
Augmented Memory Replay-based Continual
Learning Approaches for Network Intrusion Detection

Suresh Kumar Amalapuram∗, Sumohana S Channappayya#, and Bheemarjuna Reddy Tamma∗

Department of Computer Science and Engineering∗, Electrical Engineering#

Indian Institute of Technology Hyderabad, India
{cs19resch11001,sumohana,tbr}@iith.ac.in

A Appendix

In this appendix, we present additional details of our proposed work which we could not accommodate
in the main paper due to space constraints. Specifically, we shed more light on the following aspects:

• Network intrusion detection system
• Continual learning with shallow methods
• Detailed illustration of configuration changes
• Datasets details
• Data preprocessing and feature selection
• Task formulation
• Task similarity via optimal transport dataset distance
• Training time comparison of the proposed ECBRS with the baselines
• Additional experiments with anomaly detection datasets
• Ablation studies
• Implementation, hardware details, and hyperparameter selection
• Occurrence of task dissimilarity between two different tasks is rare
• Limitations and broader impact

A.1 Network intrusion detection system

A prototype architecture of network intrusion detection (NID) training and inference system is given
in Figure 1. NID comprises two parts: the training module and the anomaly detection engine. The
core functionality of the training module is to build the model for intrusion detection using various
training datasets. We are building a continual learning network-based intrusion detection model in
our work. The training can be periodic or triggered by an event like decay in intrusion detection
accuracy. The entire training process can be performed in parallel without affecting the inference
process using the MLOps platform for stream processing. After training, the model is deployed to the
anomaly/intrusion detection engine. The anomaly detection engine is the visible component of the
entire system. It has an in-built feature extractor to extract the essential features from the incoming
traffic on the fly. These features are fed to the anomaly detection engine to identify anomaly pattern(s).
Further, the proposed model does not require colossal system infrastructure (with a lot of memory
and processing resources) as it uses a simple multi-layer perceptron (with about 5 to 6 hidden layers).
This MLP architecture has low complexity (capacity) compared to larger models like ResNet with
stacked convolution operations. Therefore, our model can also be deployed on edge devices with
limited resources. Furthermore, our solution is based on neural networks models, and we recommend
using MLOps for low-latency inference in real-world deployments.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Data
preprocessing

Dataset
sources

Continual
learning
module

Feature extractor

Incoming network
traffic

Anomaly detection
engine

Benign Anomaly

Deploy

Training Module

Figure 1: An overview of the continual learning-based network intrusion detection system.

A.2 Continual learning with shallow methods

In our work, shallow methods are the non-neural network-based approaches. These include methods
like random forest, support vector machine, logistic regression, etc. Our empirical observation
suggests that using shallow methods in continual learning may not be appropriate for two reasons
(i) shallow methods will exhibit higher catastrophic forgetting of the minority classes of the previous
tasks and (ii) they still require maintaining samples of previous tasks in buffer memory to handle
class imbalance.

We now present the experiments conducted using the random forest in the continual learning setting on
CICIDS-2017 and CICIDS-2018 datasets. Specifically, we attempt to understand the implications of
using shallow methods on the performance of the attack class (minority) and the overall performance
of all previous tasks using the backward transfer (BWT) metric [1]. First, we define the BWT metric
and show how it is computed. BWT is the influence that learning a task ‘t’ has on the performance of
a previous task k < t, and it can be either positive or negative. Positive BWT occurs when acquiring
knowledge in a particular task enhances one’s performance in a prior task. Conversely, negative
BWT occurs when learning a task diminishes proficiency in prior tasks. Notably, significant negative
backward transfer is often termed as catastrophic forgetting (CF). To compute BWT, we assume
implicit access to the test set for each task ‘t.’ After the model completes learning the task ‘t’, we
evaluate the test performance on all the ‘t’ tasks and create a matrixR ∈ Rt×t. Each entryR[i, j] is
the test performance measure of the task ‘j’ after learning until the task ‘i.’ The BWT for a particular
task ‘p’ is computed as follows:

BWT[p] =
1

p− 1

p−1∑
j=1

R[p, j]−R[j, j]

Performance on minority class (attack class): Here, we study the impact of using the random
forest method in the CL setting on the performance of minority classes using the BTW metric.
Specifically, the test performance is evaluated using the PR-AUC metric after the correspondingR
matrix is constructed. Using the R matrix we computed the BWT values as presented in Table 1
on CICIDS-2017 and CICIDS-2018 datasets. We make the following observations: first, most of
the BWT values are negative, indicative of higher CF. Second, while augmenting the random forest
training process with additional buffer memory reduced negative BWT, it still exhibited significant
CF. To conclude, random forest-based CL training suffers from higher CF even with augmented
memory. As a result, shallow methods like random forest may not be appropriate under a continual
learning paradigm.

Overall performance: Here, we study the impact of using the random forest method in the CL setting
on the overall performance of all tasks using the BTW metric. Specifically, the test performance

2



Table 1: Backward negative transfer (catastrophic forgetting) of the minority (attack) classes using
the random forest method in the continual learning setting. This set of experiments uses the PR-AUC
metric to compute the test performance of all tasks.

Dataset Buffer memory size Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Task11

CICIDS-2017 - 0. -0.98 -0.72 -0.54 -0.35 -0.45 -0.38 -0.37 -0.38 -0.39 -0.39
11000 0. -0. -0.07 -0.11 -0.08 -0.25 -0.13 -0.1 -0.21 -0.19 -0.24
110000 0. -0. -0.07 -0.09 -0.07 -0.24 -0.11 -0.09 -0.21 -0.23 -0.19

CICIDS-2018 - 0. -0.45 -0.9 -0.41 -0.42 -0.4 -0.71 -0.66 -0.45 -0.88 -
10000 0. 0. -0.16 -0.24 -0.18 -0.28 -0.24 -0.2 -0.3 -0.42 -
100000 0. -0. -0.16 -0.24 -0.18 -0.25 -0.22 -0.19 -0.26 -0.32 -

is evaluated using the F1-score metric, and the corresponding R matrix is constructed. Using the
R, we computed the BWT, and values are presented in Table 2 on CICIDS-2017 and CICIDS-2018
datasets. Previously described drawbacks (in the performance of minority class experiment) are also
equally valid in this experiment. To conclude, overall performance suffers from higher CF even with
augmented memory. As a result, shallow methods like random forest may not be appropriate under a
continual learning paradigm.

Table 2: Backward negative transfer (catastrophic forgetting) of the overall performance using the
random forest method in the continual learning setting. This set of experiments uses the F1-score
metric to compute the test performance of all tasks.

Dataset Buffer memory size Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Task11

CICIDS-2017 - 0. -1. -0.99 -0.88 -0.99 -0.9 -0.97 -0.96 -0.98 -0.99 -0.95
11000 0. -0. -0.09 -0.27 -0.19 -0.35 -0.28 -0.2 -0.33 -0.26 -0.42
110000 0. -0. -0.09 -0.19 -0.13 -0.3 -0.22 -0.17 -0.31 -0.25 -0.3

CICIDS-2018 - 0. -0.95 -0.97 -0.98 -0.95 -0.87 -0.99 -0.99 -0.98 -0.98 -
10000 0. -0. -0.38 -0.59 -0.44 -0.6 -0.5 -0.43 -0.48 -0.53 -
100000 0. -0. -0.38 -0.59 -0.44 -0.56 -0.46 -0.4 -0.45 -0.47 -

A.3 Detailed illustration of memory configuration changes

CBRS: It always selects the largest class sample for replacement whenever a new non-full/largest
class sample arrives. In our study, attack5 class is the minority/non-full class, and the remaining
classes (benign, attack1, attack2, attack3, and attack4) are full classes. CBRS chooses one of the full
class samples for replacement whenever a new attack5 class sample arrives. For instance, the attack4
class sample is chosen for the first arriving sample (illustrated in Figure 2a). As a result, attack4 class
strength in buffer memory will be reduced to 269. Now, on the newly arriving attack5 sample, CBRS
will choose classes other than attack4, i.e., benign, attack1, attack2, and attack3 for replacement, as
they have higher class strength in the buffer memory, which is 270. Consequently, benign class is
chosen for replacement (illustrated in Figure 2b). This process continues until all the new arriving
attack5 class samples are accommodated in the buffer memory (illustrated from Figure 2c to Figure 2j).
As a result, each of the largest classes in the buffer will be chosen at least once for replacement.

ECBRS: It always selects a class sample with higher running statistics and class strength in buffer
memory greater than γ(·) for replacement whenever a new non-full/largest class samples arrive. In our
study, attack5 class is the minority/non-full class, and the remaining classes (benign, attack1, attack2,
attack3, and attack4) are full classes. ECBRS will choose benign class sample for replacement
whenever a new attack5 class sample arrives (illustrated in Figure 3a). As a result, benign class
strength in buffer memory will be reduced to 269. Now, on the newly arriving attack5 sample, ECBRS
still chose benign class for replacement. The benign class sample selection process continues until
its class strength reaches the threshold (γ(benign) = 262) (illustrated from Figure 3b to Figure 3i).
Eventually, benign class strength reaches its threshold whenever a tenth new sample from the attack5
class arrives. As a result, ECBRS will choose the class attack4 for replacement, as it contains the
next highest running statistic value, and the remaining classes (attack1, attack2, attack3) are left
undisturbed (illustrated in Figure 3j

3



Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

270 270 270 270 269

151

Replace
Intact
Annex

(a)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

269 270 270 270 269

152

Replace
Intact
Annex

(b)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

269 270 269 270 269

153

Replace
Intact
Annex

(c)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

269 269 269 270 269

154

Replace
Intact
Annex

(d)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

269 269 269 269 269

155

Replace
Intact
Annex

(e)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

268 269 269 269 269

156

Replace
Intact
Annex

(f)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

268 268 269 269 269

157

Replace
Intact
Annex

(g)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

268 268 268 269 269

158

Replace
Intact
Annex

(h)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

268 268 268 268 269

159

Replace
Intact
Annex

(i)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 C

BR
S 

268 268 268 268 268

160

Replace
Intact
Annex

(j)

Figure 2: Illustration of variations in the CBRS buffer memory configuration on the arrival of
each new sample (of attack4 class). A total of 10 new samples arrived for attack5 class, and a
corresponding memory configuration was shown from (a) - (j). The class with blue-colored bars
remains intact, the green-colored bar class received a new sample, and the red-colored bar class is
chosen for replacement.

4



Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

269 270 270 270 270

151

Replace
Intact
Annex

(a)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

268 270 270 270 270

152

Replace
Intact
Annex

(b)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

267 270 270 270 270

153

Replace
Intact
Annex

(c)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

266 270 270 270 270

154

Replace
Intact
Annex

(d)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

265 270 270 270 270

155

Replace
Intact
Annex

(e)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

264 270 270 270 270

156

Replace
Intact
Annex

(f)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

263 270 270 270 270

157

Replace
Intact
Annex

(g)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

262 270 270 270 270

158

Replace
Intact
Annex

(h)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

262 270 270 270 268

159

Replace
Intact
Annex

(i)

Ben
ign

Att
ack

1

Att
ack

2

Att
ack

3

Att
ack

4

Att
ack

5M
em

or
y 

di
st

ri
bu

ti
on

 u
si

ng
 E

CB
RS

262 270 270 270 268

160

Replace
Intact
Annex

(j)

Figure 3: Illustration of variations in the ECBRS buffer memory configuration on the arrival of each
new sample (of attack4 class). A total of 10 new samples arrived, and a corresponding memory
configuration was shown from (a) - (j). The class with blue-colored bars remains intact, the green-
colored bar class received a new sample, and the red-colored bar class is chosen for replacement.

5



A.4 Datasets

KDDCUP’99 [2] is a widely used dataset for network anomaly detection, built using the data captured
in the DARPA’98 IDS evaluation program. Its raw data contains seven weeks for captured network
traffic used for training and two weeks for data for the test set. Different types of attacks present in
this dataset fall under one of the four attack categories (denial of service, user to root, remote to local,
and probing). This dataset set has nearly 4.9 million samples, with 41 features each. The train set
contains nearly 24 types of attacks, and the test set include additional 14 new different types. Despite
these merits, it received a lot of criticism due to redundant records, and the difficulty of learning is
low. A new version was created, eliminating the redundancy, called NSL-KDD. However, this also
still suffers some of the problems raised [3]; this may not be representative of real-world network
traffic.

CICIDS-2017 and CICIDS-2018 [4] are well-known multiclass up-to-date datasets, curated by the
Canadian Institute for Cybersecurity (CIC) [5, 6]. However, the published version released by CIC
received a lot of criticism recently due to errors in curating the dataset. The published version of
CICIDS2018 only contains 25% of the total flows, mislabelling issues for attack classes, and the
presence of class overlap when flow identifiers are removed. In our experiments, we used the recent
dataset [4]. The experiments to simulate these datasets are spread over 5 and 10 days, respectively.
These datasets contain nearly 2 million and 63 million in training samples, respectively. The
CICIDS-2017 is curated using two subnetworks, attack and victim networks, whereas CICIDS-2018
is curated using six subnetworks on the AWS platform [5].

UNSW-NB15 [7, 8, 9, 10, 11] is another multiclass cybersecurity dataset which contains nine attack
classes and one benign class. The simulation period was 16 hours on Jan 22, 2015, and 15 hours on
Feb 17, 2015. The testbed architecture used for curating this dataset contains two subnetworks. This
dataset has approximately 2.5 million samples, out of which 87% belong to the benign class.UNSW-
NB15 dataset originally had nine different classes. However, to enlarge the class imbalance, we split
some attack classes to give 14 classes.

CTU-13 [12] comprises botnet traffic collected at CTU University, Czech Republic, in 2011. It aimed
to amalgamate authentic botnet traffic with regular and background traffic for a comprehensive dataset.
It consists of thirteen distinct botnet sample captures (scenarios), each involving the execution of
specific malware utilizing various protocols and actions. The CTU-13 dataset stands out due to each
scenario’s manual analysis and labeling. The different botnet scenarios include Menti, Murlo, Neris,
Rbot, Virut, NSIS.ay, and Sogou.

AnoShift [13] is a new unsupervised anomaly detection benchmark build over kyoto2006+ (intrusion
detection dataset). This dataset is collected using various honeypots deployed across five different
subnetworks in Kyoto University. All the normal traffic is generated using a mailing server and a
DNS server. The malicious network traffic is additionally categorized using three software solutions:
a Network-Level Intrusion Detection System, an Antivirus product, and a detector for shellcodes
and exploits. We inform the readers that the testbed architecture used to curate this dataset differs
from the remaining datasets. However, we are interested in this dataset because it is the most suitable
dataset to validate proposed continual learning methods due to its natural temporal variations and
time period of ten years. This dataset contains nearly 90% anomalous traffic. It has nearly 806 million
records; however, in our work, we restricted it to a subset of this whole benchmark.

MNIST [14] is a dataset of handwritten digits ranging from 0 to 9. It has 60,000 training, a test set of
10,000 examples, and each sample has a size of 28 × 28.

SVHN [15] is a street view housing number dataset. It is a real-world dataset obtained from house
numbers in Google Street view images. It has 10 class digits labeled from 0 to 9, each with the size
of 3× 32× 32.

CIFAR-10/100 [16] is a labeled dataset derived from the tiny IMAGENET dataset. It has 60,000
colored 32 × 32 size training images with 10/100 different classes and 50,000 test images. The
classes for the CIFAR-10 dataset are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The CIFAR-100 dataset also has twenty super/coarse class labels.

CLEAR-10/100 [17] is the first continual image classification benchmark with natural temporal
evolution in the visual concepts of real-world imagery spanning over ten years. It was built from
the existing scale image collection YFCC100M [18]. Authors selected temporally dynamic visual

6



concepts in the trends and fashion, consumer products, and social events. Further, ten dynamic visual
concepts were chosen from the above super category; they are baseball, bus, camera, cosplay, dress,
hockey, laptop, racing, sweater, and soccer for the CLEAR-10 dataset. Specifically, the dataset is
organized in a yearly granularity containing ten directories (one per year), and each directory contains
ten classes for CLEAR-10 and a hundred classes for CLEAR-100 dataset.

A.5 Data pre-processing & feature selection

This section describes the data processing and feature selection methods used on the benchmark
datasets before training.

KDDCUP’99 and NSL-KDD: For these datasets, service, is_host_login,num_outbound_cmds
features were removed as they were found to contain redundant values. After preprocessing, we used
3908372 samples as a training set and 990059 samples for the test for KDDCUP’99. For NSL-KDD,
the train and test contain 112752 and 35767 samples, respectively.

CICIDS2017 and CICIDS2018: These datasets initially contained over 90 features. After elim-
inating flow-specific identifiers such as flow ID, source IP, destination IP, source port, destination
port, and timestamp, we applied feature engineering using the Pearson correlation coefficient with
a threshold of 90%. This process led to retaining around 51 features. With these selected features,
min-max normalization is performed before starting the training process. The training and test
set sizes of CICIDS-2017 dataset are 1828315 and 271656, whereas for CICIDS-2018, these are
61178191 and 2016897, respectively.

USNW-NB15: For this dataset, we removed srcip, sport, dstip, dsport, Stime, Ltime features.
We performed a categorical data encoding for the features like proto, state, service, followed by
min-max normalization, after which the training process was invoked with the remaining features.
The training and test sizes are 2379387 and 160660, respectively.

AnoShift-subset: We did not perform any feature engineering on this dataset, as the preprocessed
dataset is readily available with 18 features. The training and test sizes are 9759548 and 1525000,
respectively.

CTU-13: We used the dataset from [19]. We performed min-max normalization on this dataset before
training.

CIFAR-10 and CIFAR-100: These datasets are normalized across all three channels using the mean
(0.5071, 0.4865, 0.4409) and standard deviation values (0.2673, 0.2564, 0.2762). Following, we
applied torchvision transform operations like resize and random crop with a value of 32.

CLEAR-10 and CLEAR-100: These datasets are normalized across all three channels using the
mean (0.485, 0.456, 0.406) and standard deviation values (0.229, 0.224, 0.225). Following, we
applied torchvision transform operations like resize and random crop with a value of 224.

A.6 Task formulation

In this section, the intuitions behind how a task is created in the continual learning context for each
benchmark dataset is described. Most CL literature is devoted to the computer vision domain, so
creating tasks using vision datasets is well-established in the literature. However, the situation is
different for network intrusion detection datasets due to the absence of established procedures for
creating tasks for NIDS datasets. Based on our prior experience in the NIDS domain, we recommend
following the desiderata: (i) each created task has to contain a large number of benign samples
compared to attack samples, (ii) when compared, each task has to exhibit quantifiable distribution
shifts and contain longer task sequences; however, most publicly available NIDS datasets contain
minimal to no distribution shifts. One possible way to solve this problem is by posing task creation as
an optimization problem to maximize the average distribution shifts between tasks, with an additional
constraint that each task at least has one attack class and one benign class. Given the complexity of
solving this optimization problem, we used a simple heuristic approach to create the tasks that satisfy
the above desiderata. In the following, we describe the number of tasks created for each dataset.

KDDCUP’99 and NSL-KDD: We create ten tasks for KDDCUP’99 and five for NSL-KDD.

7



CICIDS-2017 and CICIDS-2018: We create eleven tasks for CICIDS-2017 and ten for CICIDS-
2018.

CTU-13: This dataset [19] considers five attack classes (Menti, Murlo, Neris, Rbot, and Virut)
samples. We created each task by distributing each attack class sample per task. As a result, a total of
five tasks are created.

UNSW-NB15: We created a total of nine tasks for this dataset

AnoShift: This dataset spread over ten years. We created ten tasks, considering each year as a unit
in creating each task. Specifically, the second desideratum for this dataset is naturally obeyed (as
already shown in the literature about the natural distribution shifts of this dataset).

SVHN and CIFAR-10: We randomly select one class as an attack class and all remaining classes as
benign. Specifically, for SVHN, class with label 9 is chosen as an attack class, and nine tasks are
created, accommodating each of the remaining nine classes(benign) per task. The chosen attack class
is randomly split into nine parts and distributed across all the tasks. Similarly, nine tasks are created
for the CIFAR-10 dataset with the truck class as an attack class.

CIFAR-100: We consider superclass labels (a total of 20 labels) of CIFAR-100 dataset in our
experiments. A single large benign class file is created, combining samples from the class with
labels from 0 to 13, and a single attack class file is created with the remaining class labels. After
shuffling, the large benign file is split into ten equal parts, and the attack file is split into ten parts by
maintaining a classimbalance (CI) ratio of 1 : 100 between each benign and attack subpart. Thus,
when a task is created, combining a single benign and attack class, a CI ratio of 1:100 is maintained
per task. Another merit of such a task creation is that, when compared, a distribution shift exists
between the benign and attack classes of different tasks. We have created a total of ten tasks for this
dataset.

CLEAR-10: Similar to CIFAR-100 tasks creation, we create a large benign file considering six
classes of data from each year. Specifically, six classes of data from all ten years (of training data)
are combined to create the benign file, and a single attack class is created with the remaining four
classes of data from all ten years. The large benign class is divided into ten equal subparts, and the
attack class is divided into sixteen parts, each containing the number of samples that is 1/100th the
number of samples in the benign subpart file to maintain a CI ratio of 1:100 per task. We created a
total of ten tasks for this dataset.

CLEAR-100: Similar to CLEAR-10 tasks creation, we create a large benign file considering eighty
classes of data from each year. Specifically, eighty classes of data from all ten years (of training data)
are combined to create the benign file, and a single attack class is created with the remaining twenty
classes of data from all ten years. The large benign class is divided into ten equal subparts, and the
attack class is divided into sixteen parts, each containing the number of samples that is 1/100th the
number of samples in the benign subpart file to maintain a CI ratio of 1:100 per task. We created a
total of ten tasks for this dataset.

A.7 Task similarity via optimal transport dataset distance

In this section, we describe the optimal transport dataset distance (OTDD) [20] for task similarity.
OTDD is a geometric distance that compares the similarity between two continual learning tasks.
The reason for using the OTDD metric despite other distance metrics lies in its uniqueness as follows:
OTDD is model agnostic and it does not involve training.

Now, we describe how to leverage OTDD values to compute the distance between the adjacent tasks
(of CL training). We use these computed OTDD values to verify the presence of distribution shifts
that happened between the tasks. Eventually, we use the single number per dataset computed as the
average of these OTDD values to compare different datasets to quantify the amount of distribution
shifts present at a dataset level.

We made the following observation from Table 3. First, datasets like CICIDS-2017, CICIDS-2018,
and CTU-13 contain minimal to no distribution shift (DS) in their datasets; on the contrary, the
AnoShift dataset contains higher DS compared to CIFAR-10 and CIFAR-100. Second, due to high
dimensionality and different types of images presented, the CIFAR-10/100 exhibits DS. Interestingly,
unlike other NIDS datasets, AnoShift exhibits higher DS. The reason for this behavior can be bi-

8



Table 3: Optimal transport dataset distance values computed between adjacent tasks. The average
OTDD value is computed as the mean value over all the OTDD values.

Dataset (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10) Avg. OTDD values

CICIDS-2017 0.2564 0.1821 0.2626 0.0154 0.3031 0.3094 0.0339 0.0078 0.0039 0.1527
CICIDS-2018 0.1760 0.1576 0.0093 0.0052 0.0051 0.0043 0.0042 0.0357 0.0732 0.0523
CTU-13 0.9451 3.0247 9.3560 - - - - - - 4.4419
AnoShift 21190.6797 4506.2402 4617.2363 6344.8398 9892.0820 5103.3872 3602.3271 2258.5381 - 7189
CIFAR-10 268.7531 265.6069 242.938 221.597 212.276 181.975 216.785 241.152 - 231
CIFAR-100 1687.2399 1686.1848 1693.7480 1723.9976 1698.5425 1715.5204 1695.5215 1686.7532 1676.0833 1695.95457

fold: (i) time duration and (ii) network topology used to curate the dataset. The CICIDS-2017
and CICIDS-2018 datasets are synthetically created over a short period (within days) [21], and the
topology contains two subnets (attack and victim networks). However, the AnoShift dataset is curated
from the existing Kyoto2006+ dataset that spans over a decade, and the data is logged from 348
honeypots deployed over five different subnets at Kyoto University [21]. Although AnoShift is
curated differently from other NIDS datasets, the presence of DS over a long period makes it an ideal
dataset to validate the proposed methods in this work.

A.8 Training time comparisons of the ECBRS with the baselines

Here, we compare the training time required for all the baselines across network intrusion detection
and computer vision benchmarking datasets with the proposed ECBRS method, and the results are
presented in Table 4. We make the following observations.

1. The training time for gradient-based methods GEM, AGEM, and GSS-greedy increases with
the size of the dataset, as they require a lot of gradient computations.

2. CBRS and ECBRS take the least training time on nine datasets. However, ECBRS’ training
time is lower when compared to CBRS on seven benchmarks out of twelve.

3. ECBRS is efficient regarding training time compared to the baselines on six benchmarking
datasets, including large-size datasets like CICIDS-2018 and AnoShift.

4. Empirically, besides CBRS and ECBRS, MIR is the most training time-efficient method
among all the baselines.

Table 4: Total training time comparison between the baselines and ECBRS on benchmark datasets.
Each experiment is repeated five times independently, and mean values are reported. Training time is
reported in seconds.

Method KDDCUP’99 NSL-KDD CICIDS2017 CICIDS2018 UNSW-NB15 CTU-13 AnoShift SVHN CIFAR-10 CIFAR-100 CLEAR10 CLEAR-100

EWC 1089 37 518 18078 789 674 2734 366 142 1197 421 1376
SI 948 37 398 16780 667 658 2119 460 238 283 204 1221
GEM 1100 37 489 17296 801 605 2716 1205 638 772 965 6608
A-GEM 847 31 407 13658 669 554 2022 460 97 558 645 1337
GSS-greedy 35445 257 9212 92055 6966 505 36388 6111 2346 4837 1456 8393
MIR 420 23 254 7620 428 398 1210 217 118 96 265 1490
CBRS 378 19 190 6534 478 295 976 159 82 72 613 1552
ECBRS 387 16 216.6 6111 452 258 846 112 61 74 534 1570

A.9 Additional experiments with anomaly detection datasets

We took the test sets (as the labels are available) of datasets (i.e., SMAP, MSL, and SMD) to validate
our proposed approaches. We found that our findings on the supervised dataset are equally valid on
the new set of experiments conducted on the test sets of the unsupervised anomaly detection datasets.
Now, we will explain in detail the experiment formulation and discuss the results.

Experiments formulation: We divide the SMAP and MSL data into six tasks, each containing a
mix of anomalous and normal data. Similarly, three tasks were created for the SMD dataset, as there
are three groups of entities. Hyperparameter details of the experiments are presented in Table 5.
The intuition behind the memory size is to store nearly 1% of the total training sample in the buffer
memory, and 75% of the buffer memory samples will be used for replay.

In this new set of experiments, we partially validated the proposed approach on unsupervised datasets
with the most suitable baselines. First, we present the performance results of the proposed ECBRS

9



Table 5: Hyperparameters details of the experiments conducted on unsupervised anomaly detection
benchmark datasets.

Dataset #tasks Memory/Replay size w(·)
SMAP- Soil Moisture Active Passive 6 4500/3375 0.1
MSL-Mars Science Laboratory Rover 6 750/560 0.1
SMD-Server Machine Dataset 3 7000/5250 0.1

algorithm in Table 6. ECBRS exhibits a similar performance trend to other datasets. Additionally,
when compared to MIR with random replay sample replacement, ECBRS shows superior perfor-
mance. Moreover, when used as a memory population technique in conjunction with MIR, ECBRS
outperforms MIR with the random replay technique.

Table 6: Performance results comparison of the proposed ECBRS method with the baselines on
anomaly detection benchmarks. We report the arithmetic mean values with each experiment repeated
five times independently. The performance result of the MIR using ECBRS as a memory population
method is highlighted in light grey color.

SMAP SMD MSL

Baseline Methods PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B)

MIR [22] 0.560 0.916 0.598 0.751 0.637 0.709 0.587 0.569 0.597
CBRS [23] 0.713 0.717 0.738 0.902 0.932 0.922 0.718 0.645 0.683

ECBRS (ours) 0.736 0.721 0.752 0.895 0.925 0.905 0.723 0.647 0.686
MIR + ECBRS 0.648 0.647 0.672 0.839 0.818 0.824 0.616 0.660 0.695

In another set of experiments, we compare the effectiveness of the proposed PAPA algorithm on
unsupervised datasets. The performance results are presented in Table 7 and Table 8. Even here,
we note that the performance results trend of the proposed PAPA algorithm on suggested datasets
is similar to the experimental results discussed in the main paper. The proposed PAPA approach
outperforms MIR on all three datasets. It achieves a maximum of 85% savings in the number of
virtual SGD updates, leading to 50% savings in the total number of SGD updates.

Table 7: Performance comparison of the proposed PAPA method with other baselines on anomaly
detection benchmarks. We report the arithmetic mean of each evaluation metric with each experiment
repeated five times independently.

MIR PAPA Training time (in sec.)

Datasets PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC MIR PAPA Scalable efficiency

SMAP 0.648 0.647 0.672 0.717 0.724 0.744 186.6 126.4 32.2%
SMD 0.839 0.818 0.824 0.876 0.906 0.886 301.6 208.6 30.8%
MSL 0.616 0.576 0.600 0.723 0.660 0.695 37.6 28.2 25.0%

Table 8: Performance comparison of the number of regular and virtual SGD operations required for
the MIR and proposed PAPA approach on benchmark datasets. Each experiment is repeated five
times independently.

MIR PAPA savings

Datasets Vir.SGD ops Reg. SGD ops Vir. SGD ops Reg. SGD ops Vir. SGD ops Total SGD ops

SMAP 16010 29361 2295 20315 85.6% 50.1%
SMD 27740 46612 5040 33105 81.8% 48.6%
MSL 3120 4823 450 3916 85.5% 45.0%

A.10 Ablation studies

In this section, we conduct various ablation studies on the hyperparameters of the proposed ECBRS
and PAPA methods.

10



A.10.1 ECBRS

In this section, we study the impact of varying each of the hyperparameters on the performance of the
proposed ECBRS method. Specifically, ablation studies are conducted on random sample selection,
threshold parameter γ(·), and batch size.

Gradient based sample selection: In the proposed ECBRS approach, whenever a new sample
belonging to the full class arrives, a randomly chosen sample from the same class is replaced with a
new sample. This experiment replaces random sample selection with the gradient based selection.
Specifically, a sample with a lower gradient value with the current model parameters is chosen
for replacement. Intuitively, the selected sample represents the least significant or a well-learned
sample. Experiments are conducted using CIFAR-10, CIFAR-100, and CLEAR-10 benchmarking
datasets, and the results are presented in Table 9. We make the following observations. The gradient-
based method significantly increases the memory population (MP) time due to the frequent gradient
computations. As a result, the total training time relatively increases by (i) 86 times for CIFAR-10,
(ii) 47 times for CIFAR-100, and (iii) 15 times for CLEAR-10 datasets, respectively, compared to
random sample selection without significant performance gains. Based on this empirical evidence,
we believe that using gradient based sample selection method will further increase the training time
without a significant performance gain. So, we intentionally omit the gradient based method, online
coreset selection [24], from the baselines.

Table 9: Performance comparison of ECBRS method with random and gradient-based sample
selection strategies. We report the arithmetic mean values after repeating each experiment five times
independently.

Dataset Sample selecton
strategy

PR-AUC (A) PR-AUC (B) ROC-AUC MP time
(in sec.)

training time
(in sec.)

relative increase in
total training time

CIFAR-10 random 0.95 0.94 0.94 0.13 61
gradient 0.95 0.93 0.94 5190 5250 86 times

CIFAR-100 random 0.640 0.640 0.636 0.118 96.1
gradient 0.656 0.616 0.640 4523 4579 47 times

CLEAR-10 random 0.890 0.885 0.887 128.2 265.9
gradient 0.936 0.921 0.925 3770 4013 15 times

Threshold parameter (γ): It indicates the expected number of samples to be present in the buffer
memory based on the running statistics (global information). γ(·) for each class will depend on the
weight w(·) associated with it, and the weight is computed using the negative soft-max over each
class running frequency. Here, the ablation study is conducted to understand the implications of the
varying w(·) on the performance of the proposed ECBRS on selective benchmarks. The results are
present in Table 10, and we make the following observations.

1. w(·) controls the learning attention to the distribution shifts benign and attack classes. We
observe that w(·) in the range of 0.1 to 0.9 for NIDS benchmarks (except AnoShift) achieves
nearly similar performance on attack data (PR-AUC (A)). However, we have an exception to
this premise. Specifically, on the CICIDS-2018 dataset, for w(·) = 0.3, 0.5, a performance
drop is observed. A similar trend is observed for KDDCUP’99 and NSL-KDD at w(·) = 0.7,
0.9, and 0.5. This can be due to the higher value of the w(·) that makes the learner more
exposed to the benign data. Based on this study, we observe using the value of 0.1 is always
an optimal choice.

2. For AnoShift, in which benign traffic is the minority class, the attack, and benign class
performance are low when the w(·) = 0.1. However, significant improvement is observed
with higher values of w(·).

3. On vision datasets, performance on the benign (PR-AUC (B)) and attack classes (PR-AUC
(A)) continues to become stationary.

To conclude, we recommend using a lower value of w(·) for benchmarks with more benign samples
and a higher value for benchmarks with more attack traffic.

Effect of batch size: Here, we study the effect of varying the batch size on the performance of the
proposed ECBRS method, and the results on selective benchmark datasets are presented in Table 11.

11



Table 10: Effect of the threshold parameter γ(.) of the ECBRS on the performance results of the
selective benchmark datasets. We report the mean values with each experiment repeated independently
four times.

NSL-KDD KDDCUP’99

w(.) PR-AUC (A) PR-AUC (B) ROC-AUC w(.) PR-AUC (A) PR-AUC (B) ROC-AUC

0.1 0.949 0.963 0.967 0.1 1.000 0.993 0.999
0.3 0.971 0.975 0.972 0.3 1.000 0.994 0.999
0.5 0.924 0.968 0.959 0.5 1.000 0.993 0.999
0.7 0.968 0.972 0.970 0.7 0.948 0.938 0.942
0.9 0.952 0.970 0.967 0.9 0.929 0.924 0.929

CICIDS-2018 AnoShift

w(.) PR-AUC (A) PR-AUC (B) ROC-AUC w(.) PR-AUC (A) PR-AUC (B) ROC-AUC

0.1 0.999 0.999 0.999 0.1 0.880 0.868 0.790
0.3 0.947 0.952 0.899 0.3 0.941 0.920 0.926
0.5 0.927 0.925 0.866 0.5 0.948 0.935 0.940
0.7 0.998 0.998 0.998 0.7 0.948 0.938 0.942
0.9 0.999 0.999 0.999 0.9 0.929 0.924 0.929

CIFAR-10 CLEAR-10

w(.) PR-AUC (A) PR-AUC (B) ROC-AUC w(.) PR-AUC (A) PR-AUC (B) ROC-AUC

0.1 0.953 0.940 0.948 0.3 0.941 0.932 0.932
0.3 0.956 0.945 0.951 0.5 0.938 0.926 0.927
0.7 0.945 0.934 0.941 0.7 0.942 0.932 0.933
0.9 0.943 0.937 0.941 0.9 0.925 0.910 0.912

CIFAR-100 CLEAR-100

w(.) PR-AUC (A) PR-AUC (B) ROC-AUC w(.) PR-AUC (A) PR-AUC (B) ROC-AUC

0.3 0.667 0.609 0.643 0.3 0.855 0.812 0.833
0.5 0.654 0.591 0.634 0.5 0.854 0.810 0.831
0.7 0.661 0.592 0.637 0.7 0.853 0.814 0.831
0.9 0.655 0.606 0.640 0.8 0.846 0.802 0.826

On intrusion detection benchmarks like CICIDS-2018, the differences in the performance results with
the varying batch size are minimal. On the contrary, the performance measures on the AnoShift dataset
are stationary with batch size. We chose 1024 as the batch size for NID benchmarks. We observe a
performance degradation on computer vision benchmarks using the batch size 256, particularly on
CIFAR-100 and CLEAR-10 datasets. Intuitively, this could be due to the fact that a large batch size
leads to a degradation in the quality of the model, which affects the generalization ability [25]. So,
we chose 128 as the batch size for vision datasets.

A.10.2 PAPA

In this section, we study the impact of varying each hyperparameter on the performance of the
proposed PAPA method. Specifically, ablation studies are conducted to study the effect of the first
task on the performance of PAPA method, memory size (M), and batch size.

Impact of the different first tasks on PAPA’s performance: The PAPA algorithm uses the MIR
algorithm during the first task to generate the error distribution samples. These samples are in turn
used to train the GMM. Here, we examine the robustness of the PAPA’s performance when the choice
of the first task is varied. Towards this, we formulate four different task orders with varying first tasks.
We selectively conducted this study on the large-size intrusion detection and vision benchmarks with
distribution shifts over time. To understand the bias of the first task on the learning of the PAPA
algorithm on remaining tasks, variance in the performance results over selective benchmarks is
computed and the results are present in Table 12. The variance is low (in the range of 0 to 10−4)
across all the benchmarks, thereby empirically signifying the task order robustness of the proposed
PAPA algorithm. More detailed performance results on different task orders are available in Table 13.

12



Table 11: Effect of the batch size on the performance of the proposed ECBRS method using selective
benchmark datasets. We report the mean values with each experiment repeated independently four
times.

CICIDS-2018 AnoShift

Batch size PR-AUC (A) PR-AUC (B) ROC-AUC Batch size PR-AUC (A) PR-AUC (B) ROC-AUC

256 0.862 0.869 0.740 256 0.948 0.939 0.945
512 0.947 0.852 0.904 512 0.944 0.933 0.937
1024 0.999 0.999 0.999 1024 0.949 0.944 0.948
2048 1.000 1.000 0.999 2048 0.945 0.939 0.945

CIFAR-10 CIFAR-100

Batch size PR-AUC (A) PR-AUC (B) ROC-AUC Batch size PR-AUC (A) PR-AUC (B) ROC-AUC

16 0.948 0.944 0.948 16 0.640 0.600 0.638
32 0.955 0.947 0.951 32 0.666 0.613 0.649
64 0.952 0.941 0.947 64 0.671 0.603 0.646
128 0.953 0.941 0.948 128 0.663 0.611 0.663
256 0.953 0.940 0.949 256 0.646 0.582 0.622

CLEAR-10 CLEAR-100

Batch size PR-AUC (A) PR-AUC (B) ROC-AUC Batch size PR-AUC (A) PR-AUC (B) ROC-AUC

16 0.955 0.944 0.947 16 0.861 0.815 0.838
32 0.953 0.933 0.942 32 0.860 0.804 0.834
64 0.961 0.941 0.950 64 0.853 0.806 0.828
128 0.937 0.926 0.926 128 0.854 0.807 0.831
256 0.897 0.905 0.896 256 0.860 0.829 0.845

Table 12: Variance in the performance results of the proposed PAPA algorithm with different first
tasks. We conduct each experiment four times independently, and sample variance is reported.

Dataset PR-AUC (A) PR-AUC (B) ROC-AUC

CICIDS-2018 0 0 0
AnoShift 10−4 2.6×10−4 2 ×10−4

CIFAR-10 8.3 ×10−5 2 ×10−5 3.3 ×10−5

CLEAR-10 2.3 ×10−5 3.9 ×10−5 2.8 ×10−5

CIFAR-100 7.8 ×10−4 2.0 ×10−4 3.2 ×10−4

CLEAR-100 2.5 ×10−5 4.6 ×10−5 4.9 ×10−5

Effect of memory size(M) on PAPA performance: Here, we study the impact of the buffer memory
size on the proposed PAPA algorithm using selective network intrusion detection and computer
vision benchmark datasets. Performance results are represented in Table 14. On intrusion detection
benchmark AnoShift, performance results steadily increase untilM = 5000. Later, an increase in the
performance is observed atM = 10000, and the subsequent performance results become stationary
after that. On CICIDS-2018, a sudden increase in the performance is observed at M = 5000.
Intuitively, this indicates that a specificM value may exist for each dataset, after which a sudden
increase in the performance results is observed, and performance results on subsequentM values
become stationary or may increase. The performance results on the vision are slightly varied until
a specific valueM. After that, an increase is observed and becomes steady, an analogy identical
to the NIDS benchmarks. Specifically, these M values 500, 666, 500, and 1000 for CIFAR-10,
CLEAR-10, CIFAR-100, and CLEAR-100, respectively. The training set sizes of the CIFAR-100 and
CIFAR-10 are equal, so we use a memory size of 500, and for CLEAR-10, we use 666. Eventually,
for CLEAR-100, a memory size of 2666 is used.

Effect of batch size on PAPA performance: Here, we study the impact of the batch size on
the performance of the proposed PAPA algorithm on the selective intrusion detection and vision
benchmark datasets, and the results are present in Table 15. Performance results are low on the

13



Table 13: Performance comparison of the proposed PAPA algorithm with various task orders on
selective benchmark datasets. Each experiment is repeated four times independently, and mean values
are reported.

CICIDS-2018 AnoShift

Task order index PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

1 0.999 0.999 0.999 0.938 0.915 0.923
2 0.999 0.999 0.999 0.953 0.937 0.945
3 0.999 0.999 0.999 0.952 0.933 0.938
4 0.999 0.999 0.999 0.933 0.902 0.913

CIFAR-10 CLEAR-10

Task order index PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

1 0.940 0.946 0.944 0.949 0.931 0.941
2 0.946 0.950 0.946 0.946 0.926 0.935
3 0.960 0.953 0.957 0.948 0.931 0.937
4 0.956 0.943 0.951 0.957 0.941 0.947

CIFAR-100 CLEAR-100

Task order index PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

1 0.672 0.677 0.674 0.846 0.792 0.823
2 0.707 0.662 0.684 0.846 0.796 0.826
3 0.663 0.648 0.658 0.839 0.780 0.813
4 0.722 0.679 0.701 0.836 0.788 0.812

Table 14: Evaluating the effect of different buffer memory sizes on the proposed PAPA algorithm
using various benchmark datasets. Each experiment is repeated four times independently, and mean
values are reported.

CICIDS-2018 AnoShift

M PR-AUC (A) PR-AUC (B) ROC-AUC M PR-AUC (A) PR-AUC (B) ROC-AUC

2000 0.940 0.946 0.892 2000 0.907 0.918 0.916
5000 0.996 0.995 0.994 5000 0.924 0.929 0.927
10000 0.999 0.999 0.999 10000 0.945 0.932 0.937
20000 0.999 0.999 1.000 20000 0.947 0.932 0.940
40000 0.999 0.999 0.998 40000 0.944 0.925 0.932

CIFAR-10 CLEAR-10

M PR-AUC (A) PR-AUC (B) ROC-AUC M PR-AUC (A) PR-AUC (B) ROC-AUC

50 0.929 0.923 0.928 50 0.946 0.934 0.938
250 0.921 0.919 0.923 250 0.953 0.937 0.945
500 0.948 0.936 0.944 666 0.943 0.927 0.932
1000 0.945 0.926 0.943 1000 0.942 0.934 0.934
2000 0.953 0.949 0.951 1200 0.940 0.926 0.930

CIFAR-100 CLEAR-100

M PR-AUC (A) PR-AUC (B) ROC-AUC M PR-AUC (A) PR-AUC (B) ROC-AUC

50 0.669 0.661 0.662 250 0.860 0.810 0.839
250 0.642 0.638 0.643 500 0.860 0.812 0.837
500 0.673 0.647 0.672 1000 0.830 0.788 0.812
1000 0.667 0.628 0.637 2666 0.845 0.793 0.823

CICIDS-2018 dataset on the batch size of 512; thereafter, it increases with batch size and becomes
stable. On the AnoShift benchmark, attack data traffic detection (PR-AUC (A)) performance values
are stable with increasing batch size, whereas benign data traffic detection (PR-AUC (A)) performance
values are unstable with increasing batch size. PR-AUC (A) values increase from batch size 64 on

14



Table 15: Effect of the batch size on the performance of the proposed PAPA method using selective
benchmark datasets. We report the mean values with each experiment repeated independently four
times.

CICIDS-2018 AnoShift

Batch size PR-AUC (A) PR-AUC (B) ROC-AUC Batch size PR-AUC (A) PR-AUC (B) ROC-AUC

256 0.841 0.850 0.697 256 0.943 0.938 0.946
512 0.996 0.995 0.994 512 0.945 0.929 0.937
1024 0.999 0.999 0.999 1024 0.945 0.932 0.937
2048 0.999 1.000 0.999 2048 0.944 0.935 0.938

CIFAR-10 CIFAR-100

Batch size PR-AUC (A) PR-AUC (B) ROC-AUC Batch size PR-AUC (A) PR-AUC (B) ROC-AUC

32 0.927 0.933 0.933 32 0.689 0.669 0.686
64 0.947 0.937 0.945 64 0.685 0.653 0.675
128 0.948 0.936 0.944 128 0.673 0.647 0.672
256 0.945 0.927 0.939 256 0.675 0.646 0.667
512 0.945 0.938 0.942 512 0.688 0.688 0.679

CLEAR-10 CLEAR-100

Batch size PR-AUC (A) PR-AUC (B) ROC-AUC Batch size PR-AUC (A) PR-AUC (B) ROC-AUC

16 0.951 0.943 0.945 16 0.817 0.768 0.798
32 0.967 0.950 0.959 32 0.844 0.786 0.822
64 0.963 0.944 0.953 64 0.839 0.785 0.816
128 0.943 0.927 0.932 128 0.845 0.793
256 0.928 0.918 0.917 256 0.855 0.821 0.843

CIFAR-10. On CIFAR-100, reduced performance is observed for the batch sizes of 128 and 256.
For CLEAR-10 and CLEAR-100, performance results are low for the batch size 16. Specifically,
for CLEAR-10, a performance drop is observed for batch sizes of 128 and 256. However, the
performance is stationary for all the batch sizes greater than 16 for the CLEAR-100 dataset.

A.11 Implementation details and hyperparameter selection

We conducted experiments on the multi-layer perceptron (MLP) for all intrusion detection benchmarks
and ResNet-18 (pre-train on imageNet1k) architecture for SVHN, CIFAR-10/100, and CLEAR-
10/100 datasets. Each benchmark dataset is split into three parts: 75% for train, 23% for testing,
and 2% for validation. For each experiment, the number of epochs is set to five. We use open
source continual learning library avalanche (version 0.2.1) [26] implementation for baseline methods
like EWC, SI, GEM, A-GEM, and GSS-greedy. However, direct usage of these implementations
has certain technical difficulties, especially for IDS benchmarks. So, we tailor them to work on
the benchmarks. However, during this process, we faced a lot of challenges. One such challenge
encountered during the MLP training on the CICIDS2018, CTU-13 benchmark using gss-greedy and
agem algorithm. After much debugging, we found it was the issue with the gradients. Eventually,
training is resumed by normalizing or replacing the nan gradient. We implemented MIR, CBRS, and
ECBRS using PyTorch library [27]. We selectively chosen the buffer memory size for each dataset
based on the number of training samples in the respective datasets.

System/Hardware details We ran our experiments on the system with the following specifications:
Operating system-Ubuntu 18.04.6 LTS, memory-376 GB, number of cores-104 (Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz), and 2 Nvidia Quadro RTX 5000 GPU.

Reproducibility: The complete codebase and train data files used in this work are kept at this link.

List of values used for hyperparameters per each dataset are presented in Table 16, and ablation
studies on the hyperparameters are discussed in subsection A.10 . Replay size is the number of
samples selected from the buffer memory for replay. #tasks is the number of task per dataset. Pattern
per experience (PPE) (an avalanche library convention) is the number of samples per task stored in
the buffer memory. FC indicates a fully connected multi-layer perceptron.

15

https://github.com/amalapuram/CLbasedNIDS


Table 16: Hyperparameter details of each network intrusion detection and computer vision benchmark
datasets.

Dataset M Replay size #tasks Batch size PPE input size Architecture

NSL-KDD 1333 1000 5 500 200 38 FC:100,500,250,50,1
KDDCUP’99 5333 4000 5 1024 800 38 FC:100,500,250,50,1
CICIDS-2017 13334 10000 10 1024 100 51 FC:100,250,50,1
CICIDS-2018 13334 10000 10 1024 100 51 FC:100,500,250,50,1
UNSW-NB15 6666 5000 9 1024 500 202 FC:100,250,500,150,50,1
CTU-13 1500 1000 5 1024 1000 39 FC:100,250,50,1
AnoShift 13333 10000 10 1024 1000 18 FC:100,500,250,50,1

SVHN 500 375 9 128 50 3× 32× 32 ResNet-18,1
CIFAR-10 500 375 9 128 50 3× 32× 32 ResNet-18,FC:100,50,1
CIFAR-100 500 375 19 128 50 3× 32× 32 ResNet-18,FC:100,50,1
CLEAR-10 666 500 10 128 50 3× 224× 224 ResNet-18,FC:100,50,1
CLEAR-100 2666 2000 10 128 50 3× 224× 224 ResNet-18,FC:100,50,1

A.12 Occurrence of task dissimilarity between two different tasks is rare

We will demonstrate that the error distributions between different tasks remain similar even with
varying task orders, and it can be modeled using two-component GMM. Additionally, we will
illustrate cases where the dissimilarity in the error distribution occurs due to two dissimilar tasks,
which is rare in the context of network intrusion detection systems.

A two-component GMM is capable enough for various task orders: We direct the reader’s
attention to A.10.2 and Tables 12, 13 of this supplementary material. In these sections, we conducted
experiments using various datasets with four distinct task orders, each having a different first task.
The performance results for each task order are presented in Tables 12, 13 which illustrate the variance
in these reported values. Notably, we observe that the variance of performance results falls within the
range of 0 to 10−4. This observation indicates that the influence of the different first tasks used in
the computation of the Gaussian Mixture Model (GMM) on the performance of PAPA is minimal.
This underscores that the GMM constructed based on the initial error distribution (ED) effectively
approximates the ED of subsequent tasks, irrespective of the choice of the first task.

Why the occurrence of two dissimilar tasks in a NIDS setting is rare?: To prove our premise, We
designed an experiment to learn tasks sequentially from MNIST and CIFAR-10. Before initiating the
experiments, each task’s mean OTDD value, considering its relation to the remaining tasks, we call it
relative OTDD (OTDDrel). We want to clarify that the OTDDrel values reported are related to the
MNIST+CIFAR-10 experiment and are not computed between two adjacent tasks. Instead, for a task
(say t1), the OTDDrel value is computed with other remaining tasks (t2,t3,...,t9) as follows

OTDDrel(t1) =
1

8

9∑
i=2

OTDD(t1, ti)

However, these values (shown in Table 18) are not uniformly distributed compared to the experiments
conducted solely using the CIFAR-10 dataset. This discrepancy suggests a higher dissimilarity within
these experiments.

Table 17: Relative optimal transport dataset distance values for each task in CIFAR-10 and
MNIST+CIFAR-10 experiments.

Dataset Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Avg. OTDDrel values

CIFAR-10 258 255 220 243 212 241 225 236 244 237.22 ±10.06
MNIST+CIFAR-10 310 448 310 444 310 456 310 470 310 374.17±50.02

Furthermore, during these experiments, we observed a significant disparity in the performance values
between the MIR and PAPA algorithms. Notably, all these experiments are performed using 20
distinct task orders, and the reported results encompass both mean and standard deviation values.

16



Table 18: Performance results of the MNIST+CIFAR-10 experiments

Algorithm PR-AUC (A) PR-AUC (B) ROC-AUC

MIR 0.675±0.053 0.700±0.030 0.657±0.040
PAPA 0.645±0.047 0.661±0.099 0.628±0.080

Additionally, we aimed to validate this observation through an empirical approach. In this pursuit,
after conducting experiments using the MIR algorithm, we calculated error values for the parameters
and tried to fit the Gaussian Kernel Density Estimator (KDE). However, we encountered a singular
matrix error while attempting the KDE fit, preventing us from generating a Gaussian approximation.
It is noteworthy that this issue does not arise in other experimental scenarios. From this experience,
we can deduce that the two-component GMM is feasible whenever the variance in the mean OTDD
value of each task concerning the remaining tasks is low.

In the MNIST+CIFAR-10 experiment, we explicitly show OTDDrel values to showcase an extreme
case where the proposed PAPA method would not perform well. However, in practice, finding these
values is only possible if access to past and future tasks is allowed, but such access is restricted in the
continual learning setting. On the other hand, computing the OTDD values between two adjacent
tasks will not help determine the higher similarity between the two tasks (refer to Table 19).

Table 19: Optimal transport dataset distance values computed between adjacent tasks. The average
OTDD value is computed as the mean value over all the OTDD values.

Dataset (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) Avg. OTDD values

MNIST+CIFAR-10 424.29 404.25 405.68 405.70 409.09 409.09 407.59 407.59 409.16±4.399

The reason for calling the MNIST+CIFAR-10 experiment an extreme case is based on the following
two observations.

1. In this experiment, training data arrives from two different data sources in the domain
incremental setting with differing characteristics (size, image type, etc.; refer to Table 20).
However, in practice, finding a use case where the experiments with such a shift between
tasks with different characteristics (switching between grayscale and RGB images learning
sequentially) is difficult.

Table 20: Characteristics of the MNIST and CIFAR-10 datasets

Dataset Size No of channels Image type

MNIST 28 X 28 1 Grayscale
CIFAR-10 32 X 32 3 RGB

2. The AnoShift dataset contains diverse traffic from five different networks of Kyoto University
spanning over ten years. This is the challenging dataset in network intrusion detection
experiments that contains data points from different networks compared to other datasets
(created over a short time on a single network; refer to Table 3 for mean OTDD values in
each dataset, in which OTDD value is computed between adjacent tasks). For example,
consider datasets like CICIDS2017 and CICIDS2018, where datasets were framed using the
traffic from a single network in which a high distribution shift may not happen. On the other
hand, our proposed PAPA on the challenging AnoShift dataset (with diverse traffic) works
better than baseline methods.

To conclude, our intention in framing MNIST+CIFAR-10 experiments is to showcase an extreme
case where the proposed approach is expected to not perform well in domain incremental learning.
However, encountering such a scenario is rare in the NIDS setting.

17



A.13 Limitations and broader impact

This work is motivated by two of our empirical observations regarding the class imbalance in
the large-size benchmarks and the scalability in an online task-free continual learning setting for
network intrusion detection. We validate our contributions on network intrusion and computer vision
benchmark datasets using standard multi-layer perceptron and ResNet-18 architectures. Based on our
empirical observations, we categorize the proposed approach’s limitations into two groups. They are
(i) training-related and (ii) practical constraints of the proposed approaches.

Training related: The limitations outlined here pertain to the training procedures of the proposed
methodologies. These include a lack of real-world datasets for validation, hardware requirements,
and possible remedies to these limitations.

1. Public datasets: Similar to numerous prior studies in Network Intrusion Detection (NID),
proposed ECBRS and PAPA are evaluated using publicly accessible NID datasets. Most of
these datasets are simulated in a controlled environment, which may not accurately reflect
real-world network traffic. As a result, the gap becomes wider between security practitioners
and researchers. One solution to this issue is to create a real-world dataset that adheres to a
set of standardized guidelines established by cybersecurity practitioners.

2. Hardware: Our work uses gradient-based optimizers like stochastic gradient descent that
require better hardware specifications like GPU to accelerate the training process compared
to shallow methods like random forest. However, in real-world deployment, we believe
MLOps could support our system due to low latency and separate environments for inference
and training. MLOps platforms’ robust hardware minimizes model complexity’s effect on
inference.

Practical considerations: The practical limitations range from tackling open-world settings, explain-
ability, etc.

1. Close world setting: The proposed model tries to learn the distribution shifts in the benign
and attack classes to avoid catastrophic forgetting, which could lead to closed-world learning.
This is our initial attempt to understand two interdisciplinary areas: NID and continual
learning, so we are considering an open-world setting. To tackle an open-world setting,
whenever new attack traffic arrives, and the model is unsure of its inference label, we could
then bring security analysts into the loop to help improve the detection capabilities of the
model.

2. Labeling assumption: We assume fully labeled data is available in this work. However, the
actual developer of machine learning-based NIDS may not have access to fully labeled data.
In future work, we will address the NIDS problem from a semi-supervised or unsupervised
continual learning perspective.

3. Explainability: Generating alerts (to the security operation center) in response to
known/novel attack traffic is the primary responsibility of the NIDS. The explainability
of the reason for generating alerts is beneficial to security analysts. We will consider
explainability in our future research efforts.

4. Relating to other domains: To make our work more tangible to other machine learning-
related fields like anomaly detection, fraud detection, and medical image anomaly detection,
more validation is required on related datasets and different architectures to understand and
address the domain-specific challenges.

Broader Impact: NIDS is a crucial element of the cybersecurity toolkit, playing a critical role in
safeguarding ICT infrastructure against the ever-growing threat of cyber-attacks. Learning-based
NIDS (L-NIDS) has emerged as a popular topic in academic research within the security domain.
However, despite its success in academia, the practical implementation of L-NIDS in real-world
operational deployments faces several challenges. One such challenge involves adapting to the
continuous changes in network traffic distribution. Our work tackles this problem by approaching
intrusion detection as a supervised binary classification task. As with any other research endeavor,
our work has both advantages and limitations. Besides its relevance to intrusion detection, this work
holds broader implications for various fields, including anomaly detection and fraud detection. It
is important to note that any potential negative consequences arising from our work, such as legal

18



and ethical concerns, are not unique to our research specifically but rather common considerations
associated with any new developments in the field of machine learning as a whole.

A.14 Class balanced reservoir sampling (CBRS) [23]

Let’s begin by introducing our notation. In the context of a memory with a size ‘m,’ it is defined as
filled when all of its ‘m’ storage units are in use. If a particular class contains the highest number
of instances among all the different classes present in the memory, such a class is referred to as the
largest class. It’s important to note that two or more classes can share the title of largest if they are
both equal in size and the most numerous. Furthermore, a class is designated as full if it is either
currently the largest class or has held this status in previous time steps. Once a class achieves full
status, it retains this designation in the future. These classes are termed full because CBRS restricts
their ability to expand further in size.

The CBRS sampling scheme can be divided into two phases. In the initial phase, all incoming stream
instances are stored in memory as long as the memory is not yet full. We transition to the second
phase once the memory reaches its capacity and becomes filled. When a stream instance (xi, yi) is
received during the second phase, the algorithm initially checks whether yi is associated with a full
class. If it is not, the incoming instance takes the place of another instance belonging to the largest
class. This aspect of CBRS serves to address class imbalances within the memory. Conversely, if
the received instance corresponds to a class c, it replaces a randomly chosen stored instance of the
same class c with a probability of mc/nc. Here, mc represents the number of instances from class c
currently stored in memory, and nc signifies the total number of stream instances encountered from
class c up to that point. We outline the pseudocode for the CBRS algorithm in Algorithm 1.

Algorithm 1 Memory population for CBRS

Input: data stream: (xi, yi)
n
i=1

for i = 1 to n do
if memory is not filled then

store (xi, yi)
else

if c ≡ yi is not a full class then
find all the instances of the largest class select from them an instance at random overwrite
the selected instance with (xi, yi)

else
mc ← number of currently stored instances of class (c≡ yi)
nc ← number of stream instances of class c ≡ yi encountered thus far:
sample u ∼ Uniform(0,1)
if u ≤ mc/nc then

pick a stored instance of class c ≡ yi at random and replace it with (xi, yi)
else

Ignore (xi, yi)
end if

end if
end if

end for

References

[1] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
In Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017),
2017.

[2] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A detailed analysis of the
kdd cup 99 data set. In Proceedings of IEEE Symposium on Computational Intelligence for
Security and Defense Applications, pages 1–6, 2009.

19



[3] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999 darpa
intrusion detection system evaluations as performed by lincoln laboratory. ACM Transactions
on Information and System Security (TISSEC), 3(4):262–294, 2000.

[4] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. Error prevalence
in nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. In Proceedings of IEEE
Conference on Communications and Network Security (CNS 2022), pages 254–262, 2022.

[5] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In Proceedings of the 4th
International Conference on Information Systems Security and Privacy (ICISSP 2018), pages
108–116, 2018.

[6] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. A Realistic Cy-
ber Defense Dataset (CSE-CIC-IDS2018) , 2018. https://registry.opendata.aws/
cse-cic-ids2018/ [Accessed: April,2023].

[7] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set). In Proceeding of Military Communications
and Information Systems Conference (MilCIS), pages 1–6, 2015.

[8] Nour Moustafa and Jill Slay. The evaluation of network anomaly detection systems: Statistical
analysis of the unsw-nb15 data set and the comparison with the kdd99 data set. Information
Security Journal: A Global Perspective, 25(1-3):18–31, 2016.

[9] Nour Moustafa, Jill Slay, and Gideon Creech. Novel geometric area analysis technique for
anomaly detection using trapezoidal area estimation on large-scale networks. IEEE Transactions
on Big Data, 5(4):481–494, 2017.

[10] Nour Moustafa, Gideon Creech, and Jill Slay. Big data analytics for intrusion detection system:
Statistical decision-making using finite dirichlet mixture models. In Data analytics and decision
support for cybersecurity, pages 127–156. Springer, 2017.

[11] Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, and Marius Portmann. Netflow datasets for
machine learning-based network intrusion detection systems. In Big Data Technologies and
Applications, pages 117–135. Springer, 2020.

[12] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical comparison
of botnet detection methods. Computers & Security, 45:100–123, 2014.

[13] Marius Drăgoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad.
Anoshift: A distribution shift benchmark for unsupervised anomaly detection. arXiv preprint
arXiv:2206.15476, 2022.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] Netzer Yuval. Reading digits in natural images with unsupervised feature learning. In Proceed-
ings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[16] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s Thesis,
University of Toronto, 2009.

[17] Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Continual
learning on real-world imagery. In Proceeding of 35th Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2021.

[18] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

[19] Andrea Venturi, Giovanni Apruzzese, Mauro Andreolini, Michele Colajanni, and Mirco
Marchetti. Drelab-deep reinforcement learning adversarial botnet: A benchmark dataset for
adversarial attacks against botnet intrusion detection systems. Data in Brief, 34:106631, 2021.

20

https://registry.opendata.aws/cse-cic-ids2018/
https://registry.opendata.aws/cse-cic-ids2018/


[20] David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. pages
21428–21439, 2020.

[21] Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad. Anoshift:
A distribution shift benchmark for unsupervised anomaly detection. In Proceeding of 36th
Conference on Neural Information Processing Systems (NeurIPS 2022), pages 32854–32867,
2022.

[22] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min
Lin, and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In
Proceeding of 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
2019.

[23] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced
data. In Proceeding of International Conference on Machine Learning, pages 1952–1961.
PMLR, 2020.

[24] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection
for rehearsal-based continual learning. In Proceeding of International Conference on Learning
Representations (ICLR 2022). International Conference on Learning Representations, ICLR,
2022.

[25] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[26] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti,
Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin
Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German I.
Parisi, Fabio Cuzzolin, Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad,
Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, and
Davide Maltoni. Avalanche: an end-to-end library for continual learning. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, 2021.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Proceedings of 32nd Conference on Neural Information
Processing Systems (NeurIPS 2019), pages 8024–8035, 2019.

21


	Appendix
	Network intrusion detection system
	Continual learning with shallow methods
	Detailed illustration of memory configuration changes
	Datasets
	Data pre-processing & feature selection
	Task formulation
	Task similarity via optimal transport dataset distance
	Training time comparisons of the ECBRS with the baselines
	Additional experiments with anomaly detection datasets
	Ablation studies
	ECBRS
	PAPA

	Implementation details and hyperparameter selection
	Occurrence of task dissimilarity between two different tasks is rare
	Limitations and broader impact
	Class balanced reservoir sampling (CBRS) chrysakis2020online


