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Abstract

Active Domain Adaptation (ADA) has emerged as an attractive technique for
assisting domain adaptation by actively annotating a small subset of target samples.
Most ADA methods focus on measuring the target representativeness beyond
traditional active learning criteria to handle the domain shift problem, while leaving
the uncertainty estimation to be performed by an uncalibrated deterministic model.
In this work, we introduce a probabilistic framework that captures both data-
level and prediction-level uncertainties beyond a point estimate. Specifically, we
use variational inference to approximate the joint posterior distribution of latent
representation and model prediction. The variational objective of labeled data can
be formulated by a variational autoencoder and a latent diffusion classifier, and
the objective of unlabeled data can be implemented in a knowledge distillation
framework. We utilize adversarial learning to ensure an invariant latent space. The
resulting diffusion classifier enables efficient sampling of all possible predictions
for each individual to recover the predictive distribution. We then leverage a t-test-
based criterion upon the sampling and select informative unlabeled target samples
based on the p-value, which encodes both prediction variability and cross-category
ambiguity. Experiments on both ADA and Source-Free ADA settings show that
our method provides more calibrated predictions than previous ADA methods and
achieves favorable performance on three domain adaptation datasets.

1 Introduction

Machine learning algorithms heavily depend on large amounts of labeled data. However, in many
real-world scenarios, the distribution of data can change over time or across different domains, which
challenges the training of models to perform consistently in all situations. Unsupervised Domain
Adaptation (UDA) [1, 2, 3] addresses this problem by transferring knowledge learned from a labeled
source domain to an unlabeled target domain. Despite impressive achievements, UDA struggles
to bridge the performance gap with fully supervised methods due to the lack of target-supervised
information. Recognizing this limitation, a promising alternative is Active Domain Adaptation (ADA)
[4, 5, 6], which actively annotates a small subset of target data to greatly benefit the UDA model.

In ADA, the primary concern revolves around designing a criterion for selecting the most informative
target samples that can have the maximum impact on performance once annotated. Existing ADA
methods have been mainly enlightened by traditional Active Learning (AL) methods [7, 8, 9, 10]
and rely on criteria that consider both predictive uncertainty and representativeness of the entire
distribution. While they have shown empirical success, they usually handle the distribution shift
by further measuring the representativeness of the target domain through various criteria (e.g., the
output of a domain discriminator [11], free energy score [5], weighted clustering [4]). However, these
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methods still estimate uncertainty based on metrics like confidence [12], distinctive margin [6], and
entropy [4], obtained from a deterministic model. It is worth noting that distribution shift can easily
lead to overconfident predictions for deep models [13], especially deterministic ones [14, 15], which
results in poorly calibrated point estimates and unreliable uncertainty estimation in ADA.

In this work, we aim to accurately estimate the posterior distribution of the target variable y given the
input x for target domain samples (i.e., p(y|x)), by modeling the uncertainty in both data generation
and model prediction processes. To achieve this, we utilize diffusion-based generative models
[16, 17, 18] to explore the implicit predictive distribution beyond a point estimate for each target
domain sample. Specifically, we harness the capabilities of diffusion models for classification [19],
which involve forward and reverse diffusion chains to generate predictions from the conditional
predictive distribution, without any assumptions on the parametric form of p(y|x). Notably, another
work [20] also tackles the miscalibration issue in ADA by considering the model prediction as a
distribution on the probability simplex and introducing a Dirichlet prior over predictive distributions.
However, such a constrained parametric form might not be effective if the prior distribution fails
to accurately capture the predictive uncertainty [19]. Additionally, their approach only focuses
on modeling the probability distribution in the model prediction space, neglecting the inherent
uncertainty present in the data representation from a generative perspective.

To approximate the posterior distribution of both latent data representation and model prediction,
we use variational inference by optimizing the evidence lower bound (ELBO) corresponding to the
log-likelihood of all data points. Concretely, we show that for labeled data, the training objective
can be formulated by Variational Autoencoder (VAE) [21] and a diffusion-based classifier [19] in the
latent space. For unlabeled data, they can also be effective utilized by optimizing the ELBO, which
can be implemented in a knowledge distillation framework. With the formulation, we establish a
two-stage training procedure where we first learn a guided classifier for mean estimate and then train
a diffusion probabilistic model guided by that for predictive distribution recovery. To ensure a shared
latent embedding that can be used to solve tasks for both labeled and unlabeled data, we incorporate
adversarial learning [1, 22], resulting in a Diffusion-based Adversarial Probabilistic Model (DAPM).
With a collection of predictions generated by DAPM for each unlabeled target sample, we conduct
t-test [23] between scores of the two most predicted classes and select the most informative samples
based on the p-value, which generally takes into account the sampling scale, prediction variability
and the cross-category ambiguity to estimate the prediction uncertainty for active annotation.

Our contributions: 1) We formulate ADA in a probabilistic framework for uncertainty estimate,
which leverages the abilities of VAE and diffusion-based classification models to capture distributions
of both data and prediction. 2) We conduct a two-stage training procedure and use adversarial learning
to ensure an invariant latent space. A t-test-based criterion is utilized to estimate informativeness
from multiple aspects. 3) We show that our method can naturally handle active learning for both UDA
and Source-Free DA (SFDA). Experiments on three datasets show the effectiveness of our method.

2 Related Work

Active Learning [24, 25] aims to tap the fully supervised performance by only annotating a small
subset of training data. The selection of informative samples can be made using a variety of
criteria. Committee-based methods [26, 27, 28, 29] leverage diverse classifiers and evaluate the data
informativeness based on their disagreement. Representativeness-based methods [30, 31] aim to select
samples that are diverse or representative enough of the entire training distribution, typically through
clustering [32] or core-set selection [33]. Uncertainty-based methods resort to various uncertainty
heuristics such as entropy [34], confidence [35], and best-vs-second-best score [36], etc, to select
the most uncertain instances. However, these AL methods will fail when there is a distribution shift
between labeled and unlabeled data, limiting their applications in domain adaptation.

Active Domain Adaptation. A series of ADA works have been conducted to select the most informa-
tive target samples under domain shift. As an early work, AADA [37] applies a domain discriminator
to evaluate the domainness of target samples and weights it with entropy-based uncertainty. TQS [11]
designs a transferrable query criterion based on a classifier committee and a domain discriminator
to handle domain shift. CLUE [4] performs an entropy-weighted clustering to select both uncertain
and diverse samples. SDM [6] uses a distinctive margin loss for training and selects data lying in
the margin. EADA [5] leverages the free-energy bias and uses an energy-based criterion to evaluate
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the uncertainty and domainness of target samples. Despite the empirical success, these methods
mainly focus on compensating for the domain gap by incorporating target-representativeness into the
query function. However, the uncertainty criteria they used are still based on a point estimate from a
deterministic model, which can be easily miscalibrated for out-of-distribution data [38]. To remedy
this issue, DUC [20] places a Dirichlet prior on the class probability and evaluates the predictive
uncertainty with a probabilistic view. However, they only consider the uncertainty in model outputs.
Besides, the true predictive distribution may not be captured by such a restricted distribution form.

Diffusion-based generative models have been widely appreciated for their impressive capabilities
of generating high quality and diverse samples [17, 16, 39, 18]. While most works focus on high-
dimensional generative tasks such as (conditional) image generation [39, 16], super-resolution
[40, 41], image inpainting [42, 43], etc., some attempts have been made to apply diffusion models
to categorical data [44] and discrete data [45], indicating their potential in classification tasks.
Recently, Han et al. [19] utilize diffusion models to recover predictive distributions in regression
and classification tasks, verifying their effectiveness for uncertainty estimation. Different from [19]
that focuses on in-distribution scenarios, we consider a more challenging and realistic scenario of
capturing predictive distribution in a cross-domain fashion. In addition, we also model the underlying
variation of the data in low-dimensional latent space, which can be viewed as a data-level uncertainty
and more favorable for downstream tasks compared to original image space [46].

3 Methodology

In ADA, we have a source domain S = {(xsi , ysi )}
ns
i=1 with ns labeled samples, and a target domain

T = {(xti)}
nt
i=1 with nt unlabeled samples, where xsi (x

t
i) is the input instance, and ysi ∈ Y is the

corresponding label. It is assumed that both domains share a common label space Y but conform to
different data distributions. Domain adaptation aims to train a model fΩ : X → Y parameterized by
Ω that achieves good predictive performance on the target domain. To achieve this goal, the problem
of ADA involves selecting a small subset of informative samples Tl ⊂ T for annotation with a budget
B, where B � nt, such that the model performance on the target domain can be maximally improved.
The selection process is typically completed in multiple rounds, where in each round, the model
queries b samples from Tu (the remaining unlabeled samples in T ) and adds them to Tl. This process
is repeated until the budget is exhausted. In this work, we examine active learning for both UDA and
source-free UDA [47], where, besides using unlabeled target data, we can utilize the raw source data
and a source-trained model, respectively, for the purposes of selection and adaptation.

3.1 Preliminary of Classification Diffusion Models for Uncertainty Estimation

In AL, a major concern in sample selection is predictive uncertainty. For a K-way classification
problem, given an input variable x, the predictive uncertainty can be expressed as the posterior
distribution over the predicted variable y2 after observing the training set D, i.e., p(y | x,D). Most
AL methods merely pay attention to accuracy and adopt a non-Bayesian approach to train the model,
e.g., Maximum Likelihood Estimation (MLE) or Maximum A Posteriori (MAP). As frequentist
techniques, they are not capable of inferring the variance of predictive distribution p(y | x), but
merely provide a mean estimate E[y | x] under the assumption of additive noise [19]. Taking a
Bayesian view, the predictive uncertainty can be modeled by assuming distributions over network
parameters [48, 49], while it involves expensive computation and intractable posterior inference. Some
alternative methods include modeling the output of a neural network as a probability distribution over
possible outcomes [50, 5] or adding the noise term in the model outputs [51]. As explicit modeling
methods, they all assume a specific form in p(y | x) (e.g., Gaussian or Dirichlet distribution).

In this work, we leverage the deep generative models to model the implicit predictive distribution.
Specifically, we start with the classification diffusion models [19]. Re-denoted by y0 ∈ RK the
one-hot label, the diffusion model first applies a forward diffusion process q(y1:T | y0,x) to original
data by iteratively perturbing it to latent representations y1:T with Gaussian noises. For each step t,

q
(
yt | yt−1,x

)
= N

(
yt;
√

1− βtyt−1 +
(

1−
√

1− βt
)
fΩ(x), βtI

)
, (1)

where βt ∈ (0, 1) is the noise variance and fixed as hyperparameter. Here the model output fΩ(x)
(mean estimate) is injected in the forward process to act as the prior knowledge about the relationship

2We use bold font to denote a probability vector: y = [y1, . . . , yK ].
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between x and y0, so that with a sufficiently large T and proper schedule {βt}Tt=1, we have
p (yT | x) = N (fΩ(x), I) . (2)

Note that the specific form of the forward diffusion process enables an efficient sampling for arbitrary
steps in a closed form:

q (yt | y0,x) = N
(
yt;
√
ᾱty0 +

(
1−
√
ᾱt
)
fΩ(x), (1− ᾱt) I

)
, (3)

with αt := 1− βt and ᾱt :=
∏t
s=0 αs. An appreciable feature of diffusion models is that if we know

the posterior distribution q(yt−1 | yt,x), we can sample yT ∼ N (fΩ(x), I) and run the reverse
diffusion process to gradually recover the original data from p(y0 | x) under the guidance of fΩ(x).
Unfortunately, q(yt−1 | yt,x) is actually intractable, and a feasible alternative is to use a model
pθ(yt−1 | yt,x) for approximation, which can be trained with the following ELBO:

log pθ (y0 | x) ≥ Eq(y1:T |y0,x)

[
log

pθ (y0:T | x)

q (y1:T | y0,x)

]
:= LdELBO(x,y0) := L0 +

T∑
t=2

Lt−1 + LT ,

(4)
L0 := Eq [− log pθ (y0 | y1,x)] , (5)

Lt−1 := Eq
[
DKL

(
q
(
yt−1 | yt,y0,x

)
‖pθ

(
yt−1 | yt,x

))]
, (6)

LT := Eq [DKL (q (yT | y0,x) ‖p (yT | x))] , (7)
where DKL is the Kullback-Leibler (KL) divergence. It is worth noting that scheduling small βt
will make q

(
yt−1 | yt,y0,x

)
still a Gaussian [52], which can be explicitly formulated using Bayes

theorem. Therefore Lt−1 can be evaluated in a closed form. LT contains no optimizable parameter
and is assumed to be sufficiently small and thus can be ignored. By adopting the appropriate form of
pθ(yt−1 | yt,x) and reparameterization like DDPM [17], the model can be trained effectively by
being tasked at predicting the forward noise ε for sampling yt, with εθ (x,yt, fΩ(x), t).

3.2 Diffusion-Based Adversarial Probabilistic Model for ADA

The above conditional diffusion model admits the sampling of multiple predictions from p(y | x,D)
for statistical analysis. However, it assumes that the evaluated sample x and the training set D comes
from the same distribution, which is not the case in UDA. Aware of this, we aim to build a model that
induces a common latent spaceZ , where the source and target samples share the same representations.
We first consider the following generative process defined with the joint probability distributions (We
omit the subscript i to represent arbitrary data point in the dataset):

p (ys0:T ,x
s, zs) = p (zs) p (xs | zs) p (ys0:T | zs,xs) , (8)

p
(
yt0:T ,x

t, zt
)

= p
(
zt
)
p
(
xt | zt

)
p
(
yt0:T | zt,xt

)
, (9)

where zs(zt) ∈ Z is the latent representation. To model the inference process of zs(zt), we employ
a shared encoder parameterized by ρ for both the source and target domains, supposing a domain-
shared embedding. And we use two separate decoders with parameters φ and ψ for the source and
target reconstructions, respectively, since the generative process requires domain-specific information
encoded in the parameter. Due to intractable posterior distributions, we then aim to learn latent
variables for both domains using variational inference, with the following variational objectives:

Objective for Labeled Source Samples. For a labeled source sample (xs,ys0), our goal is to learn
both the low-dimensional embedding zs and latent class variable ys1:T , which can be achieved by
maximizing the ELBO of the marginal log-likelihood as follows:

log p (xs,ys0) = log

∫
p (xs,ys0:T , z

s) dys1:T dz
s

≥ Eq(ys1:T ,zs|xs,ys0)

[
log

p (ys0:T ,x
s, zs)

q (ys1:T , z
s | xs,ys0)

]
= Eqρ(zs|xs,ys0)[log pφ(xs | zs)]−DKL (qρ (zs | xs,ys0) ‖p(zs))︸ ︷︷ ︸

VAE

+

Ezs∼qρ(zs|xs,ys0) Eq(ys1:T |zs,ys0)

[
pθ (ys0:T | zs)
q (ys1:T | ys0, zs)

]
︸ ︷︷ ︸

LdELBO(zs,ys0)

:= LsELBO.

(10)
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Eq. (10) implies a standard VAE and a classification diffusion model in the latent space. We provide
the detailed derivation in Appendix A.1. To ensure discriminative classification boundaries in Z , we
additionally incorporate a deterministic classifier with parameter ω in the training objective. Then the
overall objective for the labeled source data can be expressed as:

Ls = −LsELBO + E(xs,ys0)∼SEqρ(zs|xs)[− log pω(ys0 | zs)]. (11)

It is worth noting that the parameters of fΩ have been further decomposed into {ρ, ω} in our case.

Objective for Labeled Target Samples. For target samples with annotation, we treat them the same
as source-labeled data in training. The only difference is that we use parameter ψ for target-specific
reconstruction. Limited by space, we give the full expression of the training loss Llt in Appendix A.2.

Objective for Unlabeled Target Samples. The training objective for unlabeled target samples can
not be carried out in a supervised fashion due to the absence of ground-truth labels. Therefore, we
design the following variational lower bound for them by treating yt0 and zt as latent variables:

log p
(
xt
)

= log

∫
p
(
xt,yt0, z

t
)
dyt0dz

t

≥ Eq(yt0,zt|xt)

[
log

p (xt,yt0, z
t)

q (yt0, z
t | xt)

]
= Eqρ(zt|xt)[log pψ(xt | zt)]−DKL

(
qρ(z

t | xt)‖p(zt)
)︸ ︷︷ ︸

VAE

−

Ezt∼qρ(zt|xt)
[
DKL(q(yt0 | xt)‖pω(yt0 | zt)

]︸ ︷︷ ︸
LKD

:= LuELBO.

(12)

Intuitively, it encourages to optimize a standard VAE and minimize the KL divergence between
q(yt0 | xt) and the approximation pω(yt0 | zt). However, the ground-truth q(yt0 | xt) is agnostic in
practice. In this work, we implement it in a Knowledge Distillation (KD) framework [53], where
q(yt0 | xt) is substituted with the output of a teacher model fΩ′ that is optimized by exponential
moving average (EMA) from the weights of student model fΩ. We denote the KD loss as LKD and
weight it by λkd to absorb the influence of wrong predictions from the teacher model. And only those
with confident predictions (larger than a pre-defined threshold α) from the teacher model will be
involved in this term. Meanwhile, we hope that the predictions of target samples to be individually
confident and holistically diverse, which results in the following loss function:

Lu
t = −Lu

ELBO+λkl [DKL(Ext∼TuEqρ(zt|xt)[pω(y
t
0 | zt)]‖1

K

K
)− Ext∼TuEqρ(zt|xt)[DKL(pω(y

t
0 | zt)‖1

K

K
)]]︸ ︷︷ ︸

LKL

,

(13)

where λkl is the weighting coefficient. The derivation of Eq. (12) can be found in Appendix A.3.

Adversarial Learning between Labeled and Unlabeled data. The distribution shift between labeled
and unlabeled data is a key obstacle to active learning. To extend the applicability of the diffusion
model trained on labeled data to unlabeled ones, we apply a discriminator Dτ parameterized by τ
and conduct adversarial learning between labeled and unlabeled data, expecting to learn an invariant
latent space. Inspired by CDAN [22], we also leverage the model prediction as the conditioning for
joint distribution alignment, which gives the following training loss for the discriminator:

Ladv = −Ex∼(S∪Tl)Ez∼qρ(z|x) log [Dτ (pω(y0 | z), z)]−Ex∼TuEz∼qρ(z|x) log [1−Dτ (pω(y0 | z), z)] .

This minimax process is trained in an end-to-end mode using the gradient reversal layer [1].

3.3 Two-Stage Training Procedure

The whole model in our framework includes an encoder ρ, two decoders φ, ψ, a discriminator τ , a
deterministic classifier ω and a diffusion-based classifier θ. As shown in Section 3.1, the diffusion
model requires the i.i.d. assumption to hold and injects the mean estimate fΩ(x) into both forward
and reverse diffusion process. Therefore, we schedule a two-stage training procedure in each active
round. Specifically, the first stage is called the adaptation stage, which yields the following objective:

max
τ

min
ρ,φ,ψ,ω

Ls + Lut + Llt − Ladv. (14)
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Figure 1: Framework of DAPM. Each active learning round goes through three stages: two stages
for training and one stage for selection. Parameters in blue and green backgrounds are trained in the
adaptation stage and the diffusion stage, respectively. When the adaptation stage ends, the parameters
involved will be frozen. The teacher model fΩ′ is updated by EMA from the student model fΩ.

The first stage ensures a well-behaved mean estimator fΩ and a domain-invariant latent embedding.
We then freeze all the trained parameters and train the diffusion model εθ (z,yt, fΩ(x), t) in the
second stage, namely the diffusion stage, with all labeled data:

min
θ
Ls + Llt. (15)

Having the diffusion model, we select target samples according to the strategy in Section 3.4 if there
is a remaining budget. We depict the whole framework for ADA in Fig. 1.

Extension to Source-Free ADA (SFADA). We naturally extend our method to SFADA [47] based on
the fact that the model fΩ := {ρ, ω} in the adaptation stage can be initialized (like in ADA) or source
pre-trained. For the latter, we pre-train the source model with Ls, and disable the source-related
losses, i.e., Ls and Ladv in the adaptation stage. Besides, we use confident unlabeled target data
pseudo-labeled by the teacher model to substitute the source samples in Ls in the diffusion stage.
The detailed procedure of the training process can be found in Appendix. B.

3.4 T-test-Based Selection Strategy

Existing ADA methods generally select both target-representative and uncertain samples. The former
characteristic can be naturally absorbed within the adaptation stage, which makes our model operate
in a domain-agnostic latent space. Therefore, we mainly focus on selecting samples with high
predictive uncertainties. For each xt ∼ Tu, we generate N predictions independently with the
diffusion classifier, denoted by {ŷtn}Nn=1. Since the raw predictions can be arbitrary real vectors,
we then convert them into the probability simplex by a softmax operation following [19], resulting
in a set {ỹtn}Nn=1. Based on that, we identify the two most predicted classes among N votes for
each instance, which gathers two groups of predicted scores g1 = {ỹtn[a]}Nn=1 and g2 = {ỹtn[b]}Nn=1,
where a, b denote two most voted class labels. We assume independent generation in each dimension
and evaluate the uncertainty by conducting an independent two-sample t-test, where the t-value is:

t =
ḡ1 − ḡ2

Sḡ1−ḡ2
, Sḡ1−ḡ2 =

√
s2

1 + s2
2

N
, (16)

here we use ḡ1(or ḡ2) and s2
1(or s2

2) to denote the mean and variance of the two groups, respectively.
Conceptually, the t-value is formulated as the ratio of mean difference between groups to sampling
variability. Compared to Best-versus-Second-Best (BvSB) [36] used in deterministic model-based
AL methods, the t-test-based criterion can not only allow us to see if two means are different, but also
tell us how significant the differences are. As a result, we use the p-value to express the significance
of such a difference. Intuitively, uncertain samples are those with small mean differences between
groups and high sampling variabilities, which leads to small t-values and high p-values. In practice,
we choose unlabeled target samples with top-b p-values for annotation in each active selection round.

4 Experiments

4.1 Experimental Setup

Datasets and Baselines. We evaluate our method on three widely used domain adaptation bench-
marks, i.e., Office-31 [54], Office-Home [55] and VisDA [56]. We construct three groups of baselines
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Table 1: Accuracy (%) on VisDA and Office-31 datasets under different settings with 5% labeled
target samples (ResNet-50).

Category Method VisDA Office-31

Synthetic→ Real A→ D A→W D→ A D→W W→ A W→ D Avg

Source-Only ResNet [58] 44.7 ± 0.1 81.5 75.0 63.1 95.2 65.7 99.4 80.0

Active Learning

Random 78.6 ± 0.6 87.1 84.1 75.5 98.1 75.8 99.6 86.7
BvSB [36] 81.3 ± 0.4 89.8 87.9 78.2 99.0 78.6 100.0 88.9
Entropy [7] 82.7 ± 0.3 91.0 89.2 76.1 99.7 77.7 100.0 88.9
CoreSet [33] 81.9 ± 0.3 82.5 81.1 70.3 96.5 72.4 99.6 83.7
BADGE [57] 84.3 ± 0.3 90.8 89.1 79.8 99.6 79.6 100.0 89.8

Active DA

AADA [37] 80.8 ± 0.4 89.2 87.3 78.2 99.5 78.7 100.0 88.8
TQS [11] 83.1 ± 0.4 92.8 92.2 80.6 100.0 80.4 100.0 91.1
CLUE [4] 85.2 ± 0.4 92.0 87.3 79.0 99.2 79.6 99.8 89.5
EADA [5] 88.3 ± 0.1 97.7 96.6 82.1 100.0 82.8 100.0 93.2
* DUC [20] 88.9 ± 0.2 95.8 96.4 81.9 99.6 81.4 100.0 92.5
DAPM (Baseline) 80.8 ± 0.7 94.3 93.5 72.1 97.6 72.3 99.3 88.2
DAPM-TT 89.1 ± 0.1 96.8 98.6 82.3 99.8 83.3 100.0 93.5

SFADA

* ELPT [47] 83.5 ± 0.6 98.0 97.2 81.2 99.4 80.7 100.0 92.8
DAPM (Baseline) 73.4 ± 0.2 93.7 92.9 72.2 98.1 72.6 99.1 88.1
† Random 86.2 ± 0.8 94.4 95.1 78.2 98.1 79.2 99.6 90.8
† BvSB [36] 88.1 ± 0.2 96.7 96.5 81.1 99.0 81.5 100.0 92.5
† Entropy [7] 87.5 ± 0.3 96.3 95.6 80.3 98.8 80.5 100.0 91.9
† CoreSet [33] 87.3 ± 0.1 94.7 96.5 80.0 97.9 79.9 100.0 91.5
† BADGE [57] 87.9 ± 0.3 96.5 97.1 79.3 98.5 80.1 99.8 91.9
DAPM-TT 88.4 ± 0.3 96.8 96.4 83.5 99.7 81.7 100.0 93.0

* For DUC and ELPT, we report the results on Office-31 and VisDA based on our own runs, respectively, according to the official code.
† For SFADA, we implement several active learning methods upon our SFDA baseline and report the mean results over 3 runs.

for comparison. (i) Active learning: Random, Entropy [7], BvSB [36], CoreSet [33], BADGE [57].
(ii) Active Domain Adaptation: AADA [37], TQS [11], CLUE [4], EADA [5], DUC [20]. (iii)
Source-Free ADA: ELPT [47], and our SFDA baseline with other AL selection methods: Random
(DAPM-RD), BvSB (DAPM-BS), Entropy (DAPM-ET), CoreSet (DAPM-CS), BADGE (DAPM-
BG). We denote our method with the t-test-based selection criterion by DAPM-TT thereafter. It is
worth noting that in the SFADA setting, we retain the abbreviation as DAPM for consistency, however
we do not employ the adversarial learning loss.

Implementation. We implement our method on Pytorch and MindSpore3. The ResNet-50 [58]
pre-trained on ImageNet [59] is adopted as the backbone, which constitutes the main body of the
encoder. The decoder is simply a two-layer MLP. Following previous works [5, 20], we schedule 5
selection rounds, where in each round, the model selects b = 1%× nt samples for annotation, and
therefore the total budget B = 5%×nt. We use SGD optimizer in the adaptation stage. The learning
rate is set as 0.01 except for the VisDA dataset in SFADA, where we use 0.001 for training. The batch
size is 32 for ADA and 64 for SFADA. We adopt the same learning rate scheduler as [22, 1]. For
hyperparameters, we use λkl = 0.1, λkd = 0.1 for ADA and λkl = 1.0, λkd = 1.0 for SFADA. For
all tasks, the confidence threshold α for knowledge distillation is set to 0.9. We set N = 100, i.e., we
generate 100 predictions for each individual sample for uncertainty estimation. More implementation
details are provided in Appendix. C. Code is available at https://github.com/TL-UESTC/DAPM.

Evaluation Protocol. There are two classifiers involved in our method, i.e., a deterministic classifier
parameterized by ω and a diffusion classifier parameterized by θ. For evaluating a target sample xt
encoded by zt, we leverage the predictions generated from the diffusion classifier by calculating the
expected class probability based on N independent votes, i.e., p̄θ(yt | zt) = 1

N

∑N
n=1 ỹ

t
n. We show

in Sec. 4.3 that p̄θ(yt | zt) provides a more calibrated prediction than the output of the deterministic
classifier pω(yt | zt). On the other hand, we use the majority vote as the final predicted class.

4.2 Main Results

Active Domain Adaptation. We present our results on Office-31 and VisDA in Table 1. No-
tably, among traditional active selection strategies, those based on uncertainty (e.g., BvSB, Entropy,
BADGE) tend to achieve higher performance compared to those based purely on representativeness
(e.g., CoreSet). This is because a portion of the target domain is already well-aligned with the source
domain, and selecting these easy samples would not provide informative feedback to the model. This
highlights the importance of incorporating predictive uncertainty in the selection criterion. However,
the accuracies of all traditional AL methods are significantly lower than those of ADA methods due

3https://www.mindspore.cn/
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Table 2: Accuracy (%) on Office-Home dataset under different settings with 5% labeled target
samples (ResNet-50). Marks have the same meaning as in Table 1.

Category Method Ar→Cl Ar→Pr Al→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Source-Only ResNet 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3

Active Learning

Random 52.5 74.3 77.4 56.3 69.7 68.9 57.7 50.9 75.8 70.0 54.6 81.3 65.8
BvSB [36] 56.3 78.6 79.3 58.1 74.0 70.9 59.5 52.6 77.2 71.2 56.4 84.5 68.2
Entropy [7] 58.0 78.4 79.1 60.5 73.0 72.6 60.4 54.2 77.9 71.3 58.0 83.6 68.9
CoreSet [33] 51.8 72.6 75.9 58.3 68.5 70.1 58.8 48.8 75.2 69.0 52.7 80.0 65.1
BADGE [57] 58.2 79.7 79.9 61.5 74.6 72.9 61.5 56.0 78.3 71.4 60.9 84.2 69.9

Active DA

AADA [37] 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
TQS [11] 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5
CLUE [4] 58.0 79.3 80.9 68.8 77.5 76.7 66.3 57.9 81.4 75.6 60.8 86.3 72.5
EADA [5] 63.6 84.4 83.5 70.7 83.7 80.5 73.0 63.5 85.2 78.4 65.4 88.6 76.7
DUC [20] 65.5 84.9 84.3 73.0 83.4 81.1 73.9 66.6 85.4 80.1 69.2 88.8 78.0
DAPM (Baseline) 51.9 73.1 78.4 59.6 76.3 74.9 61.2 53.5 80.2 70.2 58.3 81.3 68.2
DAPM-TT 64.2 85.4 85.7 69.2 84.2 83.5 69.1 63.4 86.0 77.2 68.4 88.6 77.1

SFADA

ELPT [47] 65.3 84.1 84.9 72.9 84.4 82.8 69.8 63.3 86.1 76.2 65.6 89.1 77.0
DAPM (Baseline) 50.5 76.1 80.6 66.5 74.9 77.8 63.8 49.9 80.1 72.4 53.9 83.5 69.2
† Random 58.5 82.4 82.3 68.8 81.0 80.6 69.4 60.5 82.2 76.2 64.2 85.6 74.3
† BvSB [36] 62.5 83.5 83.4 72.1 84.5 83.0 70.3 60.4 85.5 76.3 63.7 87.4 76.1
† Entropy [7] 59.2 82.1 84.2 68.2 82.0 80.2 66.2 58.7 84.1 75.7 63.3 87.6 74.3
† CoreSet [33] 61.2 83.5 85.0 70.7 82.5 82.6 68.9 60.3 83.5 76.3 63.8 86.9 75.4
† BADGE [57] 60.2 83.9 84.9 71.8 83.7 81.6 69.1 59.8 85.1 75.9 62.8 88.1 75.6
DAPM-TT 64.4 85.8 85.4 72.4 84.7 84.1 70.0 63.3 85.6 77.4 65.8 89.1 77.3

(a) ECE of the target data on Office-Home. (b) Performance under different N on Office-Home.
Figure 2: (a) Visualization of Expected Calibration Error (ECE) for ADA on task Ar→ Cl and Cl→
Ar. (b) Performance under different choices of N on Office-Home for ADA and SFADA.

to the neglect of domain shift. Among ADA methods, our DAPM-TT outperforms other methods
and achieves the best accuracies on both Office-31 and VisDA, surpassing the deterministic model
EADA [5] by 0.8% and 0.3% on the two datasets, respectively. Compared to the recent method
DUC [20], our method still achieves better performance, boosting the accuracy by 1.0% on Office-31
and achieving a slightly better performance on VisDA, showing the superiority of our probablistic
framework. The results in Table 2 demonstrate that our method outperforms all deterministic ADA
methods on the Office-Home dataset. Although it does not achieve the best accuracy in this case, it
remains highly competitive with DUC. Moreover, it is worth noting that our probabilistic modeling
is mainly designed to capture predictive uncertainty, rather than to optimize classification accuracy
that is largely depended on domain adaptation methods. We will show in Sec. 4.3 that our method
induces more calibrated predictions than DUC.

Source-Free Active Domain Adaptation. For SFADA, we mainly compare our DAPM-TT with
other AL strategies using our SFDA baseline, where we conduct the adaptation stage and adopt some
representative AL strategies based on the deterministic classifier. The results in Table 1 and Table 2
show that DAPM-TT consistently achieves the best performance on all datasets. In particular, we find
that BvSB [36], which can be considered as the deterministic counterpart of DAPM-TT, achieves
relatively good results on all datasets. However, our DAPM-TT outperforms BvSB by considering
the full distribution of the predicted variable, providing a better measure of uncertainty. Compared to
the recent SFADA method ELPT [47], our DAPM-TT is able to surpass it on all datasets, especially
the VisDA dataset, where we achieve a 4.9% improvement in mean accuracy.

4.3 Analytical Experiments

Expected Calibration Error (ECE). To evaluate the calibration ability of our model, we plot the
ECE curves for two tasks on Office-Home in Fig. 2a. The results demonstrate that, in both tasks, the
output of our deterministic classifier is much more uncalibrated compared to that of the diffusion
classifier, even though their accuracies remain very close (as shown in the Ablation Study). This
confirms the well-known phenomenon that softmax classifiers based on point estimates tend to make
overconfident predictions [60], which can be unsafe when dealing with uncertain estimation. Our
DAPM aims to recover the full predictive distribution by modeling the uncertainty in both data
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(a) Accuracies under different budgets on VisDA.

ADA SFADA

(b) Parameter sensitivity analysis on task D→ A.

Figure 3: (a) Accuracy curves as budget goes from 0% to 20%. (b) Model performance varying with
parameters λkl, λkd ∈ {0.01, 0.1, 0.2, 0.5, 1.0} on task D→ A (Office-31).

Table 3: Comparasion between different selection strategies for ADA (5% budget on Office-31).
Method Deterministic Classifier Diffusion Classifier

DAPM-RD DAPM-BS DAPM-ET DAPM-CS DAPM-BG DAPM-VT DAPM-IW DAPM-AE DAPM-TT

Accuracy (%) 92.0 92.2 92.1 91.8 92.5 93.1 92.9 92.7 93.5

generation and model prediction, thereby effectively mitigating this issue. Compared to DUC [20],
which only models the distribution in output space, our method achieves smaller ECE values in both
tasks, demonstrating the benefits of our probabilistic framework.

Effect of Different Sampling Scales. We evaluate our model under varying sampling numbers N
and report the performance on Office-Home in Fig. 2b. Our results demonstrate that the model
performance initially improves as N increases. This is because when N is too small, the model
suffers from sampling bias, which results in a performance degradation to a level similar to that of
the point estimate. However, an excessively large number of samples can lead to increased storage
and computing resources. We find that when N is around 100, the performance becomes stable.

Effect of Different Annotation Budgets. Fig. 3a shows how different budgets affect the model
performance. For both ADA and SFADA, our method is able to select the most informative samples at
the begining, resulting in superior performance even with a small budget. As the budget increases, the
advantage of our method is slightly diluted. However, it is still able to maintain a leading accuracy.

Evaluation of Active Learning. We also provide the baseline domain adaptation performance (i.e.,
DAPM without active learning) in Table 1 and 2. It shows that without active selection and learning,
our DAPM only achieves a moderate performance compared to modern methods that are specifically
designed for UDA, given that the probabilistic backbone is mainly used for uncertainty modeling
rather than accuracy. However, we are encouraged to observe that incorporating AL with our designed
selection criterion significantly enhances the domain adaptation performance on all datasets. This
outcome demonstrates the effectiveness of our diffusion-based uncertainty estimation, as it identifies
informative samples that considerably improve overall performance.

Performance under Different Selection Strategies. To explore the superiority of our t-test-based
selection strategy, we test our DAPM using other selection strategies for the ADA task. The results
are presented in Table 3. In addition to strategies based on the deterministic classifier, we also
evaluate three strategies based on the diffusion classifier: DAPM-VT, DAPM-IW and DAPM-AE.
DAPM-VT, DAPM-IW select samples with the top-B highest prediction variance and interval width
on the majority voted class, respectively. DAPM-AE averages the entropy across the N predictions
to get the final nonparametric entropy estimate for each data point, and select the ones with highest
averaged entropies for annotation. As expected, DAPM achieved the best results. Our findings
suggest that the t-test-based criterion is more suitable for the diffusion classifier since it takes into
account both sampling variability and cross-category ambiguity.

T-SNE Visualization of Latent Representations. We visualize the latent representations of unlabeled
target data and selected target data in Fig. 4 using t-SNE [61]. In this visualization experiment,
we compared our DAPM-TT with BvSB [36] that is based on the deterministic classifier. It can be
observed that BvSB tends to select samples from relatively ambiguous regions (the center region)
since these samples often have ambiguity between different classes. However, many samples selected
by BvSB are in areas where the model is able to make predictions accurately. Therefore, it will not
help to correct the samples with wrong predictions, resulting in modest improvement on performance.
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(a) BvSB (Ar→Cl) (b) DAPM-TT (Ar→Cl) (c) BvSB (Rw→Pr) (d) DAPM-TT (Rw→Pr)

Figure 4: Visualization of latent representations using t-SNE [61] on task Ar→Cl (a to b) and Rw→Pr
(c to d) of ADA. Darkblue points are unlabeled target samples correctly classified by our model.
Lightblue points represent unlabeled target samples misclassified by our model. Red stars are the
selected target samples.

Our DAMP-TT, on the other hand, can select samples from both the regions where there is ambiguity
between classes and the regions where a large number of samples are misclassified, which are exaclty
the ones we want to select for annotation.

How Does T-test-based Selection Ensure Diversity? While our method mainly focuses on uncer-
tainty estimation, we show that it has properties that help mitigate redundant selections. Firstly, the
diffusion process introduces stochasticity by generating varied predictions for the same input. This
creates more diversity in the uncertainty estimates across similar instances. In other words, duplicate
inputs will not necessarily have identical uncertainty. Secondly, the t-test criterion accounts for both
variability across predictions and similarity of top-2 classes. Highly variable samples with closer
competing classes will be favored, which is naturally distributed around the classification boundary
of every class, thus enabling diversity. In Fig. 4, we observe that our approach naturally selects a
diverse range of sample classes, even though we did not explicitly impose a diversity constraint.

Ablation Study. We conduct extensive experiments to investigate the influence of different classifiers
and losses in our method. The results are summarized in Table 4, and we observed the following:
Firstly, in most cases, the diffusion classifier yields slightly better results than the deterministic
one, indicating its superior tolerance for domain shift. Secondly, our approach still achieves much
better results than other traditional AL methods without any loss function for domain adaptation,
demonstrating the superiority of our selection method. Lastly, all the loss functions have a positive
effect on the final result.

Hyperparameter Sensitivity. As shown in Fig. 3b, our model exhibits low sen-
sitivity to both λkl and λkd in ADA, and moderate sensitivity to λkl in SFADA.

Table 4: Ablation study of DAPM-TT on Office-31
and VisDA. Dif. and Det. are short for diffusion
classifier and deterministic classifier, respectively.

Classifier Loss Office-31 VisDA-2017

Dif. Det. LKD LKL Ladv ADA SFADA ADA SFADA

X 91.4 90.8 86.3 86.7
X 91.1 91.0 86.5 86.5

X X 92.2 91.9 87.1 87.6
X X X 92.9 - 87.7 -
X X X 93.0 93.0 88.5 88.4

X X X 93.0 93.1 88.3 88.2

X X X X 93.5 - 89.1 -
X X X X 93.4 - 88.9 -

We conjecture the reason is that the source-
available scenario involves more loss terms in
the training objective, the additional source do-
main data and distribution alignment objectives
like Ladv may make the optimization landscape
more complex and susceptible to suboptimal
solutions based on weighting hyperparameters.
In contrast, in SFADA, the model solely relies
on the target data and regularization losses like
LKL for alignment, reducing dependence on
precise weighting. As SFADA lacks source-
supervised information, we recommend using
a slightly larger λkl to ensure good adaptation
performance.

5 Conclusion

In this work, we propose a novel probabilistic framework for ADA that leverages the variability of
both latent data representation and model prediction for better uncertainty estimation. Our approach
combines a variational autoencoder, a diffusion probabilistic classifier, and an auxiliary deterministic
classifier to guide training and ensure an invariant latent space. Our experiments on three domain
adaptation benchmarks demonstrate the effectiveness of our approach in improving task performance
and effectively handling uncertainty estimation for both ADA and SFADA.
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A Derivations

A.1 Derivation of the Labeled Source Objective

Given a labeled source sample (xs,ys0), our goal is to inference the latent data representation zs and
a sequence of latent class representations ys1:T , which controls the generation process of data points
and predictions, respectively. The log-likelihood of the labeled source data can thus be expressed by:

log p (xs,ys0) = log

∫
p (xs,ys0:T , z

s) dys1:T dz
s. (17)

Since Eq. (17) is intractable to compute in practice, we then leverage variational inference to
approximate the posterior distribution of unknown variables (zs,ys1:T ) and solve it by optimizing the
following ELBO:

log

∫
p (xs,ys0:T , z

s) dys1:T dz
s ≥ Eq(ys1:T ,zs|xs,ys0)

[
log

p (ys0:T ,x
s, zs)

q (ys1:T , z
s | xs,ys0)

]
, (18)

where q(zs,ys1:T | xs,ys0) is the approximation of the ground-truth joint posterior p(zs,ys
1:T |

xs,ys0), which can be further factorized as:

q(zs,ys1:T | xs,ys0) = qρ(z
s | xs,ys0)q(ys1:T | y0, z

s,xs). (19)

With Eq. (19) and the generative process assumed in Eq. (8), we have the following derivation:

log p (xs,ys0) = log

∫
p (xs,ys0:T , z

s) dys1:T dz
s

≥ Eq(ys1:T ,zs|xs,ys0)

[
log

p (ys0:T ,x
s, zs)

q (ys1:T , z
s | xs,ys0)

]
= Eq(ys1:T ,zs|xs,ys0)

[
log

p(zs)pφ(xs | zs)pθ (ys0:T | xs, zs)
qρ(zs | xs,ys0)q(ys1:T | y0, zs,xs)

]
= Eq(ys1:T ,zs|xs,ys0)

[
log

p(zs)

qρ(zs | y0,x)
+ log pφ(xs | zs) + log

pθ (ys0:T | xs, zs)
q(ys1:T | ys0, zs,xs)

]
= Eqρ(zs|xs,ys0)

[
log

p(zs)

qρ(zs | ys0,xs)
+ log pφ(xs | zs)

]
+

Eq(ys1:T ,zs|xs,ys0)

[
log

pθ (ys0:T | xs, zs)
q(ys1:T | ys0, zs,xs)

]
= Eqρ(zs|xs,ys0) [log pφ(xs | zs)]−DKL (qρ (zs | xs,ys0) ‖p(zs)) +

Ezs∼qρ(zs|xs,ys0) Eq(ys1:T |xs,zs,ys0)

[
pθ (ys0:T | xs, zs)
q (ys1:T | ys0, zs,xs)

]
.︸ ︷︷ ︸

À

(20)
In À, the forward diffusion process q (ys1:T | xs, zs,ys0) and the reverse diffusion process
pθ (ys0:T | xs, zs) are still based on the original input xs. In this work, we make a simplifica-
tion design to assume that the observed class variable ys0 and latent ones ys1:T are only conditioned
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on the latent variable zs. We demonstrate the reasonability of this simplification in Appendix A.3.
Consequently, we have

À = Eq(ys1:T |zs,ys0)

[
pθ (ys0:T | zs)
q (ys1:T | ys0, zs)

]
, (21)

which has the same form of ELBO as the diffusion classifier in Eq. (4).

A.2 Expression of the Labeled Target Objective

For the labeled target data (xt,yt0), the unknown latent variables are the same as the labeled source
data, and therefore the ELBO is analogous to that of the labeled source data. The only difference is
that we use the target-specific decoder pψ(xt | zt). We give the full expression as follows:

log p
(
xt,yt0

)
= log

∫
p
(
xt,yt0:T , z

t
)
dyt1:T dz

t

≥ Eq(yt1:T ,zt|xt,yt0)

[
log

p (yt0:T ,x
t, zt)

q (yt1:T , z
t | xt,yt0)

]
= Eq(yt1:T ,zt|xt,yt0)

[
log

p(zt)pψ(xt | zt)pθ (yt0:T | xt, zt)
qρ(zt | xt,yt0)q(yt1:T | y0, zt,xt)

]
= Eq(yt1:T ,zt|xt,yt0)

[
log

p(zt)

qρ(zt | y0,x)
+ log pψ(xt | zt) + log

pθ (yt0:T | xt, zt)
q(yt1:T | yt0, zt,xt)

]
= Eqρ(zt|xt,yt0)

[
log

p(zt)

qρ(zt | yt0,xt)
+ log pψ(xt | zt)

]
+

Eq(yt1:T ,zt|xt,yt0)

[
log

pθ (yt0:T | xt, zt)
q(yt1:T | yt0, zt,xt)

]
= Eqρ(zt|xt,yt0)

[
log pψ(xt | zt)

]
−DKL

(
qρ
(
zt | xt,yt0

)
‖p(zt)

)
+

Ezt∼qrho(zt|xt,yt0)
Eq(yt1:T |zt,yt0)

[
pθ (yt0:T | zt)
q (yt1:T | yt0, zt)

]
:= LlELBO.

(22)
Analogously, we additionally impose the classifier pω(yt0 | zt) in the latent space to jointly train the
source and target labeled data. The final training objective Llt for labeled target data is therefore:

Llt = −LlELBO + E(xt,yt0)∼TlEqρ(zt|xt)[− log pω(yt0 | zt)]. (23)

A.3 Derivation of the Unlabeled Target Objective

For the unlabeled target data xt, our goal is to inference the low-dimensional latent embedding zt that
induces a domain-invariant latent space Z and the class label yt0 based on zt. Besides, we assume a
meanfield distribution on q(zt,yt0 | xt), which can then be factorized as:

q(zt,yt0 | xt) = q(zt | xt)q(yt0 | xt). (24)
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Therefore, we optimize the following ELBO by regarding zt and yt0 as unknowns:

log p
(
xt
)

= log

∫
p
(
xt,yt0, z

t
)
dyt0dz

t

≥ Eq(yt0,zt|xt)

[
log

p (xt,yt0, z
t)

q (yt0, z
t | xt)

]
= Eq(yt0,zt|xt)

[
log

p(zt)pψ(xt | zt)pω(yt0 | xt, zt)
qρ (zt | xt) q (yt0 | xt)

]
= Eq(yt0,zt|xt)

[
log

p(zt)

qρ(zt | xt)
+ log pψ(xt | zt) + log

pω(yt0 | xt, zt)
q(yt0 | xt)

]
= Eqρ(zt|xt)[log pψ(xt | zt)]−DKL

(
qρ(z

t | xt)‖p(zt)
)

+

Ezt∼qρ(zt|xt)Eq(yt0|xt)

[
log

pω(yt0 | xt, zt)
q(yt0 | xt)

]
= Eqρ(zt|xt)[log pψ(xt | zt)]−DKL

(
qρ(z

t | xt)‖p(zt)
)
−

Ezt∼q(zt|xt)
[
DKL(q(yt0 | xt)‖pω(yt0 | xt, zt)

]︸ ︷︷ ︸
Á

:= LuELBO.

(25)

Since our deterministic classifier encodes the covariate-dependence between yt0 and zt, therefore, yt0
is not depended on xt in our formulation, i.e., pω(yt0 | xt, zt) = pω(yt0 | zt). Á demonstrates that,
to maximize LuELBO, DKL(q(yt0 | xt)‖pω(yt0 | zt) ≡ 0 should always be satisfied. On the other
hand, we empirically find that pω(yt0 | zt) can be a good approximation of q(yt0 | xt) even when it
is solely based on latent zt. Therefore, we assume that the model output yt0 is only depended on the
latent embedding zt, which supports the derivation in Eq. (20).

B Algorithm

B.1 Algorithm of DAPM-TT for Conventional Active Domain Adaptation

The overall trianing and section procedure of DAPM-TT for ADA is summarized in Algorithm 1.

Algorithm 1 Pseudo code of DAPM-TT for ADA

Require: Labeled source dataset S, whole target dataset T , unlabeled target dataset Tu, labeled
target dataset Tl, total training rounds R, total annotation budget B, per round annotation budget
b, step number per adaptation stage Na, step number per diffusion stage Nd.

Ensure: Optimal model parameters {θ, ρ, φ, ψ, ω, τ}.
1: Initialize student model parameters {ρ, ω} and other parameters {θ, φ, ψ, τ},T l = ∅, T u = T
2: Initialize teacher model parameters Ω′ = {ρ, ω}
3: for t = 1 to R do
4: for i = 1 to Na do
5: Update parameters {ρ, φ, ψ, ω, τ} via optimizing Eq. (14). % Adaptation Stage
6: Update teacher model parameters Ω′ with updated {ρ, ω} based on EMA.
7: end for
8: for j = 1 to Nd do
9: Update diffusion classifier parameters θ via optimizing Eq. (15). % Diffusion Stage

10: end for
11: if t ≤ B

b then
12: For each xt ∈ Tu, generate N predictions {ỹtn}Nn=1 % Selection Stage
13: Identify the two most predicted classes a, b for each xt.
14: Conduct t-test between {ỹtn[a]}Nn=1 and {ỹtn[b]}Nn=1 and obtain the p-value for each xt.
15: Selected← Select samples with top-b p-values from Tu.
16: Tu = Tu\Selected, Tl = Tl ∪ Selected.
17: end if
18: end for
19: return Final model parameters {θ, ρ, φ, ψ, ω, τ}.
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B.2 Algorithm of DAPM-TT for Source-Free Active Domain Adaptation

In SFADA, We do not use the domain classifier since the source domain data and target domain data
cannot co-exist. In addition, we also use confident unlabeled target samples that are pseudo-labeled
by the teacher model to substitute the source-labeled samples in Ls in the diffusion stage. We denote
the corresponding training loss by Lpt .

The overall trianing and section procedure of DAPM-TT for SFADA is summarized in Algorithm 2.

Algorithm 2 Pseudo code of DAPM-TT for SFADA

Require: Labeled source dataset S for pre-training, whole target dataset T , unlabeled target dataset
Tu, labeled target dataset Tl, total training rounds R, total annotation budget B, per round
annotation budget b, step number per adaptation stage Na, step number per diffusion stage Nd,
step number of source pre-training Ns.

Ensure: Optimal model parameters {θ, ρ, φ, ψ, ω}.
1: Initialize model parameters {ρ, ω} and other parameters {θ, φ, ψ},T l = ∅, T u = T
2: for i = 1 to Ns do
3: Update source model parameters ρ, φ, ω via optimizing Ls. % Source Pre-training
4: end for
5: Initialize teacher model parameters Ω′ = {ρ, ω}
6: for t = 1 to R do
7: for j = 1 to Na do
8: Update parameters {ρ, ψ, ω} via optimizing Lut + Llt. % Adaptation Stage
9: Update teacher model parameters Ω′ with updated {ρ, ω} based on EMA.

10: end for
11: for k = 1 to Nd do
12: Update diffusion classifier parameters θ via optimizing Lpt + Llt. % Diffusion Stage
13: end for
14: if t ≤ B

b then
15: For each xt ∈ Tu, generate N predictions {ỹtn}Nn=1 % Selection Stage
16: Identify the two most predicted classes a, b for each xt.
17: Conduct t-test between {ỹtn[a]}Nn=1 and {ỹtn[b]}Nn=1 and obtain the p-value for each xt.
18: Selected← Select samples with top-b p-values from Tu.
19: Tu = Tu\Selected, Tl = Tl ∪ Selected.
20: end if
21: end for
22: return Final model parameters {θ, ρ, φ, ψ, ω}.

C More Implementation Details

C.1 Network Architecture

Variational Autoencoder The architecture of the VAE and the deterministic classifier is presented in
detail in Fig. 5. The encoder comprises a pre-trained ResNet-50 backbone and three initialized linear
layers with a ReLU activation following the first linear layer. We assume a Gaussian distribution for
the latent embedding, and its mean and covariance are estimated by two separate linear layers based
on the first linear layer. The decoder is a two-layer MLP that has the same output dimension as the
backbone’s output. This encourages the decoder to reconstruct the feature generated by the backbone.

Deterministic Classifier The deterministic is simply a single layer linear classifier. We adopt the
weight normalization technique on the classifier to stablize the training.

Diffusion Classifier The diffusion classifier is conditioned on the latent embedding z, the ground-
truth y, the guided information fΩ and the time step t. We adopt the same architecture as [19] for
class variable diffusion, except for the dimension of the input variable. For clarity, we describe the
detailed model structure in Fig. 6 (a).
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Figure 5: Architecture of the variational autoencoder and the deterministic classifier used in this work.
The numbers on the data flow indicate the dimensions of the model output.
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Figure 6: Architecture of (a) the diffusion classifier and (b) the domain discriminator.

Domain Discriminator. As shown in Fig. 6 (b). The domain discriminator we used is a three-layer
MLP with a Dropout layer after the first and the second layers. And the output is a one-dimensional
value with Sigmoid activation, which indicates the domainness of the sample.

C.2 Training Details

Conventional Active Domain Adaptation. In the adaptation stage, we utilize the SGD optimizer
with a learning rate of 0.01, momentum of 0.9, and weight decay of 0.001. We set the EMA rate
for the teacher model to 0.99. In the VAE objective, we assume a standard Gaussian distribution,
N (0, I ), for the prior distribution of the latent variable zs(zt). For Office-31 and VisDA, we use
the features generated by a pre-trained ResNet-50 and freeze the backbone parameters to accelerate
training and conserve memory. However, for Office-Home, which has more diverse categories, we
jointly train the backbone with other modules to learn more specific category knowledge, and we
set the learning rate to 0.001, which is 10 times lower than that of other models. For Office-31 and
Office-Home, we conduct adaptation for 5 epochs and train the diffusion classifier for 10 epochs in
each training round. The total number of training rounds is 20. For VisDA, we set the epoch number
in each stage to 1, and the total number of training rounds is 10. To train the diffusion classifier, we
use the Adam optimizer with a learning rate of 0.001 and epsilon of 1e-8. The batch size is the same
as that in the adaptation stage, and we use an EMA strategy with a rate of 0.9999 to update the model
parameters. All experiments are conducted on a single RTX 3090 GPU.

Source-Free Active Domain Adaptation. In SFADA, we use the SGD optimizer without momentum
and weight decay for adaptation. The learning rate is set to 0.01 for Office-31 and Office-Home, and
0.001 for VisDA. As with ADA, we freeze the backbone for Office-31 and VisDA and open it for
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Office-Home. We pre-train the source model for 10 epochs for VisDA and 30 epochs for the other
datasets. In each active learning round, we set the epoch numbers for the adaptation stage and the
diffusion stage to 5 and 10, respectively, for Office-31 and Office-Home, and both to one for VisDA.
The training details for the VAE, teacher model, and diffusion classifier are the same as in ADA.

C.3 Hyperparameter Choices of the Diffusion Classifier

Following [19], the hyperparameters of the diffusion classifier are set in a standard DDPM [17]
manner. Specifically, the number of diffusion timesteps T is set to 1000, and a linear noise schedule
with β1 = 0.0001 and β = 0.02 is adopted for the forward diffusion process.

C.4 Implementation of Compared Baseline Methods

Note that for conventional ADA, we cite the results of previous AL methods and ADA methods
reproduced in [5] if the experimental settings are the same. For DUC [20] that does not report the
result on Office-31 dataset, we report the resuls by our own runs based on the code from the official
repository at https://github.com/BIT-DA/DUC. We have tuned some hyperparameters to ensure
the best resuls we can achieve.

For SFADA, we implement compared baseline algorithms on our DAPM baseline with following
details:

Random. We abondon the use of any selection strategy and randomly select samples from the
unlabeled target dataset Tu for annotation.

BvSB. We compute the best-versus-second-best score based on the output of the deterministic
classifier for each unlabeled sample and select b samples with the lowest scores for annotation.

Entropy. We use the conditional entropy based on the output of the deterministic classifier to measure
the prediction confidence. And samples with highest entropy values are selected for annotation.

CoreSet. We regard the sample selection in each round as a core-set cover problem and solve it with
the code at https://github.com/ozansener/active_learning_coreset.

BADGE. We obtain the gradient vectors based on the pseudo labels generated by the deterministic
classifier and utilize K-Means++ on the gradient vectors for diverse sampling. The algorithm is
implemented based on the repository at https://github.com/JordanAsh/badge.

ELPT. We cite the resuls on Office-31 and Office-Home dataset from the original paper [47]. For
VisDA, we run this method and report the resuls on ResNet-50 backbone based on the official code at
https://github.com/TL-UESTC/ELPT.

D Additional Experimental Results

D.1 Accuracies of Confident Predictions under Different Thresholds

Fig. 7 illustrates the accuracies of the teacher model’s predictions for confident samples across
different threshold settings. At each training step, the teacher model is updated with the student
model, and we have computed the accuracy of the current batch and presented it as a curve. As
expected, increasing the threshold leads to an increase in the teacher model’s accuracy. However,
when the threshold is relatively high, only a small number of samples are considered confident at
the beginning, leading to a higher accuracy initially and a subsequent drop. It is worth noting that
the teacher model provided relatively reliable predictions at a threshold value of 0.9. Raising the
threshold further would result in too few confident samples, making 0.9 a more appropriate choice.
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Figure 7: Accuracies of confident predictions made by the teacher model under different threshold
values on VisDA dataset.

D.2 Prediction Visualization of Different Classifiers

To investigate the contrasting behaviors of deterministic and diffusive classifiers, we randomly select
two samples on task Ar→ Cl, and visualize the predictions made by the deterministic classifier and
the diffusion classifier (N = 100). As shown in Fig. 8a, the deterministic classifier exhibits high
confidence in predicting a refrigerator as a mug. This verifies the overconfident issue in traditional
softmax-based deterministic model, making it challenging for the active learning methods to detect
the error and select such hard samples. In contrast, the diffusion classifier produces an uncertain
prediction, indicating confusion in its output with a p-value of 0.873. As depicted in Fig. 8b, the
deterministic classifier displays high uncertainty and misclassified the sample, whereas the diffusion
classifier correctly classifies the sample with a p-value of 0.024, which saves budget and resources
that would have been wasted on correcting the misclassification.
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Figure 8: Visualization of predictions made by different classifiers for 2 randomly picked samples
from refrigerator and drill, respectively. Red histograms represent the prediction of the determin-
istic classifier and green boxes denote the predictions of the diffusion classifier.

D.3 Effect of the Modeling of the Latent Feature Distribution

In comparison to CARD [19] which utilizes a deterministic feature extraction network and a diffusion
classifier to evaluate uncertainty based on the original image, our method employs an additional VAE
to model data uncertainty in a low-dimensional latent space, and the diffusion classifier is based
on latent variables. To investigate the benefits of this improvement for ADA tasks, we implement
CARD in the ADA task and report the results of it on Office-31 and VisDA. Specifically, we use a
deterministic ResNet-50 network as the feature extractor and train a deterministic classifier on top of
it to guide the diffusion classifier. The diffusion classifier takes the original image x as one of the
inputs and uses the same independent two-sample t-test-based criterion for sample selection. We
denote this implementation by CARD-TT. As shown in Table 5, DAPM-TT significantly outperforms
CARD-TT on both datasets. It is exciting to see that although VAE is mainly designed for modeling
the uncertainty of the data generation process, it results in a significant improvement with respect to
accuracy. We conjecture that the reason for this improvement is two-fold: firstly, domain shift leads
to a significant distribution shift in the image space, and in such case, CARD fails to work as intended
[19]. This effect is mitigated to a certain extent in the low-dimensional and less noisy latent space.
Secondly, in VAE training, we use the same prior distribution, i.e., the standard Gaussian distribution,
for the latent variables of data in both the source and target domains. This design draws the samples in
both domains closer to the standard Gaussian distribution, thereby achieving an indirect distribution
alignment.

D.4 Qualitative Analysis on Selected Samples

We present in Fig. 9 a list of all the selected samples by our approach to gain insight into which
samples are chosen. Intuitively, our method tends to select samples that are challenging for the model,
such as those with complex backgrounds or different styles from the other images in the dataset.
Labeling these samples can help reduce the ambiguity in the model and enable it to better capture
the semantic aspects of the category. Interestingly, we observe that our approach naturally selects
a diverse range of sample classes, even though we did not explicitly impose a diversity constraint.
Furthermore, we observe that the p-values of the selected samples gradually decrease with each
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Table 5: Comparasion between probablistic and deterministic feature extractors, and between different
t-test strategies on ADA task (ResNet-50). w/o and w/ are short for without and with, respectively.

Category Method Office-Home VisDA

A→D A→W D→A D→W W→A W→D Avg Synthetic→ Real

w/o adaptaion stage CARD-TT 95.1 94.2 78.5 98.7 78.2 99.1 90.6 84.6
DAPM-TT 96.1 95.9 79.5 98.7 79.2 99.1 91.4 86.3

w/ adaptaion stage DAPM-TT* 96.8 97.8 83.3 99.8 81.7 100 93.2 88.6
DAPM-TT 96.8 98.6 82.3 99.8 83.3 100 93.5 89.1

Table 6: Accuracy (%) of DAPM-TT combined with semi-supervised domain adaptation techniques
on Office-Home with 5% annotation budget (ResNet-50).

Method Ar→Cl Ar→Pr Al→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

DAPM-TT (w/ CDAN) 64.2 85.4 85.7 69.2 84.2 83.5 69.1 63.4 86.0 77.2 68.4 88.6 77.1

DAPM-TT (w/ MME) 65.1 85.5 84.9 72.5 84.6 83.7 72.4 64.7 86.3 77.9 70.3 88.8 78.1

training round, and by the 5th round, the lowest p-value is 0.518. This indicates that selecting
approximately 5% of the samples is sufficient to mitigate much of the ambiguity in the model.

D.5 Comparison between Different T-test Strategies

Based on the scores of the two most probable classes predicted by the diffusion classifier, we can
use either paired two-sample t-test or independent two-sample t-test for selection, which correspond
to different assumptions for the generation of predictions. The former assumes that the scores of
different classes are generated in pairs, while the latter assumes that they are generated independently.
For a paired t-test, the t-value of a target sample xt is calculated as follows:

t = (d̄− µd)/(sd/
√
N), (26)

where d̄ = 1
N

∑
di is the mean of sample differences di = ỹti [a]− ỹti [b], µd is the difference of the

null hypothesis (usually set as 0), and sd =
√∑

(di − d̄)2/N − 1 is the standard deviation of the
sample difference.

We denote our method with paired t-test-based criterion by DAPM-TT*, and report the resuls on
Office-31 and VisDA in Table 5. Empirically, we find that independent two-sample t-test yields
superior performance on both datasets. We conjecture the reason might be that the independent two-
sample t-test considers the internal variance of each group of samples. Therefore, when evaluating
uncertainty, it considers an additional dimension compared to the paired t-test. In this work, we adopt
independent two-sample t-test for all experiments.

D.6 Combine with other Semi-Supervised UDA methods

It is worth noting that our formulation provides certain flexibility for the implementation of the
training objectives, which showcases the modular nature of the framework. For instance, we use a
teacher-student framework to implement the second term in Eq. (12) and adopt conditional adversarial
learning as the main adaptation technique, which may limit the baseline DA performance and then
affect the performance after active learning. For ADA, he DA component and AL component can be
decoupled. We have tried to incorporate a SSDA method MME [62] to implement the adaptation
stage, which is also practiced by previous ADA works, e.g., [11, 4]. Specifically, the adversarial
learning loss (i.e., Ladv) is replaced by the minimax entropy loss, and other losses remains unchanged.
The results on Office-Home dataset can be found in Table 6, which shows the SSDA component
further boosts the performance of our method.

D.7 Benefits of Data-level Uncertainty

We conducted additional experiments ablating the VAE component, which can be simply implemented
by replacing the variational encoder with a deterministic feature encoder. Through experiments,
we found that the performance on VisDA-2017 is worse than modeling both the data-level and
prediction-layer uncertainty, as shown in Table 7.
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Table 7: Comparison between the performance of DAPM-TT w/ and w/o data-level uncertainty on
VisDA-2017 dataset with 5% annotation budget (Resnet-50).

Method Synthetic→ Real

DAPM-TT (w/ VAE) 89.1

DAPM-TT (w/o VAE) 88.3

E Further Discussion

Related Uncertainty Estimation Works. In machine learning, there are primarily two kinds of
uncertainties that are studied, i.e., epistemic uncertainty which arises due to a lack of knowledge or
data and can be reduced with more data or improved models, and aleatoric uncertainty that stems from
the inherent randomness in the data [51]. To model these uncertainties, the community has proposed
many Bayesian deep learning methods. From a Bayesian perspective, these two uncertainties can be
modeled by the posterior of model parameters W and outputs y, respectively, using the following
formulation:

P (y | x,D) =

∫
P (y | x,W )︸ ︷︷ ︸

aleatoric uncertainty

P(W | D)︸ ︷︷ ︸
epistemic uncertainty

dW. (27)

The family of Bayesian neural networks (BNNs) [48, 49, 63] is specifically designed to capture
epistemic uncertainty by assuming a probability distribution over the network parameters. This
involves estimating the posterior distribution over the parameters of the neural network given the
observed data. However, due to the intractable form of the posterior, BNNs are often trained using
appropriate approximations like Markov Chain Monte Carlo (MCMC) or Variational Inference
(VI). Another approximation for BNNs is Monte Carlo Dropout [64], which assumes a Bernoulli
distribution over network parameters. During inference, the output of the network is averaged
over multiple stochastic forward passes with dropout enabled, resulting in a distribution over the
predictions.

Evidential deep learning (EDL) [50, 20] is another method that models uncertainty associated with
the output of the model based on evidential theory. In EDL, this is typically achieved by using a
distributional output based on the theory of Subjective Logic [65], such as a Dirichlet distribution
over class probabilities for classification tasks, instead of a point estimate.

For non-Bayesian methods, ensemble-based methods [66, 67] have been proposed to model predictive
uncertainty by combining multiple deterministic neural networks with different initializations. How-
ever, all these methods are designed to capture either epistemic uncertainty or aleatoric uncertainty
alone by modeling probability distributions over the model parameters and outputs, respectively.
Moreover, they still impose a restricted form of distributions, such as Gaussian or Dirichlet, which
limits their applicability in practice.

To capture both sources of uncertainties in a single model, Kendall et al. [51] propose modeling
aleatoric uncertainty in the model outputs beyond model parameters by predicting the noise term for
the output variable of each sample as part of the model output. However, the form of the noise is still
assumed to be Gaussian.

Recently, Han [19] proposed modeling the implicit output distribution by leveraging the generative
capability of the diffusion model. However, they only model aleatoric uncertainty in their formulation
since the model they use is still a deterministic neural network, and the proposed method, CARD,
only enables in-distribution generalization.

In addition to modeling aleatoric uncertainty with the diffusion classifier, we also incorporate a VAE
to model the underlying data generation process. The VAE learns a probabilistic distribution over the
latent space, which represents the model’s uncertainty about the true underlying distribution of the
data, given the limited amount of training data. As more data is provided during training, the learned
distribution should converge to the true underlying distribution, reducing epistemic uncertainty.
Therefore, our DAPM also offers a way to measure epistemic uncertainty. Furthermore, our diffusion
classifier is conditioned on the latent variables in Z rather than the ones in the original image space
X . We argue that the latent space contains less noise and is more suitable for cross-domain tasks.
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The choice of Diffusion-based model for probabilistic modeling. Diffusion models have been
shown to be equivalent to reversing stochastic differential equations (SDEs). Running the reverse
process along the SDE trajectory to recover the original data distribution provides a principled way to
recover the data distribution. Besides, compared to other generative models that complete generation
in a single step, the multi-step noise schedule smooths the posterior and improves the exploration
of the probability space, which will also result in more stable training and generation. In addition,
the forward-reverse diffusion process allows effective modeling of high-dimensional complex dis-
tributions without parametric assumptions. Actually, the correlation between the covariates and the
prediction variable is assumed to be high-dimensional and complex as well. Therefore, we regard
diffusion models as a better choice to model the underlying predictive distribution.

F Limitations and Broader Impacts

Limitations. Our work presents a way to recover the predictive distribution of deep models by
combining the power of diffusion models and variational autoencoders. However, like any research,
our study may have some limitations that should be acknowledged. Firstly, the task we focus on is
limited to image classification in this work. In our future study, we may extend the scope of research
to other areas like image segmentation and object detection, etc. Secondly, probabilistic models are
often more difficult to interpret compared to deterministic models. It is important to study insights in
future research to help interpret probabilistic models.

Broader Impacts. Indeed, the impact of active domain adaptation is significant, especially in
scenarios where labeled data is scarce in the target domain. The ability to adapt to new domains with
limited labeled data can potentially reduce the time and cost required to gather labeled data for each
specific task, thus making the deployment of machine learning models more accessible and cost-
effective. This can also facilitate the development of more robust and generalizable machine learning
models that can be used across multiple domains, which is particularly important for applications that
operate in dynamic and diverse environments. Overall, our work contributes to advancing the field of
machine learning and promoting the development of more efficient and adaptive technologies.
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(a) Round 1

(b) Round 2

(c) Round 3

(d) Round 4
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(a) Round 5

Figure 9: All selected samples on task Cl → Ar (ADA). For samples in each round, the priority
(p-value) gradually decreases from top left to bottom right.
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