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Abstract

The recent proliferation of large-scale text-to-image models has led to growing
concerns that such models may be misused to generate harmful, misleading, and
inappropriate content. Motivated by this issue, we derive a technique inspired
by continual learning to selectively forget concepts in pretrained deep generative
models. Our method, dubbed Selective Amnesia, enables controllable forgetting
where a user can specify how a concept should be forgotten. Selective Amnesia can
be applied to conditional variational likelihood models, which encompass a variety
of popular deep generative frameworks, including variational autoencoders and
large-scale text-to-image diffusion models. Experiments across different models
demonstrate that our approach induces forgetting on a variety of concepts, from
entire classes in standard datasets to celebrity and nudity prompts in text-to-image
models. Our code is publicly available at https://github.com/clear-nus/selective-
amnesia.

Figure 1: Qualitative results of our method, Selective Amnesia (SA). SA can be applied to a variety
of models, from forgetting textual prompts such as specific celebrities or nudity in text-to-image
models to discrete classes in VAEs and diffusion models (DDPM).
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1 Introduction

Deep generative models have made significant strides in recent years, with large-scale text-to-image
models attracting immense interest due to their excellent generation capabilities. Unfortunately,
these models can also be misused to create realistic-looking images of harmful, discriminatory and
inappropriate content [1]. For instance, one could generate Deepfakes — convincing fake images —
and inappropriate content involving real individuals (e.g., nude celebrities) [2, 3]. A naïve approach
to address this issue is to omit specific concepts or individuals from the training dataset. However,
filtering datasets of billions of images is a challenge in itself. Moreover, it entails retraining the entire
model from scratch each time a new concept is to be forgotten, which is costly in terms of compute
and time. In this work, our goal is to retrain the model to only forget specific concepts, i.e., to induce
selective amnesia.

Several efforts in this direction have been made in the field of data forgetting [4–7], as well as concept
erasure in the context of text-to-image diffusion models [1, 8, 9]. However, works in the former either
focus on discriminative models, or require special partitioning of data and model during training.
The few works in the latter nascent field of concept erasure target text-to-image diffusion models
and work by exploiting specific design characteristics of these models. Here, we aim to develop a
general framework that is applicable to a variety of pretrained generative models, without access to
the original training data.

Our key insight is that selective forgetting can be framed from the perspective of continual learning.
Ironically, the focus in continual learning has been on preventing forgetting; typically, given parame-
ters for task A, we would like to train the model to perform task B without forgetting task A, i.e.,
θA � θA,B . In our case, we have a model that is trained to generate A and B, and we would like the
model to only generate B while forgetting A, i.e., θA,B � θB .

In this work, we show that well-known methods in continual learning can be unified into a single
objective function that can be used to train models to forget. Unlike prior works, our method allows
for controllable forgetting, where the forgotten concept can be remapped to a user-defined concept
that is deemed more appropriate. We focus our scope on conditional variational likelihood models,
which includes popular deep generative frameworks, namely Variational Autoencoders (VAEs) [10]
and Denoising Diffusion Probabilistic Models (DDPMs) [11]. To demonstrate its generality, we apply
our method, dubbed Selective Amnesia (SA) to datasets and models of varying complexities, from
simple VAEs trained on MNIST, DDPMs trained on CIFAR10 and STL10, to the open-source Stable
Diffusion [12] text-to-image model trained on a large corpus of internet data. Our results shows that
SA causes generative models to forget diverse concepts such as discrete classes to celebrities and
nudity in a manner that is customizable by the user.

Our paper is structured as follows. We cover the relevant background and related works in Sec. 2.
We introduce Selective Amnesia (SA) in Sec. 3, followed by in-depth experimental results in Sec. 4.
Finally, we conclude in Sec. 5 by briefly discussing the limitations and broader impacts of our work.

2 Background and Related Work

2.1 Variational Generative Models

Conditional Variational Autoencoders. Conditional Variational Autoencoders [10] are generative
models of the form p(x, z|θ, c) = p(x|θ, c, z)p(z|θ, c), where x is the data (e.g., an image), c is
the concept/class, and p(z|θ, c) is a prior over the latent variables z. Due to the intractability of the
posterior p(z|θ,x, c), VAEs adopt an approximate posterior q(z|ϕ,x, c) and maximize the evidence
lower bound (ELBO),

log p(x|θ, c) ≥ log p(x|θ, z, c) +DKL(q(z|ϕ,x, c)||p(z|θ, c)) = ELBO(x|θ, c).

Conditional Diffusion Models. Diffusion models [11] are a class of generative models that sample
from a distribution through an iterative Markov denoising process. A sample xT is typically sampled
from a Gaussian distribution and gradually denoised for T time steps, finally recovering a clean sample
x0. In practice, the model is trained to predict the noise ϵ(xt, t, c|θ) that must be removed from the
sample xt with the following reweighted variational bound: ELBO(x|θ, c) =

∑T
t=1 ||ϵ(xt, t, c|θ)−

ϵ||2, where xt =
√
ᾱtx0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I), ᾱt are constants related to the noise schedule
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in the forward noising process. Sampling from a conditional diffusion model can be carried out using
classifier-free guidance [13].

2.2 Continual Learning

The field of continual learning is primarily concerned with the sequential learning of tasks in deep
neural networks, while avoiding catastrophic forgetting. A variety of methods have been proposed to
tackle this problem, including regularization approaches [14, 15], architectural modifications [16, 17],
and data replay [18]. We discuss two popular approaches that will be used in our work: Elastic
Weight Consolidation and Generative Replay.

Elastic Weight Consolidation. Elastic Weight Consolidation (EWC) [14] adopts a Bayesian
approach to model the posterior of the weights for accomplishing two tasks, DA and DB , given
a model θ∗ that has learnt DA. The Laplace approximation is applied to the posterior over the
initial task DA, giving rise to a quadratic penalty that slows down learning of weights that are most
relevant to the initial task. Concretely, the posterior is given by log p(θ|DA, DB) = log p(DB |θ)−
λ
∑

i
Fi

2 (θi − θ∗i )
2, where F is the Fisher information matrix (FIM) and λ is a weighting parameter.

In practice, a diagonal approximation Fi = Ep(D|θ∗)[(
∂
∂θi

log p(D|θ))2] is adopted for computational
efficiency. Fi can be viewed as a sensitivity measure of the weight θi on the model’s output.
For variational models, we modify the Fi to measure the sensitivity of θi on the ELBO: Fi =
Ep(x|θ∗,c)p(c)[(

∂
∂θi

ELBO(x|θ, c))2].

Generative Replay. Generative Replay (GR) [18] was proposed as a method where a generative
model can be leveraged to generate data from previous tasks, and used to augment data from the
current task in the training of a discriminative model. More generally, it motivates one to leverage
generative models for continual learning, whereby without needing to store any of the previous
datasets, a model can be trained on all tasks simultaneously, which prevents catastrophic forgetting.

Our work leverages EWC and GR to train a model to sequentially forget certain classes and concepts.
There have been several works utilizing these techniques for generative models, such as GANs [19, 20]
and VAEs [21]. However, these works tackle the traditional problem of continual learning, which
seeks to prevent forgetting.

2.3 Data Forgetting

The increased focus on privacy in machine learning models in recent years, coupled with data privacy
regulations such as the EU’s General Data Protection Regulation, has led to significant advancements
in the field of data forgetting. Data forgetting was first proposed in [4] as a statistical query learning
problem. Later work proposed a dataset sharding approach to allow for efficient data deletion
by deleting only specific shards [5]. Alternative methods define unlearning through information
accessible directly from model weights [6], while [7] proposed a variational unlearning method which
relies on a posterior belief over the model weights. Wu et al. [22] proposes a method to remove the
influence of certain datapoints from a trained model by caching the model gradients during training.
Our method only requires access to a trained model and does not require control over the initial
training process or the original dataset, making it distinct from [4, 5, 22]. In addition, earlier methods
are designed for discriminative tasks such as classification [6] and regression [7], while we focus on
deep generative models.

2.4 Editing and Unlearning in Generative Models

Several works have investigated the post-hoc editing and retraining of generative models. Data
redaction and unlearning have been proposed for GANs [23] and Normalizing Flows [24]. However,
both methods exploit specific properties of the model (discriminators and exact likelihoods) which
are absent from variational models, hence are not comparable to our work. Moon et al. [25] implicitly
assumes that a generator’s latent space has disentangled features over concepts, which does not
apply to conditional models (a given latent z can be used to generate all classes just by varying the
conditioning signal c). Bau et al. [26] directly modifies a single layer’s weights in a generator to
alter its semantic rules, such as removal of watermarks. The work focuses on GANs and preliminary
experiments on more drastic changes that forgetting necessities led to severe visual artifacts.
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2.5 Concept Erasure in Text-to-Image Models
Large-scale text-to-image models [12, 27, 28] can be misused to generate biased, unsafe, and
inappropriate content [1]. To tackle this problem, Safe Latent Diffusion (SLD) [1] proposes an
inference scheme to guide the latent codes away from specific concepts, while Erasing Stable
Diffusion (ESD) [8] proposes a training scheme to erase concepts from a model. Both methods
leverage energy-based composition that is specific to the classifier-free guidance mechanism [13] of
diffusion models. We take a different approach; we adopt a general continual learning framework
for concept erasure that works across different model types and conditioning schemes. Our method
allows for controlled erasure, where the erased concept can be mapped to a user-defined concept.

3 Proposed Method: Selective Amnesia

Problem Statement. We consider a dataset D that can be partitioned as D = Df ∪ Dr =

{(x(n)
f , c

(n)
f )}Nf

n=1 ∪ {(x(m)
r , c

(m)
r )}Nr

m=1, where Df and Dr correspond to the data to forget and
remember respectively. The underlying distribution of D is a joint distribution given by p(x, c) =
p(x|c)p(c). We further define the distribution over concepts/class labels as p(c) =

∑
i∈f,r ϕipi(c)

where
∑

i∈f,r ϕi = 1. The two concept/class distributions are disjoint such that pf (cr) = 0

where cr ∼ pr(c) and vice-versa. For ease of notation, we subscript distributions and class labels
interchangeably, e.g., pf (c) and p(cf ).

We assume access to a trained conditional generative model parameterized by θ∗ =
argmaxθ Ep(x,c) log p(x|θ, c), which is the maximum likelihood estimate (MLE) of the dataset
D. We would like to train this model such that it forgets how to generate Df |cf , while remembering
Dr|cr. A key criteria is that the training process must not require access to D. This is to accommodate
the general scenario where one only has access to the model and not its training set.

A Bayesian Continual Learning Approach to Forgetting. We start from a Bayesian perspective
of continual learning inspired by the derivation of Elastic Weight Consolidation (EWC) [14]:

log p(θ|Df , Dr) = log p(Df |θ,Dr) + log p(θ|Dr)− log p(Df |Dr)

= log p(Df |θ) + log p(θ|Dr) + C.

For forgetting, we are interested in the posterior conditioned only on Dr,

log p(θ|Dr) = − log p(Df |θ) + log p(θ|Df , Dr) + C

= − log p(xf |θ, cf )− λ
∑
i

Fi

2
(θi − θ∗i )

2 + C
(1)

where we use log p(Df |θ) = log p(xf , cf |θ) = log p(xf |θ, cf ) + log p(cf ) so that the conditional
likelihood is explicit, and substitute log p(θ|Df , Dr) with the Laplace approximation of EWC. Our
goal is to maximize log p(θ|Dr) to obtain a maximum a posteriori (MAP) estimate. Intuitively,
maximizing Eq. (1) lowers the likelihood log p(xf |θ, cf ), while keeping θ close to θ∗.

Unfortunately, direct optimization is hampered by two key issues. First, the optimization objective of
Eq. 1 does not involve using samples from Dr. In preliminary experiments, we found that without
replaying data from Dr, the model’s ability to generate the data to be remembered diminishes over
time. Second, we focus on variational models where the log-likelihood is intractable. We have
the ELBO, but minimizing a lower bound does not necessarily decrease the log-likelihood. In the
following, we address both these problems via generative replay and a surrogate objective.

3.1 Generative Replay Over Dr

Our approach is to unify the two paradigms of continual learning, EWC and GR, such that they can be
optimized under a single objective. We introduce an extra likelihood term over Dr that corresponds
to a generative replay term, while keeping the optimization over the posterior of Dr unchanged:

log p(θ|Dr) =
1

2

[
− log p(xf |θ, cf )− λ

∑
i

Fi

2
(θi − θ∗i )

2 + log p(xr|θ, cr) + log p(θ)

]
+ C.

(2)
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Figure 2: Illustration of training VAE to forget the MNIST digit 0. The ‘original’ column shows the
baseline samples generated by the VAE. In the ‘naive’ column, we train the VAE to optimize Eq. 3
with Df being the ‘0’ class, while in the ‘ours’ column we train using the modified objective Eq. 4

A complete derivation is given in Appendix A.1. The term log p(θ) corresponds to a prior over the
parameters θ. Practically, we find that simply setting it to the uniform prior achieves good results,
thus rendering it constant with regards to optimization. With the expectations written down explicitly,
our objective becomes

L = −Ep(x|c)pf (c) [log p(x|θ, c)]− λ
∑
i

Fi

2
(θi − θ∗i )

2 + Ep(x|c)pr(c) [log p(x|θ, c)] . (3)

As we focus on conditional generative models in this work, the expectations over p(x|c)pf (c) and
p(x|c)pr(c) can be approximated by using conditional samples generated by the model prior to
training. Similarly, the FIM is calculated using samples from the model. Thus, Eq. 3 can be optimized
without the original training dataset D. Empirically, we observe that the addition of the GR term
improves performance when generating Dr after training to forget Df (see ablations in Sec. 4.1).

3.2 Surrogate Objective

Similar to Eq. 1, Eq. 3 suggests that we need to minimize the log-likelihood of the data to forget
Ex,c∼p(x|c)pf (c) [log p(x|θ, c)]. With variational models, we only have access to the lower bound of
the log-likelihood, but naively optimizing Eq. 3 by replacing the likelihood terms with the standard
ELBOs leads to poor results. Fig. 2 illustrates samples from a VAE trained to forget the MNIST digit
‘0’; not only has the VAE failed to forget, but the sample quality of the other classes has also greatly
diminished (despite adding the GR term).

We propose an alternative objective that is guaranteed to lower the log-likelihood of Df , as compared
to the original model parameterized by θ∗. Rather than attempting to directly minimize the log-
likelihood or the ELBO, we maximize the log-likelihood of a surrogate distribution of the class to
forget, q(x|cf ) ̸= p(x|cf ). We formalize this idea in the following theorem.
Theorem 1. Consider a surrogate distribution q(x|c) such that q(x|cf ) ̸= p(x|cf ). Assume we
have access to the MLE optimum for the full dataset θ∗ = argmaxθ Ep(x,c) [log p(x|θ, c)] such
that Ep(c) [DKL(p(x|c)||p(x|θ∗, c))] = 0. Define the MLE optimum over the surrogate dataset as
θq = argmaxθ Eq(x|c)pf (c) [log p(x|θ, c)]. Then the following inequality involving the expectations
of the optimal models over the data to forget holds:

Ep(x|c)pf (c) [log p(x|θ
q, c)] ≤ Ep(x|c)pf (c) [log p(x|θ

∗, c)] .

Theorem 1 tells us that optimizing the surrogate objective argmaxθ Eq(x|c)pf (c) [log p(x|θ, c)] is
guaranteed to reduce Ep(x|c)pf (c) [log p(x|θ, c)], the problematic first term of Eq. 3, from its original
starting point θ∗.
Corollary 1. Assume that the MLE optimum over the surrogate, θq =
argmaxθ Eq(x|c)pf (c) [log p(x|θ, c)] is such that Epf (c) [DKL(q(x|c)||p(x|θq, c)] = 0. Then
the gap presented in Theorem 1,

Ep(x|c)pf (c) [log p(x|θ
q, c)− log p(x|θ∗, c)] = −Epf (c) [DKL(p(x|c)||q(x|c))] .

Corollary 1 tells us that the greater the difference between q(x|cf ) and p(x|cf ), the lower the log-
likelihood over Df we can achieve. For example, we could choose the uniform distribution as it is
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easy to sample from and is intuitively far from the distribution of natural images, which are highly
structured and of low entropy. That said, users are free to choose q(x|cf ), e.g., to induce realistic but
acceptable images, and we experiment with different choices in the Stable Diffusion experiments
(Sec 4.2).

Putting the above elements together, the Selective Amnesia (SA) objective is given by

L = Eq(x|c)pf (c) [log p(x|θ, c)]− λ
∑
i

Fi

2
(θi − θ∗i )

2 + Ep(x|c)pr(c) [log p(x|θ, c)]

≥ Eq(x|c)pf (c) [ELBO(x|θ, c)]− λ
∑
i

Fi

2
(θi − θ∗i )

2 + Ep(x|c)pr(c) [ELBO(x|θ, c)] (4)

where we replace likelihood terms with their respective evidence lower bounds. For variational
models, maximizing the ELBO increases the likelihood, and we find the revised objective to perform
much better empirically — Fig. 2 (right) shows results of the revised objective when applied to the
MNIST example, where we set q(x|cf ) to a uniform distribution over the pixel values, U [0, 1]. The
model now forgets how to generate ‘0’, while retaining its ability to generate other digits.

4 Experiments

In this section, we demonstrate that SA is able to forget diverse concepts, ranging from discrete classes
to language prompts, in models with varying complexities. For discrete classes, we evaluate SA on
MNIST, CIFAR10 and STL10. The former is modeled by a conditional VAE with a simple MLP
architecture, which is conditioned by concatenating a one-hot encoding vector to its inputs. The latter
two datasets are modeled by a conditional DDPM with the UNet architecture, which is conditioned
using FiLM transformations [29] within each residual block. Class-conditional samples are generated
with classifier-free guidance [13]. We also experiment with the open-source text-to-image model
Stable Diffusion v1.4 [12], where the model is conditioned on CLIP [30] text embeddings using the
cross-attention mechanism. Further experimental details can be found in Appendix B.

In addition to qualitative comparisons, we performed quantitative analyses using three types of
metrics for the discrete classes:
Image Quality Metrics. First, we evaluate the image quality of the classes to remember using
standard metrics such as the Fréchet Inception Distance (FID), Precision, and Recall [31, 32]. Ideally,
we would like SA to have minimal effects on the image quality of the classes to remember.
Probability of Class to Forget. Second, using an external classifier, we evaluate generated samples
from the class to forget to ensure that the class has been successfully erased. The probability of a class
to forget is defined as Ep(x|θ,cf )[Pϕ(y = cf |x)], where the expectation is over samples generated
from our trained model, and Pϕ(y|x) is a pretrained classifier. If we choose q(x|cf ) to be an
uninformative distribution, such as the uniform distribution, this should approach 1/Nclasses(=1/10
for the datasets studied here) as the classifier becomes completely uncertain which class it belongs to.

Classifier Entropy. This is the average entropy of the classifier’s output distribution given xf ,
defined as H(Pϕ(y|xf )) = −Ep(x|θ,cf )[

∑
i Pϕ(y = ci|x) logPϕ(y = ci|x)]. When we choose

q(x|cf ) to be the uniform distribution, all class information in the generated xf should be erased.
The entropy should therefore approach the theoretical maximum given by −

∑10
i=1

1
10 log

1
10 = 2.30,

as the classifier becomes maximally uncertain and assigns a probability of 1/10 to every outcome.

4.1 MNIST, CIFAR10 and STL10 Results

In this experiment on MNIST, CIFAR10 and STL10, we attempt to forget the digit ‘0’ in MNIST and
the ‘airplane’ class in CIFAR10 and STL10. We choose q(x|cf ) to be a uniform distribution over the
pixel values. In brief, the results suggest that SA has successfully induced forgetting for the relevant
class, with minor degradation in image diversity of the classes to remember. Qualitative samples are
shown in Fig. 1, where it is clear that the classes to forget have been erased to noise, while the quality
of the classes to remember remain visually indistinguishable from the original model. Additional
samples are shown in Appendix D.1. In the following, we perform a quantitative comparison using
our metrics shown in Table 1.
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Table 1: Quantitative results for forgetting on the MNIST, CIFAR10 and STL10 datasets.
H(Pϕ(y|xf )) and Pϕ(y = cf |xf ) indicate the entropy of the classifier’s distribution and the
probability of the forgotten class respectively. The rows highlighted in blue correspond to the hyper-
parameters chosen for the images visualized in Fig. 1. The rows highlighted in orange are ablation
results for CIFAR10.

FID (↓) Precision (↑) Recall (↑) H(Pϕ(y|xf ) Pϕ(y = cf |xf )
Original - - - 0.103 0.967MNIST
λ = 100 - - - 2.19 0.0580
Original 9.67 0.390 0.788 0.0293 0.979
9 Classes 9.46 0.399 0.783 - -
λ = 10 9.08 0.412 0.767 1.47 0.156
λ = 1 19.3 0.286 0.770 0.977 0.700
λ = 50 8.41 0.428 0.760 1.17 0.142
λ = 100 8.33 0.429 0.758 1.07 0.235

CIFAR10

No GR (λ = 10) 126 0.0296 0.268 0.893 0.737
Original 14.5 0.356 0.796 0.0418 0.987
9 Classes 14.5 0.360 0.803 - -STL10
λ = 10 18.0 0.378 0.713 1.80 0.0189

First, we evaluate the information content left in the generated xf by examining the rows in Table 1
that are highlighted in blue. On MNIST, there is a 96.7% probability of classifying the samples of
the ‘0’ class from the original model correctly, and correspondingly a low entropy in its distribution.
However, after training with λ = 100, the probability drops to 5.8%, while the entropy closely
approaches the theoretical maximum of 2.30, indicating that any information in the generated xf

about the digit ‘0’ has been erased. We see a similar result for the CIFAR10 and STL10 diffusion
models, where the entropy increases significantly after training, although it does not approach the
maximum value as closely as the VAE.

Next, we evaluate the image quality of the classes to remember on CIFAR10 and STL10. We compare
with two baselines: the original models and a version trained only on the nine classes to remember.
Surprisingly on CIFAR10, training with λ = 10 actually improves FID slightly, which a priori is
unusual as the baselines should serve as natural upper-bounds on image quality. However, further
examination shows that precision (fidelity) has improved at the expense of recall (diversity), which
suggests a slight overfitting effect. On STL10, there is similarly a slight improvement in precision,
but with a drop in recall, which overall resulted in a higher FID score. This can be attributed to the
fact that we chose the number of GR samples to be relatively small at 5000 samples, as sampling for
diffusion models can be expensive. We hypothesize that this can be alleviated by increasing the GR
sample size, but we leave this to future investigation.

Ablations. We conduct ablations on the λ parameter and on the generative replay term in our
objective function, using DDPM trained on CIFAR10. Hyperparameters other than the ones being
ablated are kept fixed throughout runs. The results are highlighted in orange in Table 1. Starting
with ablations on λ, we see that when λ = 1, image fidelity as measured by FID and precision is
significantly poorer than at larger values of λ, showing that the FIM term is crucial in our training
scheme. As λ is increased, there is a drastic improvement in fidelity, which comes at a slight cost to
diversity as measured by recall, although the changes are relatively minor across the tested range of
λ ∈ [10, 100]. This suggests that the FIM primarily preserves fidelity in the generated images. When
comparing classifier entropy, we see that increments beyond λ = 10 decreases entropy further from
the upper-bound, which indicate some information leakage to the forgotten samples being generated.
Moving to generative replay, we find that all metrics suffer significantly when the term is omitted. In
summary, our ablation studies show that generative replay is crucial in our method, and intermediate
values λ ∈ [10, 100] is sufficient for good performance.

4.2 Case Study: Stable Diffusion

Forget Famous Persons. With the potential of large-scale generative models to be misused for
impersonations and deepfakes, we apply SA to the forgetting of famous persons with SD v1.4. We
leverage the fact that with language conditioning, we can choose q(x|cf ) to be represented by images
that are appropriate substitutes of the concept to forget. For instance, we attempt to forget the
celebrities Brad Pitt and Angelina Jolie, thus we set cf = {“Brad Pitt"} and cf={“Angelina Jolie"}
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Figure 3: Qualitative results of SA applied to forgetting famous persons. Within each column, the
leftmost image represents SD v1.4 samples, the middle image represents SA with q(x|cf ) set to
"middle aged man/woman" and the rightmost image is SA with q(x|cf ) set to "male/female clown".
[...] is substituted with either "Brad Pitt" or "Angelina Jolie".

Table 2: Quantitative results from the GIPHY Celebrity Detector. For SA, we use the variant with
q(x|cf ) set to “middle aged man" or “middle aged woman" for forgetting Brad Pitt and Angelina
Jolie respectively. The GCD Score is the average probability of a face being classified as Brad Pitt or
Angelina Jolie in the test set. Numbers in brackets are standard deviations. Note that the standard
deviations are typically much larger than the mean, which indicates a highly skewed distribution, i.e.,
a majority of faces have very low probabilities, but a few have very large probabilities.

Forget Brad Pitt Forget Angelina Jolie
Proportion of images

without faces (↓)
GCD Score (↓)

Proportion of images
without faces (↓)

GCD Score (↓)

SD v1.4 (original) 0.104 0.606 (0.424) 0.117 0.738 (0.454)
SLD Medium 0.141 0.00474 (0.0354) 0.119 0.0329 (0.129)

ESD-x 0.347 0.0201 (0.109) 0.326 0.0335 (0.153)
SA (Ours) 0.058 0.0752 (0.193) 0.0440 0.0774 (0.213)

and represent q(x|cf ) with images generated from SD v1.4 with the prompts “a middle aged man”
and “a middle aged woman" respectively. In other words, we train the model to generate pictures of
ordinary, unidentifiable persons when it is conditioned on text containing “Brad Pitt" or “Angelina
Jolie". In this way, our model still generates semantically-relevant pictures of humans, as opposed to
uniform noise if we had chosen the same q(x|cf ) as the previous section.

To demonstrate the control and versatility of SA, we conduct a second set of experiments where
we map the celebrities to clowns, by setting q(x|cf ) to images of “male clown" or “female clown"
generated by SD v1.41. For SD experiments, we only train the diffusion model operating in latent
space, while freezing the encoder and decoder. Our qualitative results are shown in Fig. 3, where
we see that the results generalize well to a variety of prompts, generating realistic images of regular
people and clowns in various settings. Additional samples are shown in Appendix D.2.

We compare our results against the following baselines: 1) original SD v1.4, 2) SLD Medium [1] and
3) ESD-x [8], training only the cross-attention layers. We generate 20 images each of 50 random
prompts containing “Brad Pitt” and “Angelina Jolie” and evaluate using the open-source GIPHY
Celebrity Detector (GCD) [33]. We calculate two metrics, the proportion of images generated with
no faces detected and the average probability of the celebrity given that a face is detected, which we
abbreviate as GCD Score (GCDS). Table 2 shows that SA generates the most images with faces, with
significantly lower GCDS compared to SD v1.4. SLD and ESD have better GCDS, but they have a
greater proportion of images without faces (particularly ESD). Looking at the qualitative samples
in Figs. 4 and 5, ESD sometimes generates faceless and semantically unrelated images due to its
uncontrollable training process. Also note that the faces generated by SLD tend to be distorted and
low-quality, which we hypothesize is the reason behind its low GCDS. Visual inspection of the top-5
images in terms of GCDS in Fig. 4 shows that, despite the high scores, the images generated by SA

1This demonstration is not meant to suggest that the celebrities are clowns. It is meant solely as a test to
examine the versatility of the method to map the forgotten individual to alternative unrelated concepts.
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Figure 4: Comparisons between SA with ESD and SLD in forgetting Brad Pitt. We use SA with
q(x|cf ) set to “middle aged man”. Images on the left are sample images with the prompts specified
per column. Images on the right are the top-5 GCDS images from the generated test set, with their
respective GCDS values displayed. Intuitively, these are the images with the 5 highest probabilities
that the GCD network classifies as Brad Pitt.

Figure 5: Comparisons between our method with ESD and SLD in forgetting Angelina Jolie. We use
the variant of SA with q(x|cf ) set to “middle aged woman”. Images on the left are sample images
with the prompts specified per column. Images on the right are the top-5 GCDS images from the
generated test set, with their respective GCDS values displayed.

would not be mistaken for Brad Pitt (with the possible exception of the middle image), and not more
so than the other two methods. Similar observations can be made for the Angelina Jolie samples in
Fig. 5. We also investigate the effects on celebrities other than the one being forgotten in Sec. E of
the appendix. We observe that SA exhibits what we dub “concept leakage", where slight changes are
observed in other celebrities with similar attributes. We view this as a double-edged sword, as it also
means that SA can generalize to related concepts. If desired, this effect can be mitigated by tuning
only the cross-attention layers of SD [8]. We discuss this in greater detail in Sec. E.

Forget Nudity. We also attempt to tackle the problem of inappropriate concept generation by
training SD v1.4 to forget the concept of nudity. Unlike the previous celebrity setting, nudity is a
“global" concept that can be indirectly referenced through numerous text prompts, such as styles of
artists that produce nude imagery. As such, we train only the unconditional (non-cross-attention)

9



Figure 6: Sample images with the prompt "a photo of a naked person" from the three approaches.

layers in SD v1.4, as proposed in [8]. In this scenario, we represent q(x|cf ) with images generated
from SD v1.4 with the prompt “a person wearing clothes", which is a semantically-relevant antonym
of the concept of nudity. We let our prompts to forget be cf ={“nudity", “naked", “erotic", “sexual"}
and sample them uniformly during training.

We evaluate on the I2P dataset [1], which is a collection of 4703 inappropriate prompts. Our results
are in Table 3 of the appendix, where we compare against SD v1.4, SLD, ESD-u (train unconditional
layers only) as well as SD v2.1, which is trained on a dataset filtered for nudity. The quantity of
nudity content was detected using the NudeNet classifier (with a default detection threshold of 0.6,
which results in some false positives). Our model generates significantly reduced nudity content
compared to SD v1.4 and SD v2.1. SLD and ESD achieve better scores, potentially because they are
model-specific and leverage inductive biases of Stable Diffusion, namely score-function composition.
Qualitative samples between the three approaches are shown in Fig. 62. Similar to the celebrity
experiments, we find that ESD tends to generate arbitrary images that are not semantically-relevant
to the test prompt, due to its uncontrollable training process. On the other hand, SA generates
semantically related images, but did not forget how to generate nude images to the same extent.
We found that the I2P prompts associated with these images generally did not specify nudity terms
explicitly, but involved specific artistic styles or figures that are associated with nudity. Additional
evaluations shows SA to perform better on prompts with explicit nudity terms (Table 4 in appendix).
Combining the positive traits of SA, such as controlled forgetting, with the efficacy of ESD’s global
erasure capabilities would be interesting future work.

5 Conclusion, Limitations, and Future Work

This paper contributes Selective Amnesia (SA), a continual learning approach to controlled forgetting
of concepts in conditional variational models. Unlike prior methods, SA is a general formulation and
can be applied to a variety of conditional generative models. We presented a unified training loss
that combines the EWC and GR methods of continual learning, which when coupled to a surrogate
distribution, enables targeted forgetting of a specific concept. Our approach allows the user to specify
how the concept to forget can be remapped, which in the Stable Diffusion experiments, resulted in
semantically relevant images but with the target concept erased.

Limitations and Broader Impacts. We believe SA is a step towards greater control over deep gen-
erative models, which when left unconstrained, may be misused to generate harmful and misleading
content (e.g., deepfakes). There are several avenues for future work moving forward. First, the FIM
calculation can be expensive, in particular for diffusion models as the ELBO requires a sum over T
timesteps per sample. Future work can investigate more efficient and accurate ways of computing the
FIM. Second, SA appears to be more proficient at removing “local” specific concepts, rather than
“global” concepts (e.g., nudity); more work is needed on general methods that work well for both
types of information. Third, SA requires manual selection of an appropriate surrogate distribution; a
method to automate this process would be an interesting future direction. Finally, human assessment
can also be explored to provide a more holistic evaluation of SA’s forgetting capabilities. From a
broader perspective, SA could potentially be used to alter concepts inappropriately or maliciously,
such as erasing historical events. We believe that care should be taken by the community in ensuring
that tools such as SA are used to improve generative models, and not propagate further harms.

2Note that we are deliberately conservative when censoring nudity in this paper. For instance, we censor all
bare chests, even though it is socially acceptable to depict topless males in many cultures.
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A Proofs

A.1 Generative Replay Objective

Our Bayesian posterior over the set to remember is given by Eq. 1:

log p(θ|Dr) = − log p(xf |θ, cf ) + log p(θ|Df , Dr) + C. (5)

Let us introduce an extra likelihood term over Dr on both sides as follows

log p(θ|Dr) + log p(Dr|θ) = − log p(xf |θ, cf ) + log p(θ|Df , Dr) + log p(Dr|θ) + C (6)

The terms on the left hand side of the equation can be simplified using Bayes rule

log p(θ|Dr) + log p(Dr|θ) = log p(θ|Dr) + log p(θ|Dr) + log p(Dr)− log p(θ)

= 2 log p(θ|Dr)− log p(θ) + C

We substitute this new form back to Eq. 6 and simplify to obtain

log p(θ|Dr) =
1

2
[− log p(xf |θ, cf ) + log p(θ|Dr, Df ) + log p(Dr|θ) + log p(θ)] + C (7)

=
1

2
[− log p(xf |θ, cf ) + log p(θ|Dr, Df ) + log p(xr|θ, cr) + log p(θ)] + C (8)

which gives us Eq. 2.

A.2 Proof of Theorem 1

Before we prove Theorem 1, we first prove two related lemmas.

Let us first formalize the original conditional MLE objective as a KL divergence minimization:

Lemma 1. Given a labeled dataset p(x, c) and a conditional likelihood model p(x|θ, c) pa-
rameterized by θ, the MLE objective argmaxθ Ep(x,c) log p(x|θ, c) is equivalent to minimizing
Ep(c) [DKL(p(x|c)||p(x|θ, c)].

Proof.

argmax
θ

Ep(x|c)p(c) [log p(x|θ, c)]

= argmax
θ

∫
p(x|c)p(c) [log p(x|θ, c)− log p(x|c)] dxdc+

∫
p(x|c)p(c) log p(x|c)dxdc

= argmax
θ

−
∫

p(c)DKL(p(x|c)||p(x|θ, c))dc−
∫

p(c)H(p(x|c))dc

= argmin
θ

Ep(c)DKL(p(x|c)||p(x|θ, c))

where in the last line we use the fact that the entropy term is independent of θ.

Lemma 1 is a straightforward generalization of the equivalence of MLE and KL divergence mini-
mization to the conditional case.

We assume the asymptoptic limit where the model, represented by a neural network with pa-
rameters θ∗, is sufficiently expressive such that the MLE training on the full dataset results in
Ep(c) [DKL(p(x|c)||p(x|θ∗, c)] = 0; in other words, the model has learnt the underlying data dis-
tribution exactly. Under this assumption, it straightforward to show that the model also learns the
forgetting data distribution exactly, Epf (c) [DKL(p(x|c)||p(x|θ∗, c)] = 0.

Lemma 2. Assume that the global optimum θ∗ exists such that by Lemma 1,
Ep(c) [DKL(p(x|c)||p(x|θ∗, c)] = 0. The class distribution is defined as p(c) = ϕfpf (c)+ϕrpr(c),
where ϕf , ϕr > 0 and ϕf + ϕr = 1. Then the model parameterized by θ∗ also exactly reproduces
the conditional likelihood of the class to forget:

Epf (c) [DKL(p(x|c)||p(x|θ∗, c)] = 0.
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Proof.

0 = Ep(c) [DKL(p(x|c)||p(x|θ∗, c))]

=

∫
(ϕfpf (c) + ϕrpr(c))DKL(p(x|c)||p(x|θ∗, c))dc

= ϕf

∫
pf (c)DKL(p(x|c)||p(x|θ∗, c))dc+ ϕr

∫
pr(c)DKL(p(x|c)||p(x|θ∗, c))dc

= ϕfEpf (c) [DKL(p(x|c)||p(x|θ∗, c))] + ϕrEpr(c) [DKL(p(x|c)||p(x|θ∗, c))]

Since ϕf , ϕr > 0 and DKL(·||·) ≥ 0 by definition, then for the sum of two KL di-
vergence terms to equal 0, it must mean that each individual KL divergence is 0, i.e.,
Epf (c) [DKL(p(x|c)||p(x|θ∗, c)] = 0.

Finally, we are now able to prove Theorem 1. We restate the theorem and then provide its proof.
Theorem 1. Consider a surrogate distribution q(x|c) such that q(x|cf ) ̸= p(x|cf ). Assume we
have access to the MLE optimum for the full dataset θ∗ = argmaxθ Ep(x,c) [log p(x|θ, c)] such
that Ep(c) [DKL(p(x|c)||p(x|θ∗, c))] = 0. Define the MLE optimum over the surrogate dataset as
θq = argmaxθ Eq(x|c)pf (c) [log p(x|θ, c)]. Then the following inequality involving the expectations
of the optimal models over the data to forget holds:

Ep(x|c)pf (c) [log p(x|θ
q, c)] ≤ Ep(x|c)pf (c) [log p(x|θ

∗, c)] .

Proof.

Ex,c∼p(x|c)pf (c) [log p(x|θ
q, c)]− Ex,c∼p(x|c)pf (c) [log p(x|θ

∗, c)]

=

∫
p(x|c)pf (c) log p(x|θq, c)dxdc−

∫
p(x|c)pf (c) log p(x|θ∗, c)dxdc

= Epf (c)

[∫
p(x|c) log p(x|θq, c)

p(x|θ∗, c)
dx

]
= Epf (c)

[∫
p(x|c) log p(x|c)p(x|θq, c)

p(x|c)p(x|θ∗, c)
dx

]
= Epf (c)

[∫
p(x|c) log p(x|c)

p(x|θ∗, c)
dx

]
− Epf (c)

[∫
p(x|c) log p(x|c)

p(x|θq, c)
dx

]
= Epf (c) [DKL(p(x|c)||p(x|θ∗, c))]− Epf (c) [DKL(p(x|c)||p(x|θq, c))]
= −Epf (c) [DKL(p(x|c)||p(x|θq, c))] (apply Lemma 2)

≤ 0 (non-negativity of KL)

A.3 Proof of Corollary 1

Corollary 1. Assume that the MLE optimum over the surrogate, θq =
argmaxθ Eq(x|c)pf (c) [log p(x|θ, c)] is such that Epf (c) [DKL(q(x|c)||p(x|θq, c)] = 0. Then
the gap presented in Theorem 1,

Ep(x|c)pf (c) [log p(x|θ
q, c)− log p(x|θ∗, c)] = −Epf (c) [DKL(p(x|c)||q(x|c))] .

The proof follows straightforwardly from Theorem 1.

Proof.

Ex,c∼p(x|c)pf (c) [log p(x|θ
q, c)− log p(x|θ∗, c)] = −Epf (c) [DKL(p(x|c)||p(x|θq, c))]

= −Epf (c) [DKL(p(x|c)||q(x|c))]

where the first line is directly taken from the proof of Theorem 1 (second last line), while the second
line makes use of the fact that the model p(x|θq, c) = q(x|c) by assumption.
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B Experimental Details

B.1 VAE and DDPM

MNIST VAE The VAE encoder and decoder are simple MLPs, both with two hidden layers of
dimensions 256 and 512. The latent space z has dimensions 8. We choose a Bernoulli distribution
over the pixels as the decoder output distribution, and a standard Gaussian as the prior. Class
conditioning is performed by appending a one-hot encoding vector to the encoder and decoder inputs.
The original VAE is trained for 100K steps, and the forgetting training is trained for 10K steps. We
use a learning rate of 10−4 and batch size of 256. As sampling with VAEs is cheap, we use 50K
samples to calculate the FIM, and sample the replay data from a frozen copy of the original VAE
during forgetting training.

CIFAR10 DDPM We adopt the same U-Net architecture as unconditional DDPM in [11], with
four feature map resolutions (32× 32 to 4× 4) and self-attention blocks at the 16× 16 resolution.
We use the linear β schedule with 1000 timesteps, and train for 800K steps with a learning rate
of 10−4 and batch size of 128. For classifier-free guidance, we use the FiLM transformation at
every residual block and drop the class embeddings 10% of the time. For sampling, we use 1000
timesteps of the standard DDPM sampler with a guidance scale of 2.0. As sampling with diffusion
models is significantly more expensive than VAEs, we generate and store a set of 5000 images, and
subsequently use it both for calculating the FIM and as the replay dataset. For forgetting, we train
the model with 20K training steps. We use a learning rate of 10−4 and batch size of 128. As the
CIFAR10 training set has 5000 images per class, when evaluating the image quality of the remaining
classes, we generate 5000 images of each class for a total of 45000 images, and compare them against
the corresponding 45000 images in the training set. Experiments are run on 2 RTX A5000s.

STL10 DDPM We conduct our STL10 experiments by resizing the dataset to the 64×64 resolution.
The experiments follow closely from our CIFAR10 experiments, where we have five feature map
resolutions (64× 64 to 4× 4) instead while keeping attention blocks at the 16× 16 resolution. Due
to the smaller size of the dataset, we combine the train and test sets to form a larger training set,
resulting in 1300 images per class. We train for a total of 250K steps with a learning rate of 2× 10−4

and batch size of 64. All other hyperparameters are kept identical to the CIFAR10 experiments. For
forgetting training, we train similarly for 20K steps with a learning rate of 10−4 and batch size of 64.
To evaluate the image quality of the remaining classes, we generate 1300 images of each class, for a
total of 11700 images, and compare them against the corresponding 11700 images in the training set.
Experiments are run on 2 RTX A5000s.

Classifier Evaluation In terms of classifier architectures and training, for MNIST, we train a simple
two-layer CNN on the original MNIST dataset for 20 epochs. As for both CIFAR10 and STL10,
we finetune a ResNet34 classifier pretrained on ImageNet that was obtained from the torchvision
library. All layers of the ResNet34 classifier are finetuned on the target dataset for 20 epochs. We
calculate Ep(x|θ,cf )Pϕ(y = cf |x) and H(Pϕ(y|xf )) by averaging over 500 generated images of the
forgotten class from the respective models.

B.2 Stable Diffusion

Forget Celebrities We use the open-source SD v1.4 checkpoint as the pretrained model for all
Stable Diffusion experiments with Selective Amnesia. We choose v1.4 as opposed to newer versions
for fair evaluations as competing baselines, SLD and ESD, are based on v1.4. Similar to the
CIFAR10 and STL10 experiments, we generate 5000 images from SD v1.4 and use it for both FIM
calculation and GR. These images are conditioned on 5000 random prompts that were generated
with GPT3.5 [34]. We use 50 steps of the DDIM [35] sampler with a guidance scale of 7.5 for all
image generation with SD. For forgetting training, we set the prompt to forget as cf = {“Brad Pitt"}
or {“Angelina Jolie"} and train the model using the q(x|cf ) represented by 1000 images generated
with prompts as specified in the main text. We train for a total of 200 epochs of the surrogate dataset
with λ = 50 and a base learning rate of 10−5 (scaled by number of GPUs). We similarly generate
the 50 test prompts using GPT3.5, and generate 20 images per prompt. Experiments are run on 4
RTX A6000s and training takes approximately 20 hours with peak memory usage of around 40GB
per GPU. Note that we did not optimize for computational efficiency in our reported experiments;
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by tuning hyperparameters in preliminary experiments, we could achieve similar performance with
2 A6000s and 6 hours of training. We believe additional performance gains can be achieved with
further tuning and leave that for future work.

In terms of evaluation, we evaluate the 1000 generated images with the open-source GIPHY Celebrity
Detector [33], which is trained to detect 2306 different celebrities. The classifier is composed of two
stages: the first stage is a face detector while the second stage is a celebrity face classifier. If a given
image is found to have multiple faces, we only consider the face with the highest probability of the
target celebrity. This is to account for cases where multiple persons are in an image, but typically
only one of them will be of the celebrity of interest. As for the baselines, for SLD Medium, we set
the safety concept to either “Brad pitt" or “Angelina Jolie" during inference, while for ESD-x, we
train the model to forget the prompts “Brad Pitt" or “Angelina Jolie".

Forget Nudity For forgetting nudity, we tune only the unconditional (non-cross-attention) layers
of the latent diffusion model as proposed in [8]. We use the same set of samples for calculating the
FIM and for GR. The prompt to forget is set as cf ={“nudity", “naked", “erotic", “sexual"}. We
set λ = 50 and train for 500 epochs. Experiments are run on the same resources as the celebrities
experiments.

We evaluate on the I2P dataset by generating one image per prompt with the provided random
seeds. The 4703 images are evaluated using the open-source NudeNet classifier [36], with the
default probability threshold of 0.6 to count as a positive detection of a nudity instance. As NudeNet
considers exposed and covered content separately, we only consider nudity content that are classified
as exposed. Manual inspection showed the classifier to give false positives; for example, 10 of the 16
images generated by SA classified as showing Female Genitalia actually have this attribute. Likewise,
some images classified as showing Female Breasts actually showed Male Breasts.

In terms of baselines, for SLD Medium we set the safety concept to “nudity, sexual, naked, erotic".
For ESD-u, we use the publicly available checkpoint from the official GitHub repository that was
trained to forget nudity.
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C More Results

C.1 Forget Nudity

Table 3: Quantity of nudity content detected using the NudeNet classifier on the I2P benchmark
dataset (4703 images). As NudeNet classifies covered and exposed content separately, all nudity
content considered here are classified as exposed.

Armpits Belly Buttocks Feet
Female
Breasts

Female
Genitalia

Male
Breasts

Male
Genitalia

Anus

SD v1.4 214 171 40 39 295 23 21 6 0
SD v2.1 191 124 24 30 154 14 12 6 0

SLD Medium 58 60 7 15 42 1 21 0 0
ESD-u 60 17 13 9 26 1 4 3 0

SA (Ours) 72 77 19 25 83 16 0 0 0

Upon manual inspection of I2P samples from SA, we observed that the NudeNet classifier has a
tendency to classify gender incorrectly. For instance, male breasts are often classified as female
breasts. Hence, the number of female breasts presented for our method is an overestimation of the
true number. There is also a relatively high false positive rate for exposed female genitalia, as 6 of
the flagged images for SA do not depict any exposed female genitalia.

Table 4: Quantity of nudity content detected using the NudeNet classifier from 1000 sampled images
with the prompt “a photo of a naked person”. Similar to I2P results, we only consider exposed content.
Note that there is a larger number of Armpits and Female Breasts for SD v1.4 than there are images
because NudeNet classifies multiple instances of each content per image separately.

Armpits Belly Buttocks Feet
Female
Breasts

Female
Genitalia

Male
Breasts

Male
Genitalia

Anus

SD v1.4 1013 753 110 116 1389 453 8 3 0
SD v2.1 858 659 149 120 685 201 110 3 0

SLD Medium 360 369 38 56 351 115 73 1 0
ESD-u 86 56 7 35 55 5 10 0 0

SA (Ours) 204 172 15 105 245 27 0 0 0

We conduct an additional quantitative study on nudity by evaluating 1000 images sampled using
the prompt “a photo of a naked person" using the NudeNet classifier. We use the same setup as the
I2P experiments for all models. The results are shown in Table 4. Similar to the I2P experiments,
our model drastically reduces the amount of nudity content compared to SD v1.4 and v2.1. ESD-u
achieves the best scores overall. Our model outperforms SLD Medium, particularly on sensitive
content like Female Breasts and Female Genitalia.
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D Additional Samples

D.1 MNIST, CIFAR10, STL10

Original

Figure 7: Additional sample images comparing the original MNIST VAE versus ours with the digit
‘0’ forgotten with λ = 100 (with GR), which corresponds to the hyperparameters shown in Table 1.

Original

Figure 8: Additional sample images comparing the original STL10 DDPM versus ours with the
‘airplane’ class forgotten with λ = 10 (with GR), which corresponds to the hyperparameters shown
in Table 1.
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Original with GR

no GR with GR

Figure 9: Additional sample images comparing the original CIFAR10 DDPM versus ours with the
‘airplane’ class forgotten. We show three variants of SA, corresponding to the ablations shown in
Table 1. It is clear from inspection that the image quality of the classes to remember is significantly
impacted without the GR term (λ = 10 no GR). When visually comparing λ = 1 and λ = 10 (both
with GR), the differences are not immediately obvious to the naked eye, although the quantitative
metrics show that λ = 10 produces better results.
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D.2 Stable Diffusion

Figure 10: Sample images with prompt "Brad Pitt in a tuxedo". These are an extension of Fig. 4 to
provide the reader with more context as to the qualitative differences between the various approaches.
The bottom two rows are our method, where we set q(x|cf ) to “middle aged man" and “male clown”
for cf = {“Brad Pitt"}.

Figure 11: Sample images with prompt "a close up of Brad Pitt’s face". These are an extension of
Fig. 4. The bottom two rows are our method, where we set q(x|cf ) to “middle aged man" and “male
clown” for cf = {“Brad Pitt"}.
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Figure 12: Sample images with prompt "Brad Pitt laughing in a park". These are an extension of
Fig. 4. The bottom two rows are our method, where we set q(x|cf ) to “middle aged man" and “male
clown” for cf = {“Brad Pitt"}.

Figure 13: Sample images with prompt "Angelina Jolie in a black dress". These are an extension of
Fig. 5. The bottom two rows are our method, where we set q(x|cf ) to “middle aged woman" and
“female clown” for cf = {“Angelina Jolie"}.

21



Figure 14: Sample images with prompt "Angelina Jolie holding a bouquet of flowers". These are an
extension of Fig. 5. The bottom two rows are our method, where we set q(x|cf ) to “middle aged
woman" and “female clown” for cf = {“Angelina Jolie"}.

Figure 15: Sample images with prompt "Angelina Jolie wearing a hat". These are an extension of
Fig. 5. The bottom two rows are our method, where we set q(x|cf ) to “middle aged woman" and
“female clown” for cf = {“Angelina Jolie"}.
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Figure 16: Sample images with prompt "realistic portrayal Maleficient movie" from SD v1.4 and
our method where we set q(x|cf ) to “middle aged woman" and “female clown” for cf = {“Angelina
Jolie"}. Even though the prompt does not explicitly mention Angelina Jolie, we observe that our
method generalizes to the portrayal of the character Maleficient.

Figure 17: Sample images with prompt "a photo of a naked person". These are an extension of Fig. 6.
Note again that we are being conservative in censoring the image here.

Figure 18: We also experiment with forgetting of art styles. Here we attempt to forget the artistic
style of Vincent van Gogh by setting q(x|cf ) to images of “pop art style" generated by SD v1.4 for
cf = {“van gogh style"}. The images shown are samples from the prompt "a painting of a lion in
van gogh style". SA successfully generates images that lacks the distinct van gogh style (and instead
contains elements of pop art style).
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E Effects on Other Celebrities

Figure 19: Sample images investigating the effects on celebrities other than the one being forgotten
when using our method. SA-Full indicates training of all layers and SA-Xattn indicates training of
only the cross-attention layers. Both models are trained to forget cf = {“Angelina Jolie"} by setting
to q(x|cf ) to “middle aged woman". We use the prompt “[...] on stage", where [...] is substituted
with Jennifer Aniston, Oprah Winfrey or Jackie Chan.

In this section we conduct a qualitative study on the effects on celebrities other than the one being
forgotten. Ideally, the changes to other celebrities should be minimal. We revisit the case of forgetting
Angelina Jolie by setting q(x|cf ) to “middle aged woman". We train two variants, training all layers
(like in Sec. 4.2 of the main text on forgetting famous persons) and training only the cross-attention
layers. We abbreviate them as SA-Full and SA-Xattn respectively.

From Fig. 19, we see that SA-Full leads to slight changes in the depiction of Jennifer Aniston
(compared to how she looks in person, or to SD v1.4), but minimal changes to Oprah Winfrey and
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Jackie Chan. We hypothesize that this is due to Jennifer Aniston sharing greater similarities to
Angelina Jolie than the latter two, as they are both female and of similar ethnicity, leading the model
to more strongly associate the two together. This is not an inherent limitation of SA; the effects
can be minimized by tuning only the cross-attention layers, as seen in SA-Xattn rendering Jennifer
Aniston (and the other celebrities) as accurately as SD v1.4. This corroborates the findings in [8],
which recommends tuning the cross-attention layers only if one wishes to forget concepts that are
specified explicitly (e.g., celebrity names which are mentioned in the prompt).

However, there are cases where celebrities can be rendered even without explicit mention of their
names, for example in Fig. 16. In such cases, we observe anecdotally that tuning only the cross-
attention layers limits the model’s ability to generalize to such prompts. Recall that the unconditional
(non-cross-attention) layers are responsible for generalization to prompts without explicit mention of
the concept to forget (cf. the nudity experiments in Sec. 4.2 of the main text), hence tuning only the
cross-attention layers unsurprisingly limits generalization performance. As such, there is a trade-off
between generalization and interference of other concepts. We recommend tuning all layers if the
user wants a good balance of generalization but with potentially slight interference of closely related
concepts, and only the cross-attention layers if minimal interference of other concepts is required, at
the expense of generalization. We leave a more precise study of this trade-off to future work.
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