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Abstract

Audio-visual segmentation is a challenging task that aims to predict pixel-level
masks for sound sources in a video. Previous work applied a comprehensive
manually designed architecture with countless pixel-wise accurate masks as su-
pervision. However, these pixel-level masks are expensive and not available in
all cases. In this work, we aim to simplify the supervision as the instance-level
annotation, i.e., weakly-supervised audio-visual segmentation. We present a novel
Weakly-Supervised Audio-Visual Segmentation framework, namely WS-AVS, that
can learn multi-scale audio-visual alignment with multi-scale multiple-instance
contrastive learning for audio-visual segmentation. Extensive experiments on AVS-
Bench demonstrate the effectiveness of our WS-AVS in the weakly-supervised
audio-visual segmentation of single-source and multi-source scenarios.

1 Introduction

When we hear a dog barking, we are naturally aware of where the dog is in the room due to
the strong correspondence between audio signals and visual objects in the world. This human
perception intelligence attracts many researchers to explore audio-visual joint learning for visual
sound localization and segmentation. In this work, we aim to segment sound source masks from both
frames and audio in a video without relying on expensive annotations of pixel-level masks, i.e., only
the instance-level annotation is given for training.

Audio-visual segmentation (AVS) [1] is a recently rising problem that predicts a pixel-level map
of objects that produce sound at the time of frames. A related problem to this recent task is sound
source localization, which aims to locate visual regions within the frame that correspond to the
sound. Sound source localization (SSL) [2, 3, 4, 5, 6, 7, 8, 9, 10] estimates a rough location of
the sounding objects at a patch level, while the goal of AVS is to estimate pixel-wise segmentation
masks for all sound sources. AVS requires a more comprehensive manually designed architecture
than SSL since it needs to identify the exact shape of sounding objects. However, this complicated
network for AVS requires countless pixel-wise accurate masks as supervision, which costs numerous
labor and resources. In contrast, we aim to get rid of these costly pixel-level annotations to achieve
weakly-supervised audio-visual segmentation.

Many weakly-supervised methods [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have been proposed
to be successful in the visual segmentation community, where they replaced accurate pixel-level
annotations with weak labels, including scribbles [13, 15], bounding boxes [11, 12], points [14],
and image-level class labels [16, 17]. Typically, CAM [18] was proposed with a CNN-based image
classifier to generate pseudo segmentation masks at the pixel level using coarse object localization
maps. With coarse localization maps, following works tried to obtain the full extent of objects by
regions expansion [21, 22, 23], stochastic inference [24], boundary constraints [25, 26, 27], or object
regions mining and erasing [28, 29]. However, only one modality, i.e., image is involved in these
aforementioned CAM-based weakly-supervised approaches. In this work, we need to tackle with two
distinctive modalities (audio and vision), where a well-designed cross-modal fusion is required to
aggregate audio-visual features with high similarity in the semantic space.
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The main challenge is that we do not have pixel-level segmentation masks for this new weakly-
supervised multi-modal problem during training. Without this supervision, the performance of
AVS [1] on audio-visual segmentation degrades significantly, as observed in our experiments in
Section 4.2. In the meanwhile, previous weakly-supervised semantic segmentation [18, 30] and visual
sound source localization [9] methods have two main challenges. First, no multi-modal constraint
is applied for pixel-wise mask prediction in the previous weakly-supervised semantic segmentation
methods as they do not use the audio as input during training. Second, current visual sound source
localization baselines generate only coarse heatmaps for sounding objects instead of binary pixel-
wise segmentation masks. To address the aforementioned challenges, our key idea is to apply
multi-scale multiple-instance contrastive learning in audio-visual fusion to learn multi-scale cross-
modal alignment, which differs from existing weakly-supervised semantic segmentation approaches.
During training, we aim to use a reliable pseudo mask with multi-scale visual features as mask-level
supervision for predicting accurate audio-visual segmentation masks in a weakly-supervised setting.

To this end, we propose a novel weakly-supervised audio-visual segmentation framework, namely
WS-VAS, that can predict sounding source masks from both audio and image without using the
ground-truth masks. Specifically, our WS-AVS leverages multi-scale multiple-instance contrastive
learning in audio-visual fusion to capture multi-scale cross-modal alignment for addressing modality
uncertainty in weakly-supervised semantic segmentation methods. Then, the pseudo mask refined
by contrastive class-agnostic maps will serve as pixel-level guidance during training. Compared
to previous visual sound source localization approaches, our method can generate binary accurate
audio-visual segmentation masks.

Empirical experiments on AVSBench [1] comprehensively demonstrate the state-of-the-art per-
formance against previous weakly-supervised baselines. In addition, qualitative visualizations of
segmentation masks vividly showcase the effectiveness of our WS-AVS in predicting sounding object
masks from both audio and image. Extensive ablation studies also validate the importance of audio-
visual fusion with multi-scale multiple-instance contrastive learning and pseudo mask refinement by
contrastive class-agnostic maps in single-source and multi-source audio-visual segmentation.

Our main contributions can be summarized as follows:

• We investigate a new weakly-supervised multi-modal problem that predicts sounding object
masks from both audio and image without needing pixel-level annotations.

• We present a novel framework for weakly-supervised audio-visual segmentation, namely
WS-AVS, with multi-scale multiple-instance contrastive learning to capture multi-scale
audio-visual alignment.

• Extensive experiments comprehensively demonstrate the state-of-the-art superiority of
our WS-AVS over previous baselines on single-source and multi-source sounding object
segmentation.

2 Related Work

Audio-Visual Learning. Audio-visual learning has been explored in many existing works [31,
32, 33, 34, 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] to learn audio-visual correspondence
from those two distinct modalities in videos. Given video sequences, the goal is to push away
those from different pairs while closing audio and visual representations from the same pair. Such
cross-modal correspondence is useful for several tasks, such as audio/speech separation [37, 47,
48, 35, 36, 49, 50, 51, 52], visual sound source localization [2, 3, 4, 5, 6, 7, 8, 9, 10, 53, 54], audio
spatialization [55, 56, 57, 38], and audio-visual parsing [58, 59, 60, 61]. In this work, we mainly
focus on learning audio-visual association for pixel-level audio-visual segmentation, which is more
demanding than those tasks mentioned above.

Visual Sound Localization. Visual sound source localization aims to identify objects or regions of a
video that correspond to sounds in the video. Recent researchers [2, 4, 5, 7, 8, 62, 9, 10] used diverse
networks to learn the audio-visual alignment for predicting sound sources in the video. Typically,
Attention10k [2] proposed a two-stream architecture based on an attention mechanism to detect
sounding objects in the image. More recently, EZVSL [9] applied a multiple-instance contrastive
learning objective to learn the alignment across regions with the most corresponding audio. However,
they cannot predict exact masks for sounding objects.
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Audio-Visual Segmentation. Audio-visual segmentation is a challenging problem that predicts pixel-
wise masks for sounding objects in the image. In order to address this issue, Zhou et al. [1] introduced
the first audio-visual segmentation benchmark with pixel-level annotations for each 5-second video,
where a binary mask is used to indicate the pixels of sounding objects for the corresponding audio.
Moreover, they proposed an encoder-decoder network with a temporal pixel-by-pixel audio-visual
interaction module to solve the pixel-level audio-visual segmentation task. However, their approach
requires exhausted pixel-level annotations as the main supervision. Without this supervision, their
performance degrades significantly as observed in our experiments in Section 4.2. In this work, we
aim to get rid of the dependency of pixel-level labels, by leveraging only instance-level labels for
weakly-supervised audio-visual segmentation.

Weakly-Supervised Semantic Segmentation. Weakly-supervised visual segmentation aims at reduc-
ing the burden of collecting pixel-level annotations for image segmentation at a large scale required
by its fully-supervised counterpart. Early methods explored different forms of weak supervision,
including image-level label [63, 64], scribble [13, 15], and bounding box [12, 65, 66]. Typically,
CAM [18] was introduced to generate class activation maps as pseudo pixel-level segmentation
masks for weakly-supervised object localization. Based on CAM, following works tried to optimize
the coarse class activation map for more precise object localization, by expanding localization re-
gions [21, 22, 23], using stochastic inference [24], exploring boundary constraints [25, 26, 27], or
mining and erasing regions of objects [28, 29]. More recently, C2AM [30] leveraged contrastive
learning with the semantic relation between foreground and background as positive and negative pairs
to generate a class-agnostic activation map. Different from weakly-supervised visual segmentation
baselines, we aim to develop a fully novel framework to aggregate semantics from both audio and
visual representations with the only instance-level annotation. To the best of our knowledge, we are
the first to explore class-agnostic activation maps on weakly-supervised audio-visual segmentation.
In addition, we leverage audio-visual multi-scale fusion to boost the segmentation performance.

Weakly-Supervised Audio Learning. Weakly-supervised learning has been widely-used in many
audio-relevant tasks, such as sound events detection [67, 68, 69] and sound source separation [70,
71, 72, 73]. Typically, WAL-Net [69] proposed using weakly labeled data from the web to explore
how the label density and corruption of labels affect the generalization of models. DC/GMM [71]
applied an auxiliary network to generate the parameters of Gaussians in the embedding space with a
one-hot vector indicating the class as input. However, the problem we need to solve in this work is
more difficult and challenging. Indeed, we aim to leverage the weakly labelled supervision of image
categories to solve the new weakly-supervised multi-modal problem.

3 Method

Given a clip of audio and video frames, our target is to predict pixel-level masks for sounding objects
in the frame. We present a novel Weakly-Supervised Audio-Visual Segmentation framework named
WS-AVS for single source audio-visual segmentation without involving the pixel-wise annotation,
which mainly consists of two modules, Audio-Visual Fusion with Multi-scale Multiple Instance
Contrastive Learning in Section 3.2 and Pseudo Mask Refinement by contrastive class-agnostic maps
in Section 3.3.

3.1 Preliminaries

In this section, we first describe the problem setup and notations, and then revisit the first work [1]
with pixel-level annotations for single source audio-visual segmentation.

Problem Setup and Notations. Given an audio spectrogram and an image, our goal is to predict the
binary segmentation mask for the sound source in the image spatially. Let D = (ai, vi) : i = 1, ..., N
be a dataset of paired audio ai ∈ RT×F and visual data vi ∈ R3×H×W , where only one sound
source ai are assumed to be existing in vi. Note that T, F denotes the dimension of time and
frequency of the audio spectrogram. We follow previous work [1, 9] and first encode the audio
and visual inputs using a two-stream neural network encoder and projection heads, denoted as
fa(·), ga(·) and fv(·), gv(·) for the audio and images, separately. The audio encoder computes global
audio representations ai = ga(fa(ai)),ai ∈ R1×D and the visual encoder extracts multi-scale
representations {vs

i }Ss=1 = gv(fv(vi)),v
s
i ∈ RD×Hs×W s

for each sth stage. During the training,
we do not have mask-level annotations Y ∈ RH×W .
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Figure 1: Illustration of the proposed Weakly-Supervised Audio-Visual Segmentation (WS-AVS)
framework. Global audio features ai and multi-scale visual features {vs

i }Ss=1 are extracted from
the audio spectrogram and image via an audio encoder and an image encoder, respectively. The
Audio-Visual Fusion module combines multi-scale multiple-instance contrastive learning to capture
multi-scale cross-modal alignment between global audio and multi-scale visual features. Then, with
multi-scale visual features {vs

i }Ss=1, the Pseudo Mask Refinement module generates a reliable pseudo
mask Ŷ for sounding objects by using contrast class-agnostic map. Finally, a decoder is applied on
multi-scale audio-visual features {zsi}Ss=1 to predict masks. The pixel-wise loss is simply optimized
between the predicted mask M and the pseudo mask Ŷ.

Revisit Audio-Visual Segmentation with Pixel-level Annotations. To solve the single source
audio-visual segmentation problem, AVS [1] introduced the pixel-wise audio-visual fusion module to
encode the multi-scale visual features and global audio representations. After the cross-modal fusion,
the audio-visual feature map zsi at the sth stage is updated as:

zsi = vs
i + µ

(
θ(vs

i )ϕ(âi)
⊤

HsW s
ω(vs

i )

)
(1)

where âi ∈ RD×Hs×W s

denotes the duplicated version of the global audio representation ai that
repeats HsW s times at the sth stage. µ(·), θ(·), ϕ(·), ω(·) denote the 1× 1× 1 convolution operator.
Then those updated multi-stage feature maps are passed into the decoder of Panoptic-FPN [74] and
a sigmoid activation layer to generate the final output mask M ∈ RH×W . With the pixel-level
annotation Y as supervision, they applied the binary cross entropy loss between the prediction and
label as:

Lbaseline = BCE(M,Y) (2)

However, such a training mechanism is extremely dependent on pixel-level annotations. Without this
supervision, their performance on single source audio-visual segmentation deteriorates significantly,
as observed in Section 4.2. In the meanwhile, current weakly-supervised semantic segmentation
(WSSS) [18, 30] and visual sound source localization (VSSL) [9] methods will pose two main
challenges. First, there is no multi-modal constraint for pixel-level mask prediction in the previous
WSSS methods as they do not involve the audio during training. Second, existing VSSL approaches
only predict coarse heatmaps for sounding sources instead of accurate pixel-wise segmentation masks.
To address these challenges, we propose a novel weakly-supervised audio-visual segmentation
framework for single sounding object segmentation, which is composed of Audio-Visual Fusion
with multi-scale multiple-instance contrastive learning and Pseudo Mask Refinement by contrastive
class-agnostic map, as shown in Figure 1.

3.2 Audio-Visual Fusion with Multi-scale Multiple-Instance Contrastive Learning

In order to address the modality uncertainty brought by the previous WSSS baselines [18, 30],
inspired by EZ-VSL [9], we propose to conduct audio-visual fusion by focusing only on the most
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aligned regions when matching the audio to the multi-scale visual feature. This is because most
locations in the video frame do not correspond to the sounding object, and thus the representations at
these locations should not be aligned with the audio during training.

To align the audio and visual features at locations corresponding to sounding sources, we apply the
multi-scale multiple-instance contrastive learning (M2ICL) objective to align at least one location
in the corresponding bag of multi-scale visual features with the audio representation in the same
mini-batch, which is defined as:

La→v = − 1

B

B∑
i=1

S∑
s=1

log
exp

(
1
τ sim(ai,v

s
i )
)∑B

m=1 exp
(
1
τ sim(ai,v

s
m)

) (3)

where the similarity sim(ai,v
s) denotes the max-pooled audio-visual cosine similarity of ai and vs

i
across all spatial locations at s stage. That is, sim(ai,vs

i ) = maxHsW s(ai,v
s
i ). B is the batch size,

D is the dimension size, and τ is a temperature hyper-parameter.

Similar to EZ-VSL [9], we use a symmetric loss of Eq. 4 to discriminate negative audio bags from
other audio samples in the same mini-batch, which is defined as

Lv→a = − 1

B

B∑
i=1

S∑
s=1

log
exp

(
1
τ sim(ai,v

s
i )
)∑B

m=1 exp
(
1
τ sim(am,vs

i )
) (4)

where am denote the global audio visual from other sample m in the mini-batch. The overall audio-
visual fusion objective with the multi-scale multiple-instance contrastive learning mechanism is
defined as:

Lavf = − 1

B

B∑
i=1

S∑
s=1

log
exp

(
1
τ sim(ai,v

s
i )
)∑B

m=1 exp
(
1
τ sim(ai,v

s
m)

)+
log

exp
(
1
τ sim(ai,v

s
i )
)∑B

m=1 exp
(
1
τ sim(am,vs

i )
) (5)

Optimizing the loss will push the model to learn discriminatively global audio representation ai
and multi-scale visual features {vs

i }Ss=1. Then, these features are fed forward into Eq. 1 to generate
updated multi-scale audio-visual features {zsi}Ss=1. Finally, with these updated multi-scale audio-
visual features, we apply the decoder of Panoptic-FPN [74] to generate the output mask M. Note that,
the recent audio-visual segmentation baseline [1] does not give any cross-modal constraint on the
audio and visual representations in the audio-visual fusion, which causes a significant performance
drop when removing the ground-truth masks during training.

3.3 Pseudo Mask Refinement by Contrastive Class-agnostic Maps

The second challenge of spatial uncertainty in VSSL approaches [9] requires us to utilize mask-level
supervision for generating precise final output mask M. To generate reliable pseudo masks of
training sets, motivated by recent WSSL pipelines [30], we introduce the Pseudo Mask Refinement
by applying a contrastive class-agnostic map on multi-scale visual features {vs

i }Ss=1. Specifically, we
utilize the contrastive loss in [30] to close the distance between the representations in positive pairs
(foreground-foreground, background-background) and push away the representations in negative pairs
(foreground-background). Then, we use the background activation maps as pseudo labels to further
train a salient object detector [75] to predict the salient region S ∈ R1×H×W in the image. Finally,
the predicted salient cues are concatenated with the initial class-agnostic map A ∈ RD×H×W to
perform the argmax operator along the embedding dimension to generate the binary pseudo mask
Ŷ ∈ RH×W , which is formulated as:

Ŷ = L

[
argmax

1+D
([S;A])

]
(6)

where [ ; ] denotes the concatenation operator. Note that since we are focusing on single-source
segmentation, L = [LS ;LA] ∈ R(1+D)×H×W . LS ∈ R1×H×W is the full label of zeros for the
salient cues, while LA ∈ RD×H×W is the full label of ones for the class-agnostic maps. With the
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Table 1: Comparison results (%) of weakly-supervised audio-visual segmentation. “ws” denotes the
weakly-supervised baseline, where only the instance-level class is used for training.

Method Single Source Multiple Source
mIoU (↑) F-score (↑) mIoU (↑) F-score (↑)

AVS [1] (ws) 12.63 24.99 8.76 15.72
CAM [18] 19.26 27.88 12.65 19.83
EZ-VSL [9] 29.40 35.70 23.58 27.31
C2AM [30] 30.87 36.55 25.33 29.58
WS-AVS (ours) 34.13 (+3.26) 51.76 (+15.21) 30.85 (+5.52) 46.87 (+17.29)

reliable pseudo mask refinement, we apply the binary cross entropy loss between the predicted mask
M and the pseudo mask Ŷ, which is defined as:

Lpmr = BCE(M, Ŷ) (7)

The overall objective of our model is simply optimized in an end-to-end manner as:

L = Lavf + Lpmr (8)

During inference, we follow previous work [1] and directly use the predicted mask M ∈ RH×W as
the final output. It is worth noting that the final localization map in the current VSSL methods [9]
was generated through bilinear interpolation of the audio-visual feature map at the last stage.

4 Experiments

4.1 Experiment Setup

Datasets. AVSBench [1] contains 4,932 videos with 10,852 total frames from 23 categories including
animals, humans, instruments, etc. Following prior work [1], we use the split of 3,452/740/740 videos
for train/val/test in single source segmentation.

Evaluation Metrics. Following previous work [1], we use the averaged IoU (mIoU) and F-score to
evaluate the audio-visual segmentation performance. mIoU computes the intersection-over-union
(IoU) of the predicted mask and ground-truth mask for evaluating the region similarity. F-score
calculates both the precision and recall for evaluating the contour accuracy.

Implementation. The input image is resized to a resolution of 224 × 224. The input audio takes
the log spectrograms extracted from 3s of audio at a sample rate of 22050Hz. Following previous
works [9, 10], we apply STFT to generate an input tensor of size 257× 300 (257 frequency bands
over 300 timesteps) using 50ms windows with a hop size of 25ms. We follow the prior audio-visual
segmentation work [1] and use the ResNet50 [76] as the audio and visual encoder. The visual model
is initialized using weights pre-trained on ImageNet [77]. The model is trained with the Adam
optimizer with default hyper-parameters β1 = 0.9, β2 = 0.999, and a learning rate of 1e-4. The model
is trained for 20 epochs with a batch size of 64.

4.2 Comparison to Prior Work

In this work, we propose a novel and effective framework for weakly-supervised audio-visual
segmentation. To validate the effectiveness of the proposed WS-AVS, we comprehensively compare
it to previous audio-visual segmentation, weakly-supervised semantic segmentation, and visual sound
source localization baselines: 1) AVS [1](ws): the weakly-supervised version of the first audio-visual
segmentation work, where we removed the pixel-level annotations for training; 2) CAM [18]: the
first baseline using class-activation maps as pseudo segmentation masks for weakly-supervised object
localization; 3) EZ-VSL [9]: the state-of-the-art visual sound source localization approach with
coarse source maps as output; 4) C2AM [30]: the very recent work for weakly-supervised semantic
segmentation with only the image as input.

The quantitative comparison results are reported in Table 1. As can be seen, we achieve the best
performance in terms of all metrics compared to previous weakly-supervised baselines. In particular,
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Ground-TruthRaw Image AVS (ws) EZ-VSLCAM C!AM WS-AVS (ours)

Figure 2: Qualitative comparisons with weakly-supervised audio-visual segmentation (AVS [1]),
weakly-supervised semantic segmentation (CAM [18], C2AM [30]), and visual sound source local-
ization (EZ-VSL [9]) baselines on single-source segmentation. The proposed WS-AVS produces
much more accurate and high-quality segmentation maps for sounding objects.

the proposed WS-AVS significantly outperforms AVS [1](ws), the weakly-supervised version of the
state-of-the-art audio-visual segmentation approach, by 21.50 mIoU and 26.77 F-score. Moreover,
we achieve superior performance gains of 3.26 mIoU and 15.21 F-score compared to C2AM [30],
which implies the importance of the proposed multi-scale multiple-instance contrastive learning for
addressing the modality uncertainty in audio-visual fusion. Meanwhile, our WS-AVS outperforms EZ-
VSL [9], the current state-of-the-art visual sound source localization baseline, by a large margin, where
we achieve the performance gains of 4.73 mIoU and 16.06 F-score. These significant improvements
demonstrate the superiority of our method in single-source audio-visual segmentation.

In addition, significant gains in multi-source sound localization can be observed in Table 1. Compared
to AVS [1](ws), the weakly-supervised version of the state-of-the-art audio-visual segmentation
approach, we achieve the results gains of 22.09 mIoU and 31.15 F1 score. Furthermore, the proposed
approach still outperforms C2AM [30] by 5.52 mIoU and 17.29 F1 score. We also achieve highly
better results than EZ-VSL [9], the current state-of-the-art visual sound source localization baseline.
These results validate the effectiveness of our approach in learning multi-scale multiple-instance
semantics from mixtures and images for multi-source localization.

In order to qualitatively evaluate the localization maps, we compare the proposed WS-AVS with
weakly-supervised AVS [1], CAM [18], C2AM [30], and EZ-VSL [9] on single-source segmentation
in Figure 2. From comparisons, three main observations can be derived: 1) Without pixel-level
annotations, AVS [1], the first audio-visual segmentation fails to predict the masks for sounding
objects; 2) the quality of segmentation masks generated by our method is much better than the strong
visual sound source baseline, EZ-VSL [9]; 3) the proposed WS-AVS achieves competitive even
better results on predicted masks against the weakly-supervised semantic segmentation baseline [30]
by using contrast class-agnostic maps for prediction. These visualizations further showcase the
superiority of our simple WS-AVS with multi-scale multiple-instance contrastive learning to guide
segmentation for predicting accurate source masks.

4.3 Experimental Analysis

In this section, we performed ablation studies to demonstrate the benefit of introducing the Audio-
Visual Fusion with multi-scale multiple-instance contrastive learning and Pseudo Mask Refinement
module by contrastive class-agnostic map. We also conducted extensive experiments to explore the
effect of fusion stages and batch size on weakly-supervised audio-visual segmentation. Furthermore,
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Table 2: Ablation studies on Audio-Visual Fusion (AVF) and Pseudo Mask Refinement (PMR).

AVF PMR mIoU (↑) F-score (↑)

✗ ✗ 12.63 24.99

✓ ✗ 31.85 (+19.22) 39.78 (+14.79)

✗ ✓ 32.46 (+19.83) 43.92 (+18.93)

✓ ✓ 34.13 (+21.50) 51.76 (+26.77)

Figure 3: Effect of fusion stages and batch size on mIoU and F-score.

we visualized high-quality pseudo masks from Pseudo Mask Refinement in weakly-supervised
training.

Audio-Visual Fusion & Pseudo Mask Refinement. To validate the effectiveness of the introduced
audio-visual fusion with multi-scale multiple-instance contrastive learning (AVF) and Pseudo Mask
Refinement by contrastive class-agnostic map (PMR), we ablate the necessity of each module and
report the quantitative results in Table 2. We can observe that adding AVF to the vanilla baseline
highly increases the results of single-source audio-visual segmentation by 19.22 mIoU and 14.79
F-score, which demonstrates the benefit of multi-scale multiple-instance contrastive learning (M2ICL)
in extracting aligned cross-modal feature in fusion for source segmentation. Meanwhile, introducing
only PMR in the baseline also increases the segmentation performance in terms of all metrics. More
importantly, incorporating AVF with M2ICL and PMR together into the baseline significantly raises
the performance by 21.50 mIoU and 26.77 F-score. These improving results validate the importance
of AVF with M2ICL and PMR with contrastive class-agnostic map in addressing both modality and
spatial challenges for generating accurate audio-visua masks.

Effect of Fusion Stages and Batch Size. The number of fusion stages and batch size used in the
proposed M2ICL affect the extracted cross-modal representations for audio-visual segmentation. To
explore such effects more comprehensively, we varied the number of fusion stages from {1, 2, 3, 4}
and ablated the batch size from {8, 16, 32, 64, 128}. The comparison results of segmentation perfor-
mance are shown in Figure 3. When the number of fusion stages is 4 and using batch size of 64 in
M2ICL, we achieve the best segmentation performance in terms of all metrics. With the increase of
fusion stages from 1 to 4, the proposed WS-AVS consistently raises results, which shows the impor-
tance of multi-scale visual features in audio-visual fusion for learning discriminative cross-modal
representations. Regarding the batch size, the performance of the proposed WS-AVS climbs with the
increase of the batch size from 8 to 64. However, increasing the batch size from 64 to 128 will not
continually improve the result since there might be some false negatives in the mini-batch for this
training set with a relatively smaller size.

Generated Pseudo Mask. Generating reliable pseudo masks with contrast class-agnostic maps is
critical for us to train the weakly-supervised framework. To better evaluate the quality of generated
pseudo masks, we visualize the pseudo mask and class-agnostic map in Figure 4. As can be observed
in the last column, the class-agnostic map can successfully localize the sounding object in the image.
Furthermore, the pseudo masks in the third column predicted by Eq. 6 have high quality and they
are even fine-grained compared to the manually annotated ground-truth masks. These meaningful
visualization results further showcase the success of the Pseudo Mask Refinement in extracting
reliable pseudo masks as guidance for single-source audio-visual segmentation.
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Figure 4: Qualitative comparisons of the ground-truth mask, pseudo mask, and class-agnostic map.
Note that the generated pseudo mask is used for weakly-supervised training.

4.4 Limitation

Although the proposed WS-AVS achieves superior results on single-source audio-visual segmentation,
the performance gains of our approach on the mIoU metric are not significant. One possible reason is
that our model easily overfits across the training phase, and the solution is to incorporate dropout
and momentum encoders together for weakly-supervised audio-visual segmentation. Meanwhile, we
notice that our model performs worse on mixed sound sources, such as a scenario with both female
singing and playing tabla. The future work could be to add separation objectives or assign semantic
labels to both audio and visual segments in audible videos.

5 Conclusion

In this work, we successfully investigate the weakly-supervised audio-visual segmentation to eliminate
pixel-level annotations as supervision. Then we present WS-AVS, a novel Weakly-Supervised
Audio-Visual Segmentation framework with multi-scale multiple-instance contrastive learning for
capturing multi-scale audio-visual alignment. Furthermore, we conduct extensive experiments on
AVSBench to demonstrate the superiority of our WS-AVS against previous weakly-supervised audio-
visual segmentation, weakly-supervised semantic segmentation, and visual sound source localization
approaches.

Broader Impact. The proposed approach successfully predicts segmentation masks of sounding
sources from manually-collected datasets on the web, which might cause the model to learn internal
biases in the data. For instance, the model could fail to discover rare but crucial sound sources.
Therefore, these issues should be addressed for the deployment of real applications.
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