96.0 OOM OOM OOM 95.9 96.3 97.1 97.9
RoBERTa-Base 97.0 96.2 96.6 96.9 OOM OOM OOM 97.5 97.9 98.3 98.8

TwiBot-20

BERT-Tiny 68.2 76.8 79.2 81.1 OOM OOM OOM 69.9 72.6 75.6 76.9
ELECTRA-Small 69.5 75.6 78.8 80.1 OOM OOM OOM 71.6 73.0 76.4 77.1
DistilBERT 76.5 80.9 84.6 85.4 OOM OOM OOM 77.6 78.1 79.3 81.2
RoBERTa-Base 78.6 81.6 84.9 85.9 OOM OOM OOM 80.1 81.2 82.3 83.4

The node classification results (accuracy) are demonstrated in the Table 17. "OOM" stands for "Out-
Of-Memory" on a 32GB V100. On the Cresci-2015 dataset, we observe a noteworthy trend wherein
PLM-based methods exhibit comparable or even superior performance compared to GNN-based
methods, particularly as the parameters of PLMs increase. RoBERTa consistently surpasses all three
GNN models. On the TwiBot-20 dataset, the graph topology seems to be more important. The Graph
Attention Network (GAT) emerges as the top-performing model on these datasets. Additionally, the
employment of topological pre-training strategies brings performance enhancements for both datasets,
underscoring their efficacy in advancing model capabilities.

D.8 Evaluations of LLMs on TAGs

In our benchmark, we have mainly studied PLMs based on encoder architecture like BERT [10].
However, most of the recent rapidly developing models in the NLP field are LLMs based on the
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Decoder architecture represented by GPT [32]. Following the experiment workflow denoted in
TAPE [6], we leverage LLMs to generate high-quality node features for TAGs. From the perspective
of LMs, we incorporate the recent and prominent large language models as the baselines, including T5
(11B) [60], LaMDA (137B) [61], GPT-3 (175B) [28] and PaLM (540B) [62]. In brief, we use LLMs’
inference APIs to generate explanations about the original text. These explanations are incorporated
into the original text for fine-tuning the respective LMs. Finally, we extract features from LMs and
use them to train the downstream GNNs. DistilBERT is selected as the feature extractor LMs, and
GCN, GAT, and SAGE are selected as the downstream GNNs. Experimental results are presented in
the Table 18. PaLM has consistently attained the most impressive performance across all downstream
GNNs and datasets.

Table 18: Node classification experiments on the three datasets. The row "LLMs" denotes using
LLMs to generate explanations about the raw text to fine-tune the LM and generate node features for
downstream GNNs. The row "Raw" denotes using the original LMs to generate node features.

Methods
Arxiv Children Photo

GCN GAT SAGE GCN GAT SAGE GCN GAT SAGE

Raw DistilBERT 73.39 73.48 74.48 58.19 57.91 59.33 82.91 83.75 83.50

LLMs

T5 73.51 73.80 74.22 58.61 58.14 59.12 83.76 84.75 84.33
LaMDA 74.06 74.55 74.92 59.67 59.56 60.86 84.23 84.95 84.59
GPT-3 74.41 74.81 75.34 60.12 60.01 61.12 84.56 85.23 84.78
PaLM 75.22 76.43 76.72 61.59 61.26 62.23 85.45 85.95 85.69

D.9 Study on the Selection of Node Attributes

In our previous experiments, we have observed a phenomenon that LMs usually perform much better
on datasets that use product descriptions as text attributes than those that use product reviews. In
order to be more explicit about the effect of node attribute selection on different models, we have
reconstructed two datasets with product description as text attribute for Ele-Photo and Ele-Computers,
where LMs performed poorly before. In the Table 19, datasets labeled with "RW" incorporate
user reviews as node attributes, while those marked "DS" employ product descriptions as attributes.
Different training paradigms are systematically evaluated under the node classification task. BERT-
Base is selected as the foundational text encoder model. Evidently, the performance of PLMs when
utilizing descriptions as node attributes demonstrates a substantial enhancement in contrast to reviews.
This observation underscores the pivotal role that the selection of node attributes plays in achieving
desirable TAG representation learning.

Table 19: Experimental results (accuracy) of node classification on datasets with different text
attributes.

Datasets
LMs GNNs TPT
PLM SAGE GCN GAT TMLM TDK TCL TMDC

Photo-RW 77.53 83.27 82.70 83.74 78.54 81.04 82.85 84.09
Photo-DS 85.07 84.86 83.72 85.16 86.15 86.49 87.26 88.15

Computers-RW 61.96 88.30 87.86 88.63 63.43 82.85 64.93 69.45
Computers-DS 86.41 88.90 88.26 89.13 87.56 87.26 88.96 89.53

E Broader Impact

Representation learning on text-attributed graphs is a fast-growing and promising research field, and
covers a wide range of applications. We start this benchmark to call more researchers’ attention to this
common data type. The proposed benchmark CS-TAG can significantly facilitate the development
of the textual-attributed graph learning. CS-TAG deeply and extensively explores the paradigm of
combining pre-trained language models (PLMs) with graph neural networks (GNNs), and provides
a comprehensive evaluation over multiple large constructed datasets. Nevertheless, there are still
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lots of research gaps need to be bridged. First, the self-supervised and unsupervised learning
in textual-attributed graphs are not included in CS-TAG, which play an important role in graph
data mining research. Second, CS-TAG does not pay much attention to link prediction task that
has many applications in real world, such as recommendation system and drug discovery. Third,
the interpretability of textual-attributed graph learning is not discussed here. Comparing with the
vectorized features in other graphs, such as chemical molecules, the text attributes can be directly
understood by human. Therefore, the textual-attributed graphs are more human-intelligible and have
promising potential for interpretability research.

In the future, we will keep track on the newly emerged problems in textual-attributed graphs and
provide more solid experimental results and detailed analyses to improve CS-TAG consistently. It is
an ongoing effort and we strive to continuously include more datasets and evaluate different methods
to advance the field.
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