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1 Novelty and contributions

How to make inverse graphics/3D reconstruction more robust and work under more extreme scenarios
is a challenging and longstanding problem in computer vision. In this work, we take a step forward
by exploring the potential of performing structure from motion and recovering object intrinsics and
environmental extrinsics from a single image without pre-trained priors. Specifically, we focus on the
scenarios where there are multiple (near-)identical objects within the scene. By carefully formulating
a duality between multiple copies of an object in a single image and multiple views of a single object,
we are able to resolve the ambiguities in 3D and effectively recover the properties of interest.

Over the years, the community has been actively investigating how to harness multi-view information
from videos or sparse, extreme-view images, and push forward the frontier of 3D reconstruction
and inverse graphics. Our work can be seen as an attempt in such a stride. To our knowledge, this
is the first effort to conduct structure from motion from a single image. Furthermore, based on
our preliminary experiments, our approach also has the potential to deal with slight variations, as
shown in Sec. 6.1. Specifically, we test our approach on the crane image that [14] provided, where
each instance is slightly different. By augmenting our geometry backbone with a instance-specific
deformation field, we are able to reconstruct reasonable poses and recover sensible shape and material.
We hope it can shed light on future research along similar directions, such as handling articulate
objects or objects with large deformation.

2 Additional details of proposed pipeline

2.1 The In-plane augmentation of pose estimation for the single image

Vanilla COLMAP often fails to reconstruct the duplicated instances of a single image. The reason for
the failure can probably be explained by Fig. 7: when the lighting effect and occlusion are disregarded,
a single-view image containing duplicated objects can be treated as observing a single object from
multiple viewpoints using a multi-view camera setup. This conversion results in numerous accidental
and non-uniform multi-view images with varying orientations that may not align uniformly with the
upward axis. Therefore, vanilla COLMAP cannot find stable matching points from these extreme
camera distribution. By contrast, with the help of in-plane rotation augmentation, we can greatly
improve the performance (e.g., from failure to success). This demonstrate that the incorporation of
in-plane rotation augmentation becomes essential to facilitate robust point matching, as demonstrated
in Figure 8. However, there are still limitations of this pose estimation module. First, for low-texture
objects or low-resolution scenes where pixels are not distinct, our method may still suffer, like the
60 boxes in Fig. 3. Second, the time complexity of the algorithm scales with the square of the
number of objects, so it will be slow when there are many instances. We believe that combining some
transformation-invariant feature extractor (such as GIFT[4]) can solve this problem faster.
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For synthetic dataset we use 3200×3200 resolution for pose estimation and resize to 800×800
resolution for training. For real-world dataset we use the 3072×3072 resolution for pose estimation
and resize to 800×800 resolution for training.

For n instances in the scene, we first find relative rotation angles for all n(n−1)
2 instance pairs. For

each pair, we fix one of them and gradually rotate the other, increasing the angle by 4 degrees each
time. We record the number of matching points n at different rotation angles θ, i.e.n(θ), and mark
those rotation angles with a greater number of matching points than the average as "good angles", i.e.

θgood ∈
{
θ|θ >

N∑
i=0

n(θi)
N

}
, where N = 360

dθ = 90.

However, the relative rotation angles θgood of one pair is usually conflict with other pairs. To resolve
this issue, We use a customized procedure to transform multiple relative pairwise poses into an
initialized global rotation angle for each instance. Specifically, we use Scipy’s BFGS optimizer to
find a global rotation angle that minimizes the loss. Transferring relative rotation angles into global
ones ensures the integration into the standard BA pipeline. After we correct each instance with the
global rotation, we use Superglue[7] and Superpoint[1] to extract and match key points. Then we
apply a standard bundle adjustment algorithm to solve the 6Dof pose of each instances. The algorithm
is as follows:
Require: θi

good, where i ∈ [0, n(n−1)
2 − 1] (good relative rotation angles of each pair)

L← inf (Initialize loss)
θj
global ← U [0, 2π], where j ∈ [0, n− 1] (uniform initialized global rotation angle for each pair)

while L not converge do
θp,qrel ← |θ

p
global − θqglobal| mod 2π, where p, q ∈ [0, n− 1]

Lp,q ← min
(∣∣∣θp,qrel − θp

good

∣∣∣)+min
(∣∣∣θp,qrel − θq

good

∣∣∣)
L←

∑
p,q

Lp,q

end while
Return θjglobal (resulting global rotations)

2.2 Training

We train 100000 iterations for geometry stage with 1e-4 learning rate. The visibility stage takes 3000
iterations with 2e-5 learning rate. The material stage takes 10000 iterations with 2e-4 learning rate.
Please check our code for more detail. This supplementary material provides further details on our
method and presents an extended set of experimental results.

3 Comparison with recent works

3.1 “Seeing a Rose in Five Thousand Ways”[14]

The setup of the two papers are similar, but they are different in the following aspects:

• Assumptions: While [14] is able to model the variations among the instances, they impose other
strong assumptions such as knowing the camera distribution in advance. The strong camera
assumption allows them to sidestep the pose estimation step (i.e., SfM) and focus on modeling the
variation. In contrast, we assume no knowledge about the poses and attempt to solve for the full
inverse rendering pipeline from the beginning. We thus resort to the (near-)identical instances to
recover the exact 6 DoF poses.

• Approaches: [14] tackle the task through generative modeling. Since they need to train a generative
model per scene, their approach is very data-hungry. In contrast, our approach mainly exploits
multi-view geometry to recover the underlying intrinsic and extrinsic properties. By explicitly
baking the constraints into the modeling procedure, our approach becomes much more data-
efficient. To validate our conjecture, we train [14] on three randomly selected scenes from our
dataset, each of which has 10 identical instances. As shown in the pdf, the generative model
failed to recover either of them. For comparison, we also test our approach on the crane image
that [14] provided (the only publicly available data), where each instance is slightly different.
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By augmenting our geomtry backbone with a instance-specific deformation field, we are able to
reconstruct resonable poses and recover sensible shape and material.

• Extrinsics: [14] assume a simple phong shading model and assume a dominant directional light,
whereas we parameterize our materials with PBR materials and the lighting with enironmental
map, allowing us to model complex real world scenarios more effectively. Finally, it is unclear how
to extend [14] to multi-view setup. In contrast, our method is naturally compatible with multi-view
observations.

3.2 “Modeling Indirect Illumination for Inverse Rendering”[13]

It is important to note that our model does not rely on a specific geometric model and it can be
replaced with more advanced neural representations. In this paper, we build our inverse rendering
pipeline from Invrender[13]. But there are some differences in execution:

• Backbone: In our approach, we utilize NeuS[9] as our neural surface model instead of IDR[11];
and for the visibility field, we opt for Siren[8] instead of ReLU.

• Metallic: Our model can reconstruct metallic object besides pure diffuse object.
• MLP distillation: We distill the geometry MLP into a smaller one for fast classification.
• Self-occlusion and Inter-occlusion: Since we have multiple instances in our setup, it is essential to

model both inter-object self-casted shadows and inter-object occlusions. Our model goes beyond
simple object-centric representation.

4 Additional details of the dataset

4.1 Synthetic dataset

Our new dataset Dup consists of 13 synthetic scenes. "Apple", "Medicine box", "Can" and "Driller"
consists of 100 training views and 200 testing views for multi-view experiments. "Color box", "Cash
machine", "Cleaner", "Clock", "Coffee machine", "Fire extinguisher", "Wood guitar", "Warning sign"
and "Food tin" consists of 7-10 multi-view images to test our model on single-view and baselines for
multi-view. The resolution of the raw images are 3200×3200.

4.2 Real-world dataset

We scatter object on the table and use mobile phone to gather several scenes, named "Toy airplane",
"Cake box", "Cheese box", "Cola", "Potato chips" and "Yogurt". The number of objects in the scene
ranges from 5 to 10. The resolution of the raw images are 3072×3072.

5 Additional details or analysis of experiments

5.1 The influence of different number of instances

We conducted experiment on the image of "box". The training image are visualized in Fig. 3. Please
refer to the paper for quantitative result. The results show that there is a "sweet spot" for the box
dataset that achieves the best trade-off between image resolution and number of views. We believe
that this "sweet spot" exists for other data sets as well. For objects with simple textures and complex
geometric shapes, a smaller number of instances should be processed, otherwise there will be large
errors in pose estimation. On the contrary, for objects with simple shapes and complex textures, the
number of instances can be increased to reduce the ambiguity of material recovery.

5.2 The influence of different neural representation

We conducted experiment on the image of "Cash machine". The triplane representation is adapted
from PET-NeuS[10] and hash representation is adapted from Neuralangelo[3].

• Triplane: The triplane representation is consist of three planes, each plane is of 512×512×32
resolution. The triplane will passed to a self-attention convolution module to produce features with
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different frequency bands. Then a 3D point will sample space features from these triplane and
decode into SDF value and color with a small MLP.

• Hash position encoding: The point is encoded by hash function with the default setting in
Neuralangelo[3]. Then the hash feature is passed to MLP layers and decode to SDF and color
values. Here We use analytical gradient instead of numerical gradient in the default setting because
we found the former will produce less high frequency noise in our tasks.

We show the visual image in Fig.11 and it demonstrate that the triplane has the best performance.
Please refer to the paper for the quantitative result.

5.3 Multi-view single-object vs single-view multi-object

To ensure a fair comparison, we maintain the multi-view single-object (M-S) setting, while adjusting
the single-view multi-object (S-M) setting to have a similar number of non-empty pixels. The training
images in the M-S setting (see Fig. 12, first two rows) contain 244,335 non-empty pixels, whereas
the training image in the S-M setting (see Fig. 12, bottom row) consists of 263,910 non-empty pixels.
We provide a qualitative comparison in Fig. 13 and present the corresponding quantitative analysis in
Table 4.

5.4 The contribution of each loss term

We experiment the contribution of each loss term on the image of "fire-extinguisher". We train 50000
iterations for geometry reconstruction, 2000 for visibility fields and 13000 iterations for material
recover (less iterations than the main paper) for faster verification. The results show that our full
model has the best albedo and relighting results. Its rendering performance is only surpassed by the
ablation model without the metallic binary loss term.

The result table indicates that our loss function is sensible. First, The metallic of natural materials is
mostly binary. However the "w/o metal loss" does not limit the metallic proprieties so it may has
a stronger fitting ability, but there is also a risk of over-fitting. Second, the same as [13], the latent
smooth loss term in texture-MLP can reduce the possibility of over fitting because the materials of
real world objects are limited. Third, the eik loss and mask loss proposed by NeuS[9] can constrain
the surface and boundary of the geometry, making the surface of the object more accurate and smooth.
Fourth, the pre-trained surface normal can provide a strong geomeotry prior, reduce the ambiguity of
sparse view inverse rendering.

5.5 The influence of noisy instance segmentation image

In the main paper, we use ground-truth segmentation mask for synthetic dataset and use an use
interactive pre-trained segmentation models for real-world dataset. To assess the influence of
segmentation map noise, we conducted a comparative analysis of the model’s performance on the
"fire extinguisher" image. We compared results obtained using ground truth segmentation maps(left
image of Fig. 9) with those generated by pre-trained models through segmentation maps generated
with 2 to 4 clicks per instance, without subsequent post-processing (right image of Fig. 9).

The result in second row of Fig. 10 shows that the our model has certain robustness to the noise of
segmentation.

6 Additional experiments

6.1 Single-view reconstruction on "paper crane" dataset from Zhang et al.[14]

To demonstrate the difference between our method and [14], we test their on our single-image dataset
and versa versa. We run their method on the image of "airplane", "cake box" and "cola", which
contains 6, 7, 7 instances respectively. The result in Fig. 4 shows that their methods fail to reconstruct
a good geometry and texture and generate over-smooth output. This is because they suppose a pose
prior rather than accurate camera pose and don’t support zero-variant scenes, thus cannot accurately
capture complex materials and geometry. In addition, it will produce large errors when objects have
mutual occlusion.
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We also run our method on crane dataset proposed by [14] in their Github repository. We apply SfM
with in-plane rotation, which gives us better registration (Fig. 8). To model the geometry variances of
instances, we also adopt an deformable-aware pipeline by inserting a geometry latent into the middle
of geometry MLP. Our method can reconstruct the 6DoF pose, geometry and PBR texture of these
cranes. We visualize the recoverd texture in Fig. 1 and the surface normal of different instances in Fig
2. The difference from [14] is that our latent vector can correspond to the instances in the original
picture one by one, but what they learn is a geometry distribution and need "latent inversion"(similar
to GAN inversion) to calculate the latent for a specific instance.

However, as shown in 1, our model does not recover a fully consistent texture at corresponding points
across different instances. This is because we model the variance of instances by implicit instance
vector rather than the explicit displacement field. The displacement field based neural representation,
such as Nvdiffrec-MC[2] and D-NeRF[6], can achieve strict consistency between different time or
instances. Nevertheless, the displacement field usually has a greater number of parameters than
implicit instance vector, which may lead to overfitting. We leave this for future study.

6.2 The influence of inaccurate pose

Since our method adopts a stage-wise inference procedure, errors in pose estimation can propagate
and impact the quality of the inverse rendering reconstructions. To verify the extent of this impact,
we conduct an oracle experiment where we replace the estimated 6 DoF object poses with ground
truth. The results, presented in Table 5, demonstrate that our model achieves performance similar to
that of oracles, primarily due to its precise estimation of small object poses. However, when faced
with samples involving significant pose estimation errors for objects, the performance of the oracle
outperforms our model, as shown in Table 6.

We jointly optimize the geometry and camera pose, achieving similar results(??) to the original
pipeline. Optimizing camera poses under sparse-views and varying lighting conditions presents a
notably ambiguous challenge. Despite the alterations in the pose of each instance, the average rotation
and translation errors of the final 6Dof pose for the model have shown no reduction.

7 Additional visualizations

7.1 Synthetic multi-view experiment

The qualitative results are shown in Fig. 15, 16, 17, 18. The quantitative results are shown in table. 1.

7.2 Synthetic single-view experiment

The qualitative results are shown in Fig. 19, 20, 21, 22, 23, 24, 25, 26, 27. The quantitative results
are shown in table. 2. The recovered bounding boxes are shown in Fig 6.

7.3 Real-world single-view experiment

The qualitative results are shown in Fig. 28, 29, 30, 31, 32, 33. The quantitative results are shown in
table. 3. The recovered bounding boxes are shown in Fig 5.
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Rendering Albedo Roughness Relighting Env Light Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LIPIPS ↓ MSE ↓ CD ↓
PhySG 25.985 0.809 0.199 16.233 0.620 0.363 0.087 21.323 0.748 0.270 0.054 0.024
Nv-DiffRec 27.840 0.886 0.089 16.123 0.533 0.412 0.116 17.418 0.459 0.388 0.168 0.268
InvRender 26.452 0.809 0.206 16.984 0.637 0.370 0.084 22.224 0.757 0.267 0.067 0.024
Ours 23.213 0.781 0.222 21.961 0.655 0.260 0.026 25.486 0.830 0.183 0.029 0.011

Table 1: Synthetic multi-view result. All models are trained with 100 multi-view images. Our
model has the best texture recovery performance. Nv-DiffRec reaches the best rendering result in
training image, but has the worst texture recovery due to overfitting.

Rendering Albedo Roughness Relighting Env Light Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LIPIPS ↓ MSE ↓ CD ↓
PhySG 20.047 0.584 0.323 14.977 0.460 0.405 0.255 18.504 0.554 0.356 0.082 0.033

Nv-DiffRec 20.513 0.638 0.248 14.021 0.416 0.431 0.165 17.214 0.427 0.391 0.067 0.050
InvRender 19.489 0.557 0.351 14.724 0.438 0.431 0.247 17.998 0.527 0.381 0.082 0.033

Ours 24.307 0.752 0.152 17.629 0.594 0.229 0.062 21.374 0.695 0.189 0.052 0.034
Table 2: Synthetic single view result. The baseline models are trained with 10 multiview images
and our model is trained in single image. Our model has the best texture recovery performance.

Rendering

PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 20.624 0.641 0.263
Nv-DiffRec 18.818 0.569 0.282
InvRender 20.665 0.639 0.262
Ours 20.326 0.660 0.192

Table 3: Experiment result on real-world single-view dataset. Our model has a comparable quality
even with a single-view.

Rendering Albedo Roughness Relighting Env Light Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LIPIPS ↓ MSE ↓ CD ↓
M-S 21.347 0.591 0.511 20.229 0.594 0.514 0.096 21.328 0.600 0.494 0.045 0.010

S-M (ours) 23.994 0.657 0.375 23.448 0.666 0.365 0.050 24.254 0.667 0.359 0.0519954 0.007
Table 4: Quantitative results of M-S setting and S-M setting. When the #instance × #views is
a constant and with good pose estimation, our model has better performance than the traditional
multi-view single object setting.

Rendering Albedo Roughness Relighting Env Light Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LIPIPS ↓ MSE ↓ CD ↓
Oracle 24.570 0.782 0.128 17.858 0.597 0.223 0.105 21.132 0.709 0.174 0.063 0.031
Ours 24.307 0.752 0.152 17.629 0.594 0.229 0.062 21.374 0.695 0.189 0.051 0.034

Table 5: Ablation result for ground-truth 6Dof pose (oracle model).

Rendering Albedo Roughness Env Light Geometry

Sample Model dR (°) ↓ dT (°) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ MSE ↓ MSE ↓ CD ↓ Precision ↑ Recall ↑ F1 ↑
Cleaner Oracle - - 26.600 0.903 0.055 22.210 0.033 0.028 0.008 1.000 0.984 0.992

Ours 1.344 3.067 25.059 0.844 0.105 21.647 0.042 0.033 0.012 0.986 0.967 0.976
Gitar Oracle - - 25.966 0.809 0.132 20.608 0.057 0.049 0.018 0.954 0.923 0.938

Ours 1.076 1.653 24.599 0.736 0.172 19.516 0.063 0.034 0.046 0.984 0.513 0.675
Coffee Oracle - - 22.266 0.747 0.141 13.419 0.286 0.128 0.040 0.649 0.587 0.617

Ours 0.589 1.015 22.477 0.711 0.166 13.347 0.064 0.057 0.039 0.732 0.610 0.665
Table 6: The influence of inaccurate pose. Oracle model perform much better than our model when
we have a large pose estimation error.
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normal diffuse roughness rendering GT & bbox

Figure 1: Qualitative result of our method on the Crane image. We manually flipped the incorrect
global rotation for some cranes before extract the final matching points to reduce the impact of
symmetry. The result shows that our model can recover the geometry, texture, and bounding box from
a single image, even with objects with variations in shape and appearance. However, the PBR texture
is not fully consistent across different instances since we use instant vector rather than learning a
displacement field. We believe that mesh based representation, like Nvdiffrec-MC [2] can achieve
better consistency since it modeling the scene by displacement field.

Figure 2: Different instances of our method on paper-crane dataset. We randomly visualize the
surface normal of 5 instances.

Figure 3: Training images for different number of duplicated objects and the corresponding 6
DoF pose error. The black camera represent the ground-truth and the colorful cameras are estimation.
There are 6,8,10,15,20,25,30,50,60 instances in the scene. Our method has a large pose estimation
errors for 60 boxes in 3200×3200 resolution due to the lower resolution of each instance.
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input GT normal shading rendering ours

Figure 4: Qualitative results of [13] on our single-image dataset. When there are fewer instances,
their generative approach produces only a blurred texture and imprecise geometry on our single-image
datasets. In contrast, our method (as shown in the 5th columns) accurately reconstructs the objects.

Figure 5: The bounding box of real-world dataset. The bounding boxes does not fully overlapped
with each object because the bounding boxes are plotted according to the SfM points clouds, which
does not fully cover object’s surface.
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Figure 6: The bounding box of real-world dataset. The bounding boxes does not fully overlapped
with each object because the bounding boxes are plotted according to the SfM points clouds, which
does not fully cover object’s surface.
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single-view equivalent multi-view single-view equivalent multi-view

Figure 7: Without considering the lighting effect and occlusion, a single-view image with duplicated
objects (left) is equivalent to use multi-view camera to observe a single object (right).
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w/o augmentation with augmentation
Figure 8: After in-plane augmentation, the pre-trained Super-point[1] and Super-glue[7] model can
generate more matching points between two instances.

Figure 9: Clean segmentation map(Left) and noisy segmentation map(right). The right segmenta-
tion map is generated by pre-trained model and without post-processing.
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Full w/o clean seg w/o metal loss w/o latent loss

w/o normal loss w/o eik loss w/o mask loss GT

Full w/o clean seg w/o metal loss w/o latent loss

w/o normal loss w/o eik loss w/o mask loss GT

Figure 10: Ablation for different loss term. We evaluate the contribution of each loss term or input
noise to our model. Our full most reaches the best result on most metrics
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original hash triplane GT

Figure 11: Different neural representation. The triplane representation (adapted from [10]) has
better performance than our naive MLP representation, while hash position encoding (adapted from
[3]) has worse performance due to overfitting.
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Figure 12: First two rows: Training images for multi-view single object (M-S), there are 10 in total,
only show 6 here. Last row: Training image for single-view multi-object (S-M).
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M-S S-M GT
Figure 13: M-S vs S-M Visual result for multi-view single object (M-S) and single-view multiple
objects (S-M).
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Oracle Ours GT Oracle Ours GT Oracle Ours GT

Figure 14: Use ground-truth pose instead of SfM-derived pose. Our model get similar results as
orcale model.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 15: Multi-view synthetic. Apple.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 16: Multi-view synthetic. Box.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 17: Multi-view synthetic. can.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 18: Multi-view synthetic. drill.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 19: Single-view synthetic. box.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 20: Single-view synthetic. cash.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 21: Single-view synthetic. cleaner.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 22: Single-view synthetic. clock.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 23: Single-view synthetic. coffee.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 24: Single-view synthetic. fire.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 25: Single-view synthetic. guitar.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 26: Single-view synthetic. sign.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours GT

Figure 27: Single-view synthetic. tin.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours

Figure 28: Single-view realworld. airplane.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours

Figure 29: Single-view realworld. cake.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours

Figure 30: Single-view realworld. cheese.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours

Figure 31: Single-view realworld. cola.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours

Figure 32: Single-view realworld. potato.
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Nvdiffrec[5] Physg[12] InvRender[13] Ours

Figure 33: Single-view realworld. yogurt.
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