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Abstract

Human multimodal emotion recognition (MER) aims to perceive and understand
human emotions via various heterogeneous modalities, such as language, vision,
and acoustic. Compared with unimodality, the complementary information in
the multimodalities facilitates robust emotion understanding. Nevertheless, in
real-world scenarios, the missing modalities hinder multimodal understanding
and result in degraded MER performance. In this paper, we propose an Incom-
plete Multimodality-Diffused emotion recognition (IMDer) method to mitigate
the challenge of MER under incomplete multimodalities. To recover the missing
modalities, IMDer exploits the score-based diffusion model that maps the input
Gaussian noise into the desired distribution space of the missing modalities and
recovers missing data abided by their original distributions. Specially, to reduce
semantic ambiguity between the missing and the recovered modalities, the available
modalities are embedded as the condition to guide and refine the diffusion-based
recovering process. In contrast to previous work, the diffusion-based modality
recovery mechanism in IMDer allows to simultaneously reach both distribution
consistency and semantic disambiguation. Feature visualization of the recovered
modalities illustrates the consistent modality-specific distribution and semantic
alignment. Besides, quantitative experimental results verify that IMDer obtains
state-of-the-art MER accuracy under various missing modality patterns. Codes are
released at https://github.com/mdswyz/IMDer.

1 Introduction

Benefiting from the intrinsic heterogeneity of multimodal data, various modalities are exploited
for multimodal emotion recognition (MER) to understand human behaviors and intents from a
collaborative perspective [27, 13, 36]. Recently, MER has become one of the most active research
topics of affective computing with many applications, such as healthcare [3, 18] and robotics [11, 12].

Robust MER relies on learning and combining representations from diverse modalities [27]. In
previous studies, Zadeh et al. [31] designed a Tensor Fusion Network that takes as input paired
modalities to encode the bimodal representation, which are further fused to generate the trimodal
representation. Tsai et al. [27] proposed a multimodal transformer to learn the potential adaptation
and correlations between modalities. Subsequently, various advanced approaches [17, 15, 13] have
explored different variants of multimodal transformers to construct robust MER frameworks.

However, in real-world scenarios, not all modalities are consistently available, e.g., language data
may be missing due to speech recognition errors; video data may be inaccessible due to privacy
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Figure 1: (a) shows the convenient modality recovery-based MER method. Typically, a well-crafted
encoder-decoder architecture is used to recover the missing modalities. (b) illustrates our proposed
Incomplete Multimodality-Diffused emotion recognition (IMDer) method. IMDer exploits the vanilla
available modalities an the condition to guide and refine the distribution space of the recovered
modality, thus achieves distribution consistency and semantic disambiguation.

and security concerns [14]. Ultimately, these incomplete multimodal data significantly hinder the
performance of MER. For MER under incomplete multimodalities, one straightforward way is to
recover the missing modalities from the available ones. As shown in Fig. 1 (a), convenient modality
recovery methods [20, 35, 14, 30] aim to recover the missing modalities via a well-designed encoder-
decoder framework and build a mapping between the vanilla available and the missing modalities.
Among them, Zhao et al. [35] combined autoencoder with cycle consistency learning for modality
recovery. Lian et al. [14] designed a graph completion network that utilized graph neural networks to
reconstruct missing parts. However, these previous methods fail to explicitly consider the modality-
specific distributions that are highly correlated with each modality’s intrinsic discriminability, e.g., an
image gives the visual appearance of a happy face via thousands of pixels, whilst the corresponding
text describes this emotion with a sentence using discrete words.

In this paper, we aim to challenge MER under incomplete multimodalities by proposing an Incomplete
Multimodality-Diffused emotion recognition (IMDer) method, as shown in Fig. 1 (b). To recover
the missing modalities, IMDer exploits the prevalent score-based diffusion model [24] that maps the
input random noise into the distribution space of the missing modalities. In particular, the score-based
diffusion model captures the distribution of the missing modalities by perturbing data with the
stochastic differential equation (SDE). With sufficient data and model capacity, we are capable of
exploiting the well-trained score model to recover the distribution-consistent modality by solving
reverse-time SDE (i.e., denoising process) starting from the prior noise distribution.

To reduce the semantic ambiguity between the missing and the corresponding recovered modalities,
we use the vanilla available modalities as semantic conditions to guide and refine the recovering
process. The mere information embedded in the available modalities facilitates IMDer simultaneously
reaching both distribution consistency and semantic disambiguation. Finally, the recovered modalities
together with available modalities could be jointly fed into a multimodal fusion and prediction
network for MER. In summary, the contributions of this work can be concluded as:

• To address the challenge of MER under incomplete multimodalities, we propose the In-
complete Multimodality-Diffused emotion recognition (IMDer) method. IMDer maps input
random noise to the distribution space of missing modalities and recovers missing data in
accordance with their original distributions.

• To minimize the semantic ambiguity between the missing and recovered modalities, we
utilize the available modalities as prior conditions to guide and refine the recovering process.
This ensures that the recovered modality is both distribution and semantic-consistent.
• We perform extensive experiments on publicly available MER datasets and achieve superior

or comparable results across different missing modality patterns. The feature visualization
of the recovered modalities demonstrates consistent distribution and semantic alignment.

2 Background

2.1 Incomplete Multimodal Learning

Incomplete multimodal learning is an essential research topic in multimodal machine learning, as it
can deal with the inevitable modality-missing environments in real-world scenarios. One effective
approach is to find a low-dimensional subspace shared by all modalities, in which different modalities
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have maximum correlation with each other [6, 2, 29]. However, this approach may ignore the
complementarity between heterogeneous modalities, leading to suboptimal results for downstream
tasks. Another more effective approach is to explicitly recover the missing modalities based on
available ones. Representative methods include zero-based recovery [19], average-based recovery
[34], and deep learning-based recovery [20]. Of these, the zero and the average-based recovery
methods still cause a considerable gap between the recovered and the original data because they do
not utilize any supervision information. In contrast, deep learning-based methods can better estimate
missing modalities by leveraging their powerful feature representation capabilities. For example,
Tran et al. [26] recovered missing modalities with a cascaded residual autoencoder. Pham et al.
[20] and Zhao et al. [35] aimed to learn the joint multimodal representation via the cross-modality
recovery strategy with cycle consistency loss for missing modalities issue. Lian et al. [14] utilized
graph neural networks [4] to reconstruct missing modalities to improve MER accuracy.

2.2 Score-based Generative Diffusion Model

The score-based generative model is a family of generative models [22–24], which models data
distribution through the Stein score function [25, 16]. Given a probability density function p(x), the
Stein score function (abbreviated as score) is defined as s(x) = ∇x log p(x). As we might guess, the
score-based generative model aims to parameterize a score network s(x; θ) with learnable parameters
θ and train it to estimate∇x log p(x). Unlike likelihood-based models such as normalizing flows [10],
score-based models do not have to be normalized and are easier to parameterize.

Perturbing data with a diffusion process. To generate samples with score-based models, we need
to consider a diffusion process that corrupts data slowly into random noise. Let {x(t) ∈ Rd}Tt=0 be a
diffusion process, indexed by the continuous time variable t ∈ [0, T ]. From the landmark work [24],
a diffusion process is built by a stochastic differential equation (SDE), formally,

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) denotes the drift coefficient of the SDE, g(t) is called the diffusion coefficient, and w
represents the standard Brownian motion. Further, the distribution of x(t) is denoted as pt(x(t)),
such that x(0) ∼ p0, and x(T ) ∼ pT . p0 is the data distribution, and pT is the prior distribution.

Generativing samples by reversing the diffusion process. By starting from sample x(T ) ∼ pT
and reversing the diffusion process, we can generate a sample from p0. Since the reverse of a diffusion
process is also a diffusion process [1], running backwards in time and given by the reverse-time SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (2)

where w̄ is a Brownian motion in the reverse time direction. This reverse-time SDE can be computed
once we know the drift and diffusion coefficients of Eq. (1), as well as the score for each t ∈ [0, T ].

Estimating score via score matching. From the above, it is known that the core of solving reverse-
time SDE is to obtain the score for each time step t. The score can be estimated by training a
time-dependent score network s(x(t), t; θ) on training samples with the score matching [7, 24]:

Lscore = Et∼U(0,T )[λ(t)Ex(0)Ex(t)|x(0)[‖s(x(t), t; θ)−∇x(t) log p0t(x(t) | x(0))‖22]], (3)

where U(0, T ) is a uniform distribution over [0, T ], p0t(x(t) | x(0)) denotes the transition kernel
from x(0) to x(t), and λ(t) denotes a positive weighting function. Finally, we need to know the
transition kernel p0t(x(t) | x(0)) to minimize Eq. (3) and optimize s(x(t), t; θ). The transition kernel
is always a Gaussian distribution when the drift coefficient of SDE is affine, where the mean and
variance can be obtained with common techniques (see section 5.5 in [21]). For example, consider a
SDE for score models: dx = σtdw, t ∈ [0, 1], in this case, the corresponding transition kernel is

p0t(x(t) | x(0)) = N
(
x(t);x(0),

1

2 log σ
(σ2t − 1)I

)
. (4)

When we choose the weighting function λ(t) = 1
2 log σ (σ2t − 1), the final objective Lscore is

Lscore = Ex,z∼N (0,I),t∼U(0,T )[‖
√
λ(t)s(x(t), t; θ) + z‖22], (5)

where z is the random noise sampling from N (0, I).
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3 The Proposed Method

3.1 Problem Formulation

Let a tuple (x1,x2, · · · ,xM ) denotes M heterogenous modalities of an example, where xk is the
input of the k-th modality. In the complete case, all modalities are observed and directly fused to
facilitate MER. However, in many limited scenarios, there may be some modalities that are unavailable
and need to be recovered for better fusion. For simplification, we introduce an indicator α ∈ {0, 1} to
denote with αk = 0 if the k-th modality is missing, otherwise αk = 1. In the incomplete case, thus,
the target is to recover those unobserved modalities Imiss = {k|αk = 0} for boosting the downstream
tasks. It is worth noting that the missing emotion modalities may not be consistent for each example.
To complete the missing modality k ∈ Imiss, we could sample a large amount of data from its latent
distribution p(xk), as those advanced generative models do. But the sampling process does not have
any semantic guidance, how to generate semantically consistent samples in the sampling process (i.e.,
avoid semantic ambiguity)? Fortunately, the observed modalities Iobs = {k|αk = 1} contain the
semantic information we need, and thus can flavor the sampling process.

Our main idea is to recover the missing emotion modalities Imiss from their latent distribution spaces
on the condition of the available modalities Iobs. In other words, the observed emotion modalities Iobs
are injected into the recovering process as the semantic conditions to constrain the distribution space of
the sampling. Formally, we denote the data distribution of one missing modality as p(xm) (m ∈ Imiss)
and the available ones as p(xIobs), where xIobs is abbreviated for brevity. Hereby, the ultimate goal is
to sample missing modal data from the conditional distribution p(xm|xIobs). We consider a multi-step
diffusion model to build this conditional distribution by perturbing xm, the perturbed conditional
transition distribution is pt(xm(t)|xIobs(0)) at the t-th step. Although pt(xm(t)|xIobs(0)) is in general
intractable, it can be approximated. We have

pt(xm(t)|xIobs(0)) =

∫
pt(xm(t)|xIobs(t),xIobs(0))pt(xIobs(t)|xIobs(0)) dxIobs(t) (6)

≈
∫
pt(xm(t)|xIobs(t))pt(xIobs(t)|xIobs(0)) dxIobs(t) (7)

where pt(xIobs(t)|xIobs(0)) is tractable because it can be derived from the forward diffusion process.
In the above approximation, we use the fact that xIobs(t) is almost the same as xIobs(0) when t is
small; if t increases, xIobs(0) becomes further away from xm(t) in Markov chain so that xm(t) is
almost independent of xIobs(0). Motivated by the score-based diffusion model [24], we compute the
score of conditional transition probability in Eq. (6):

∇xm log pt(xm(t)|xIobs(0)) ≈ ∇xm logEpt(xIobs (t)|xIobs (0))
[pt(xm(t)|xIobs(t))] (8)

≈ ∇xm log pt(xm(t)|xIobs(t)) (9)
= ∇xm log pt([xm(t);xIobs(t)]), (10)

where in the second step xIobs(t) is a random sample from pt(xIobs(t)|xIobs(0)), and note that
∇xm log pt(xm(t)|xIobs(t)) = ∇xm log pt([xm(t);xIobs(t)]) is held because:

∇xm log pt([xm(t);xIobs(t)]) = ∇xm log pt(xm(t)|xIobs(t)) +∇xm log pt(xIobs(t)) (11)
= ∇xm log pt(xm(t)|xIobs(t)), (12)

where [xm(t);xIobs(t)] is a vector combination of xm(t) and xIobs(t) by a well-designed transforma-
tion function. This transformation function is called the conditioning mechanism that is described in
Sec. 3.4. To infer the gradient,∇xm log pt([xm(t);xIobs(t)]) could be parameterized a time-dependent
conditioning score network sm(xm(t),xIobs(t), t; θm) for modality m. Finally, based on Eq. (5), we
derive the conditional score matching objective to be optimized:

Lcond
score = Exm,xIobs ,z∼N (0,I),t∼U(0,T )[‖

√
λ(t)sm(xm(t),xIobs(t), t; θm) + z‖22]. (13)

Given sufficient data and model capacity, the well-trained sm(xm(t),xIobs(t), t; θm) can be used to
solve the reverse-time SDE in Eq. (2) to generate each missing modality x̃m, abided by p(xm).

Although the estimated x̃m obeys the original distribution, it would deviate from the ground truth
when the scatter degree of intra-class samples is large. Thus, we can further refine it with a decoder
D, i.e., x̂m = Dm(x̃m). At the training stage, we minimize the reconstruction error between x̂m and
xm. And, we find this refinement step could enhance the performance as shown in Sec. 4.3.
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3.2 Overview Framework

(Language → Noise) (Noise → Language)

(Vision → Noise) (Noise → Vision)
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Figure 2: The framework of IMDer. Given the input incomplete data (acoustic modality is missed
as an example), IMDer encodes shallow feature xl and xv (equal to xl(0) and xv(0)) via shallow
feature extractor (Sec. 3.3). In missing modality diffused network, we sample xa(T ) from prior
noise distribution, and then denoise xa(T ) by solving the reverse-time diffusion with score model
sa conditioned on [xl;xv] to generate samples x̃a(0). Further, x̃a(0) is fed into the reconstruction
module Da to obtain the final recovered modality x̂a (Sec. 3.4). Finally, x̂a is combined with xl and
xv as complete data for multimodal fusion and prediction to regress the emotional labels. (Sec. 3.5).

The overview framework is illustrated in Fig. 2. It mainly consists of three parts: shallow feature
extractor, missing modality diffused network, and multimodal fusion and prediction. Due to
the discrepancy of the original dimensional space between modalities, we first align the dimensionality
of each modality by extracting multimodal shallow features to facilitate subsequent modality recovery.
Then, to alleviate the distribution gap between recovered modalities and original ones, we design a
missing modality diffused network to model the distribution of each missing modality and sample
from the modeled distribution space to generate missing data. At the same time, to reduce the
semantic ambiguity of the recovered modalities, the available modalities are embedded as conditions
in the recovering process so that we can recover semantically consistent samples from a distribution
conditioned on the available modalities. Finally, to perform the MER, the multimodal fusion and
prediction part receives recovered complete multimodal data and uses multimodal transformers to fuse
multimodal representation for emotion recognition. The detail is introduced in the next subsections.

3.3 Shallow Feature Extractor

We consider three heterogeneous modalities: language (l), vision (v), and acoustic (a) for the MER
task. Since the original dimensional spaces of the three modalities are often inconsistent, they are not
suitable for direct use in missing modality recovering. To address this problem, we design a shallow
feature extractor that contains three independent encoders Ek, k ∈ {l, v, a}, to extract the shallow
features of three modalities and map them into the same dimensional space. Each encoder contains a
1D convolutional layer. Thus, the subsequent recovery task aims to recover missing modalities from
the distribution space of shallow features.

Given an input example (aka sequence data), we can extract the shallow features, X = {xk},xk ∈
RL×D, L and D indicate the sequence length and the feature dimensionality. In the incomplete
multimodal case, some modalities are missing either fixedly or randomly by guaranteeing at least
one modality is available in X . For the three modalities mentioned above, a total of seven missing
combinational cases are included, which are reported in Tab. 1. For a convenient statement but
without loss of generality, below we recover the missed acoustic modality xa, as shown in Fig. 2.

3.4 Missing Modality Diffused Network

We consider a score network sm to model the distribution of missing modality m ∈ Imiss by perturbing
xm with a common SDE: dx = σtdw, t ∈ [0, 1], like score-based diffusion [24], the corresponding
reverse-time SDE can be derived from Eq. (2) and Eq. (8) as:

dxm = −σ2tsm(xm,xIobs , t; θm)dt+ σtdw̄, (14)
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where xIobs is a condition combining all available modalities. When the score network is well-trained
based on Eq. (13), we can generate missing data via Eq. (14). Taking the example that the language
modality xl and vision modality xv are available, the acoustic modality xa is missing, we build a
score network sa conditioned on xl and xv to recover xa with the following reverse-time SDE:

dxa = −σ2tsa(xa, [xl;xv], t; θa)dt+ σtdw̄, (15)

where [xl;xv] denotes a fused feature that is combined of xl and xv by a feature concatenation
operation and a 1D convolution layer with a kernel size of 1. Note that the above feature fusion
is not required when only one modality is available. To recover the missing modalities using the
above equation, we need to solve the reverse-time SDE with numerical methods. Here, we use a
general-purpose Euler–Maruyama numerical method that is based on a simple discretization to the
SDE [24]. When applied to Eq. (15), we can obtain the following iteration rule

xa(t−∆t) = xa(t) + σ2tsa(xa(t), [xl;xv](t), t; θa)∆t+ σt
√

∆tεt, (16)

where ∆t is a discrete time step size and εt ∼ N (0, I). Given sufficient iteration steps, we can
obtain recovered data x̃a. Subsequently, x̃a is fed into the reconstruction module to obtain the refined
acoustic modality: x̂a = Da(x̃a), where Da denotes the reconstruction module of acoustic modality.
For any missing patterns, the set of recovered features can be denoted as X̂miss = {x̂k|k ∈ Imiss},
thus the reconstruction loss Lrec is denoted as:

Lrec =
∑
k∈Imiss

‖x̂k − xk‖22. (17)

Further, to optimize the score networks, we can obtain the score matching objective Lscore under any
missing patterns according to Eq. (13):

Lscore =
∑
k∈Imiss

Exk,xIobs ,z∼N (0,I),t∼U(0,T )[‖
√
λ(t)sk(xk(t),xIobs(t), t; θk) + z‖22]. (18)

By combining Lrec and Lscore, the loss of missing modality diffused network is Lmmd = Lrec + Lscore.

Conditioning mechanism. Besides the above, another vital question is how to embed the available
modalities (i.e., conditions) into the sample generation. Inspired by cross-modal attention mecha-
nism [27], we exploit this mechanism to fuse intermediate representation of xk(t), k ∈ Imiss and
xIobs(t) in sk to achieve condition embedding with a flexible manner. In particular, we assume that a
certain intermediate representation of xk(t) and xIobs(t) in sk is xir

k(t) and xir
Iobs

(t), where xir
k(t) and

xir
Iobs

(t) have same tensor size. The cross-modal attention mechanism can be defined as:

xir
cond(t) = softmax(

QK>√
d

)V, (19)

where xir
cond(t) denotes the condition embedded representation, d denotes dimensionality of interme-

diate representation. Q = xir
k(t)WQ, K = xir

Iobs
(t)WK, and V = xir

Iobs
(t)WV, where WQ,WK

and WV are the learnable parameters. Since we consider a UNet-style architecture to build the
score network, we apply Eq. (19) for condition embedding at each different size of intermediate
representation. More details of the score network are elaborated in the supplementary file.

3.5 Multimodal Fusion and Prediction

The recovered data X̂miss = {x̂k|k ∈ Imiss} and the available data Xobs = {xk|k ∈ Iobs} are
combined as the complete multimodal data for multimodal fusion and prediction of emotions. We
employ multimodal transformers Tk [27] to fuse complete multimodal data X̂miss ∪ Xobs, and the
fused feature is used to predict emotions by fully connected layers. We integrate the above losses to
reach the full optimization objective:

Ltotal = Ltask + βLmmd, (20)

where Ltask is the task loss defined as mean absolute error, β controls the importance of different loss
functions. The entire optimization is implemented in an end-to-end manner, and the concrete training
about the configuration of incomplete modalities could be found in the experiment part.
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4 Experiments

4.1 Datasets and Implementation Details

Datasets. We consider two standard MER datasets to conduct experiments, including CMU-MOSI
[32] and CMU-MOSEI [33]. CMU-MOSI consists of 2199 monologue video clips. Where 1284,
229, and 686 samples are used as training, validation, and testing set. CMU-MOSEI contains 22856
samples of movie review video clips. Where 16326 samples are used for training, the remaining
1871 and 4659 samples are used for validation and testing. On the two datasets, we extract the
language features via pre-trained BERT model [9] and obtain a 768-dimensional hidden state as the
word embedding. For vision modality, each video frame was encoded via Facet [8] to represent the
presence of the total 35 facial action units. The acoustic modality was processed by COVAREP [5] to
obtain the 74-dimensional features.

Evaluation metrics. CMU-MOSI and CMU-MOSEI are collections of videos from YouTube of
people providing opinions, that have different human annotations, including human emotion score
and emotion categories (only for CMU-MOSEI). Our work focuses on human emotion score. Each
sample in two datasets was labeled with a human emotion score that ranges from -3 to 3, including
highly negative, negative, weakly negative, neutral, weakly positive, positive, and highly positive. To
make a comprehensive comparison, we evaluate the performance using the following metrics: 7-class
accuracy (ACC7), binary accuracy (ACC2), and F1 score.

Implementation details. Following [20, 35, 14], we investigate the performance of different methods
under two commonly-used protocols: (1) fixed missing protocol. (2) random missing protocol. For
the fixed missing protocol, we consistently discard one modality (i.e., {l, v}, {l, a}, {v, a}) or two
modalities (i.e., {l}, {v}, {a}). For the random missing protocol, the missing patterns are randomized
for each sample (i.e., one or two modalities may be missing for each sample). Here, we use the missing
rate (MR) to measure the overall missingness of the dataset. The MR is defined as MR = 1−

∑N
i=1mi

N×M ,
where mi denotes the number of available modalities for ith sample, N denotes the total number
of samples, and M indicates the number of modalities. We also ensure that at least one modality is
available for each sample, so mi ≥ 1 and MR ≤ M−1

M . For three modalities, we choose the MR
from [0.0, 0.1, · · · , 0.7], where 0.7 is an approximation of M−1M with the same meaning. We keep
the same MR during training, validation, and testing phases, consistent with previous work [14]. The
optimal setting for β is set to 0.1 via the performance on the validation set. We run each experiment
five times and report the average values on the testing set.

Table 1: MER accuracy comparison under fixed missing protocol. The values reported in each cell
denote ACC2/F1/ACC7. Bold is the best.

Datasets Available DCCA [2] DCCAE [29] MCTN [20] MMIN [35] GCNet [14] IMDer (Ours)

MOSI

{l} 73.6 / 73.8 / 30.2 76.4 / 76.5 / 28.3 79.1 / 79.2 / 41.0 83.8 / 83.8 / 41.6 83.7 / 83.6 / 42.3 84.8 / 84.7 / 44.8
{v} 47.7 / 41.5 / 16.6 52.6 / 51.1 / 17.1 55.0 / 54.4 / 16.3 57.0 / 54.0 / 15.5 56.1 / 55.7 / 16.9 61.3 / 60.8 / 22.2
{a} 50.5 / 46.1 / 16.3 48.8 / 42.1 / 16.9 56.1 / 54.5 / 16.5 55.3 / 51.5 / 15.5 56.1 / 54.5 / 16.6 62.0 / 62.2 / 22.0
{l, v} 74.9 / 75.0 / 30.3 76.7 / 76.8 / 30.0 81.1 / 81.2 / 42.1 83.8 / 83.9 / 42.0 84.3 / 84.2 / 43.4 85.5 / 85.4 / 45.3
{l, a} 74.7 / 74.8 / 29.7 77.0 / 77.0 / 30.2 81.0 / 81.0 / 43.2 84.0 / 84.0 / 42.3 84.5 / 84.4 / 43.4 85.4 / 85.3 / 45.0
{v, a} 50.8 / 46.4 / 16.6 54.0 / 52.5 / 17.4 57.5 / 57.4 / 16.8 60.4 / 58.5 / 19.5 62.0 / 61.9 / 17.2 63.6 / 63.4 / 23.8
{l, v, a} 75.3 / 75.4 / 30.5 77.3 / 77.4 / 31.2 81.4 / 81.5 / 43.4 84.6 / 84.4 / 44.8 85.2 / 85.1 / 44.9 85.7 / 85.6 / 45.3
Average 63.9 / 61.9 / 20.0 66.1 / 64.8 / 24.4 70.2 / 69.9 / 31.3 72.7 / 71.4 / 31.6 73.1 / 72.8 / 32.1 75.5 / 75.3 / 35.5

MOSEI

{l} 78.5 / 78.7 / 46.7 79.7 / 79.5 / 47.0 82.6 / 82.8 / 50.2 82.3 / 82.4 / 51.4 83.0 / 83.2 / 51.2 84.5 / 84.5 / 52.5
{v} 61.9 / 55.7 / 41.3 61.1 / 57.2 / 40.1 62.6 / 57.1 / 41.6 59.3 / 60.0 / 40.7 61.9 / 61.6 / 41.7 63.9 / 63.6 / 42.6
{a} 62.0 / 50.2 / 41.1 61.4 / 53.8 / 40.9 62.7 / 54.5 / 41.4 58.9 / 59.5 / 40.4 60.2 / 60.3 / 41.1 63.8 / 60.6 / 41.7
{l, v} 80.3 / 79.7 / 46.6 80.4 / 80.4 / 47.1 83.2 / 83.2 / 50.4 83.8 / 83.4 / 51.2 84.3 / 84.4 / 51.1 85.0 / 85.0 / 53.1
{l, a} 79.5 / 79.2 / 46.7 80.0 / 80.0 / 47.4 83.5 / 83.3 / 50.7 83.7 / 83.3 / 52.0 84.3 / 84.4 / 51.3 85.1 / 85.1 / 53.1
{v, a} 63.4 / 56.9 / 41.5 62.7 / 59.2 / 41.6 63.7 / 62.7 / 42.1 63.5 / 61.9 / 41.8 64.1 / 57.2 / 42.0 64.9 / 63.5 / 42.8
{l, v, a} 80.7 / 80.9 / 47.7 81.2 / 81.2 / 48.2 84.2 / 84.2 / 51.2 84.3 / 84.2 / 52.4 85.2 / 85.1 / 51.5 85.1 / 85.1 / 53.4
Average 72.3 / 68.8 / 44.5 72.4 / 70.2 / 44.6 74.6 / 72.5 / 46.8 73.7 / 73.5 / 47.1 74.7 / 73.7 / 47.1 76.0 / 75.3 / 48.5

4.2 Comparison with the state-of-the-arts

We compare IMDer with the current state-of-the-art incomplete multimodal emotion recognition
methods based on modality recovery mechanism, including MCTN [20], MMIN [35], GCNet [14].
For a comprehensive comparison, we consider two deep learning-based non-recovery methods with

7



canonical correlation maximization DCCA [2] and DCCAE [29] in incomplete multimodal learning
to conduct comparisons. Below, we report the quantitative and qualitative experimental results.

Table 2: MER accuracy comparison under random missing protocol. The values reported in each cell
denote ACC2/F1/ACC7. MR: Missing Rate. Bold is the best.

Datasets MR DCCA [2] DCCAE [29] MCTN [20] MMIN [35] GCNet [14] IMDer (Ours)

MOSI

0.0 75.3 / 75.4 / 30.5 77.3 / 77.4 / 31.2 81.4 / 81.5 / 43.4 84.6 / 84.4 / 44.8 85.2 / 85.1 / 44.9 85.7 / 85.6 / 45.3
0.1 72.1 / 72.2 / 28.0 74.5 / 74.7 / 28.1 78.4 / 78.5 / 39.8 81.8 / 81.8 / 41.2 82.3 / 82.3 / 42.1 84.9 / 84.8 / 44.8
0.2 69.3 / 69.1 / 26.8 71.8 / 71.9 / 27.6 75.6 / 75.7 / 38.5 79.0 / 79.1 / 38.9 79.4 / 79.5 / 40.0 83.5 / 83.4 / 44.3
0.3 65.4 / 65.2 / 25.7 67.0 / 66.7 / 25.8 71.3 / 71.2 / 35.5 76.1 / 76.2 / 36.9 77.2 / 77.2 / 38.2 81.2 / 81.0 / 42.5
0.4 62.8 / 62.0 / 24.2 63.6 / 62.8 / 24.2 68.0 / 67.6 / 32.9 71.7 / 71.6 / 34.9 74.3 / 74.4 / 36.6 78.6 / 78.5 / 39.7
0.5 60.9 / 59.9 / 21.6 62.0 / 61.3 / 23.0 65.4 / 64.8 / 31.2 67.2 / 66.5 / 32.2 70.0 / 69.8 / 33.9 76.2 / 75.9 / 37.9
0.6 58.6 / 57.3 / 21.2 59.6 / 58.5 / 20.9 63.8 / 62.5 / 29.7 64.9 / 64.0 / 29.1 67.7 / 66.7 / 29.8 74.7 / 74.0 / 35.8
0.7 57.4 / 56.0 / 20.4 58.1 / 57.4 / 20.6 61.2 / 59.0 / 27.5 62.8 / 61.0 / 28.4 65.7 / 65.4 / 28.1 71.9 / 71.2 / 33.4

Average 65.2 / 64.6 / 24.8 66.7 / 66.3 / 25.2 70.6 / 70.1 / 34.8 73.5 / 73.1 / 35.8 75.2 / 75.1 / 36.7 79.6 / 79.3 / 40.5

MOSEI

0.0 80.7 / 80.9 / 47.7 81.2 / 81.2 / 48.2 84.2 / 84.2 / 51.2 84.3 / 84.2 / 52.4 85.2 / 85.1 / 51.5 85.1 / 85.1 / 53.4
0.1 77.4 / 77.3 / 46.2 78.4 / 78.3 / 46.9 81.8 / 81.6 / 49.8 81.9 / 81.3 / 50.6 82.3 / 82.1 / 51.2 84.8 / 84.6 / 53.1
0.2 73.8 / 74.0 / 45.1 75.5 / 75.4 / 46.3 79.0 / 78.7 / 48.6 79.8 / 78.8 / 49.6 80.3 / 79.9 / 50.2 82.7 / 82.4 / 52.0
0.3 71.1 / 71.2 / 43.6 72.3 / 72.2 / 45.6 76.9 / 76.2 / 47.4 77.2 / 75.5 / 48.1 77.5 / 76.8 / 49.2 81.3 / 80.7 / 51.3
0.4 69.5 / 69.4 / 43.1 70.3 / 70.0 / 44.0 74.3 / 74.1 / 45.6 75.2 / 72.6 / 47.5 76.0 / 74.9 / 48.0 79.3 / 78.1 / 50.0
0.5 67.5 / 65.4 / 42.5 69.2 / 66.4 / 43.3 73.6 / 72.6 / 45.1 73.9 / 70.7 / 46.7 74.9 / 73.2 / 46.7 79.0 / 77.4 / 49.2
0.6 66.2 / 63.1 / 42.4 67.6 / 63.2 / 42.9 73.2 / 71.1 / 43.8 73.2 / 70.3 / 45.6 74.1 / 72.1 / 45.1 78.0 / 75.5 / 48.5
0.7 65.6 / 61.0 / 42.1 66.6 / 62.6 / 42.5 72.7 / 70.5 / 43.6 73.1 / 69.5 / 44.8 73.2 / 70.4 / 44.5 77.3 / 74.6 / 47.6

Average 71.5 / 70.3 / 44.1 72.6 / 71.2 / 45.0 77.0 / 76.1 / 46.9 77.3 / 75.4 / 48.2 77.9 / 76.8 / 48.3 80.9 / 79.8 / 50.6

Quantitative results. Tab. 1 and Tab. 2 list the quantitative results of fixed missing protocol and
random missing protocol on two datasets, respectively. We have the following observations:

1. IMDer achieves the best results on the two MER datasets under both fixed missing protocol and
random missing protocol, demonstrating superiority of IMDer. Compared with the non-recovery-
based methods [2, 29], IMDer obtains consistent MER performance gains. This can be explained
that IMDer can explicitly recover the missing modalities which can provide extra complementary
information for MER. Compared with the recovery-based methods [20, 35, 14], the consistent
improvements of IMDer indicate the superiority of maintaining distribution consistency between the
recovered and the original modalities.

Ours (�𝐱𝐱𝑘𝑘)GCNetMMINMCTN

Avail.: 𝐿𝐿
Miss.: 𝑉𝑉,𝐴𝐴

Avail.:𝑉𝑉
Miss.: 𝐿𝐿,𝐴𝐴

Avail.:𝐴𝐴
Miss.: 𝐿𝐿,𝑉𝑉

Ours (�𝐱𝐱𝒌𝒌)

Ground Truth Recovered

Figure 3: Visualization of recovered modalities. Avail. means available. The distribution of modality
recovered by our method is much closer to the ground truth than the compared methods.

2. From the experimental results under fixed missing protocol in Tab. 1, we can observe that when
language modality is missing, our proposed IMDer obtains more obvious enhancements. This is
reasonable because language modality is crucial for robust MER, i.e., it is highly abstract and semantic
and contains more discriminative information [20]. Thus, it is vital to complete the missing language
modality for robust MER. Compared with other recovery-based methods, our proposed IMDer
explicitly models the distribution space of the language modality and recovers the distributionally and
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semantically consistent language features to facilitate robust MER. The comprehensive comparison
in Tab. 1 verify the effectiveness of our method.

3. Compared with other MER methods, IMDer suffers from less performance degradation as the
modality missing rate increases. This can be verified in Tab. 2 (random missing protocol). On CMU-
MOSI, when the missing rate increases from 0.0 to 0.7, the ACC2 of the compared recovery-based
methods declines 19.5% ∼ 21.8% while our IMDer merely declines 13.8%. For the CMU-MOSEI,
as the missing rate increases from 0.0 to 0.7, ACC2 of other recovery-based methods show obvious
decline: 11.2% ∼ 12%. As a comparison, our proposed IMDer shows 7.8% accuracy degradation.
These comparisons demonstrate IMDer’s generalizability under random missing protocol.

Qualitative results. Fig. 3 visualizes the distribution of recovered data and ground truth for different
recovery-based methods under the fixed missing protocol. We randomly select 500 samples in the
testing set from the CMU-MOSEI dataset. The features of the selected samples are projected into a
2D space by t-SNE [28]. From these results, we can observe that the distribution between the original
and recovered modalities estimated by IMDer is much closer than other methods, indicating IMDer
effectively mitigates the distribution gap between recovered and the original data.

Table 3: Ablation study of the key components in IMDer under the average random missing protocol.
Datasets sk Dk ACC2 F1 ACC7

CMU-MOSI

X X 79.6 79.3 40.5
X × 77.8 77.7 38.4
× X 75.8 75.6 36.8
× × 74.5 74.4 36.0

CMU-MOSEI

X X 80.9 79.8 50.6
X × 79.8 78.5 49.4
× X 78.0 76.9 48.8
× × 76.5 76.0 48.5

Ground Truth Recovered

Neutral Weakly Positive Highly PositiveWeakly NegativeHighly Negative Negative Positive

Unconditional
Recovering 

Conditional
Recovering 

Figure 4: Visualization of the unconditional and conditional modality recovering. Conditional
recovering (bottom row) shows the promising emotion category separability, indicating that using the
vanilla available modalities as conditions can reduce the semantic ambiguity.

4.3 Ablation study

Quantitative analysis. We evaluate the effects of the key components in IMDer, including score
model sk and reconstruction module Dk. The results are illustrated in Tab. 3, we conclude the
conclusions as: 1) Recovering missing modalities by reconstruction module Dk or score model sk is
effective. It is because explicitly recovering the modality can provide meaningful complementary
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information. Further, we find that the score model-based modality recovery can provide more
performance improvements. This is because the score model can recover data from the distribution
of each missing modality, and the distribution between recovered data and original data is more
consistent. 2) Combing sk with Dk brings further benefits, which proves the refinement mechanism
provided by Dk and the diffusion-based score model sk can benefit each other mutually.

Visualization of unconditional/conditional recovering. Fig. 4 visualizes the recovered and the
original modality under the unconditional and conditional settings. Specifically, we randomly select
70 samples (ten samples for each class) in the testing set of the CMU-MOSEI dataset. The features of
the selected samples are projected into a 2D space by t-SNE [28]. We can observe that unconditional
recovering suffer from semantic ambiguity due to the lack of semantic guidance. In contrast, the
data recovered by conditional recovering has been clustered and can be distinguished across seven
different emotion classes, indicating that conditional recovering can mitigate semantic ambiguity
between the recovered and the original modalities.

5 Conclusion and Discussion

In this paper, we try to challenge MER under incomplete multimodalities by proposing an Incomplete
Multimodality-Diffused emotion recognition (IMDer) method. To recover the missing modalities,
IMDer exploits the score-based diffusion model that maps the input random noise into the distribution
space of missing modalities and recovers missing data abided by their original distributions. To
reduce semantic ambiguity between the missing and the recovered modalities, the available modalities
are used as conditions to guide the diffusion-based recovering process. Quantitative and qualitative
experiments consistently demonstrate the effectiveness of IMDer.

Limitations. This work also has some limitations. The first limitation is that solving the reverse-
time SDE incurs high computational overhead and may not be suitable for scenarios requiring
real-time performance, and we will try to mitigate this issue in future work, such as replacing the
Euler–Maruyama solvers with ordinary differential equation solvers. In addition, our work may not
work to recognize emotion in other scenarios such as human-robot interaction, because emotion
signal might change depending on the context, culture, etc.

Ethical implications discussion. Recognizing human emotion from multimodalities helps build
better human-computer interactions. Albeit the obvious benefits, this technology also introduces
some potential negative societal impact. For example, multimodal data contains a large number of
faces, facial data will bring potential social privacy and security issues.
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