
A Details of Related Works

A.1 Graph Contrastive Learning

GCL has recently gained significant attention and shows promise for improving graph representations
in scenarios where labeled data is scarce [31, 32, 9, 30, 27, 15, 33, 32]. Generally, GCL creates two
views through data augmentation and contrasts representations between two views. GraphCL [9]
focuses on graph classification by exploring four types of augmentations including node dropping,
edge perturbation, attribute masking and subgraph sampling. GRACE [30] and GCA [27] adapt
SimCLR [55] to graphs to maximize the mutual information between two views for each node
through a variety of data augmentation. DGI [31] applied InfoMax principle [56] to train a GNN
encoder by maximizing the mutual information between node-level and graph-level representations.
MVGRL [32] proposes to learn representations by maximizing the mutual information between the
cross-view representations of nodes and graphs. Several recent works [16, 36] show that GCL is
vulnerable to adversarial attacks. CLGA [16] is an unsupervised poisoning attacks for attack graph
contrastive learning. In detail, the gradients of the adjacency matrices for both views are computed,
and edge flipping is performed using gradient ascent to maximize the contrastive loss. Despite very
few empirical works [9, 15, 14] on robustness of GCL, there are no existing works studying the
certified robustness of GCL. In contrast, we propose to provide robustness certificates for GCL by
using randomized edgedrop smoothing. To the best of our knowledge, our method is the first work to
study the certified robustness of GCL.

A.2 Certifiable Robustness of Graph Neural Networks

Several recent studies investigate the certified robustness of GNNs in the supervised setting [23, 28,
29, 26, 24, 25, 37]. Zügner et al. [23] are the first to explore certifiable robustness with respect to
node feature perturbations. Subsequent works[28, 26, 29, 24, 38] extend the analysis to certifiable
robustness under topological attacks. For instance, Bojchevski et al. [28] propose a branch-and-bound
algorithm to achieve tight bounds on the global optimum of certificates for topological attacks.
Bojchevski et al. [29] further adapt the randomized smoothing technique to sparse settings, deriving
certified robustness for GNNs. This approach involves injecting random noise into test samples
to mitigate the negative effects of adversarial perturbations. Wang et al. [24] further refine this
technique to provide theoretically tight robust certificates. Our work is inherently different from
them: (i) existing work focues on the certified robustness of GNN under (semi)-supervised setting;
while we provide a unified definition to evaluate and certify the robustness of GCL for unsupervised
representation learning. (ii) we theoretically provide the certified robustness for GCL in the absence
of labeled data, and this certified robustness can provably sustained in downstream tasks. (iii) we
design an effective training method to enhance the robustness of GCL.

B Preliminary of Randomized Smoothing

One potential solution for achieving certified robustness in GNNs is binary randomized smoothing
presented in [24]. Specifically, consider a noisy vector ϵ in the discrete space {0, 1}N

P(ϵi = 0) = β, P(ϵi = 1) = 1− β, (B.1)

where i = 1, 2, · · · , N . This indicates that the connection status of the i-th entry of v will be flipped
with probability 1− β and preserved with probability β. Given a base node or graph classifier f(v)
that returns the class label with highest label probability, the smoothed classifier g is defined as:

g(v) = argmax
y∈Y

P(f(v ⊕ ϵ) = y), (B.2)

where Y denotes the label set, and ⊕ represents the XOR operation between two binary variables,
which combines the structural information of both variables. P(f(v ⊕ ϵ) = y) is the probability
that the base classifier f predicts class y when random noise ϵ is added to v. According to [24], by
injecting multiple ϵ to v and returning the most likely class yA (the majority vote), if it is holds that:

minP(f(v ⊕ ϵ) = yA) ≥ max
y ̸=yA

P(f(v ⊕ ϵ) = y), s.t. ∥ϵ∥0 ≤ k, (B.3)

where yA is the class with the highest label probability. Then we can guarantee there exists a certified
perturbation size k such that for any perturbation δ with ||δ||0 ≤ k, the predictions of v ⊕ δ will
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remain unchanged, that is, g(v ⊕ δ) = f(v ⊕ δ ⊕ ϵ) = f(v ⊕ ϵ) = yA. Thus, f is certifiably robust
at (v, yA) when perturbing at most k edges. For more deatils of the proof, please refer to [24].

However, directly applying the vanilla randomized smoothing approach to certify robustness in GCL
is inapplicable. This approach may require injecting random noise into the entire graph during data
augmentation, resulting in an excessive number of noisy/spurious edges that can significantly harm
downstream task performance, particularly for large and sparse graphs. In contrast, our proposed
method, Randomized Edgedrop Smoothing (RES), aims to prevent the introduction of excessive
spurious edges in graphs. RES achieves this by injecting randomized edgedrop noises, where observed
edges are randomly removed from the graphs with a certain probability. Additionally, we propose an
effective training method for robust GCL. Our experimental results in Sec. 6.4 demonstrate that our
method significantly outperforms the ablative method, FLIP, that directly applies vanilla randomized
smoothing [24] in GCL. Specifically, on the clean Cora and Pubmed graphs, our method achieves
accuracies of 82% and 85.6% respectively. On the Nettack perturbed [11] Cora and Pubmed graphs,
our method achieves robust accuracies of 79.4% and 82.5%, respectively. In contrast, FLIP achieves
only up to 27% and 42% robust accuracies on the Cora and Pubmed datasets, respectively. These
results strongly validate the effectiveness of our RES approach,

C Detailed Proofs

C.1 Proof of Theorem 1

To begin, we provide a formalization of similarity in relation to the latent class.

Given a GNN encoder h and an input sample v, which consists of a positive sample v+ and a
negative sample v− an input sample v with positive sample v+ and negative sample v−, according
to Def. 1, we assume that c+, c− ∈ C represent the latent classes of v+ and v− in the latent space
of h, respectively. These latent classes are based on the distribution η over C. we assume that
c+, c− ∈ C are the latent class of v+ and v− in the latent space of h, respectively, which are
randomly determined based on the distribution η on C. Similar data h(v), h(v+) are i.i.d. draws
from the same class distribution Dc+ , whereas negative samples originate from the marginal of Dsim,
which are formalized as follow:

Dsim(v,v+) = E
c+∼η
Dc+(v)Dc+(v

+).

Dneg(v
−) = E

c−∼η
Dc−(v

−).
(C.4)

Since classes are allowed to overlap and/or be fine-grained [39], this is a plausible formalization of
"similarity". The formalization connects similarity with latent class, thereby offering a viable way
to employ the similarity between samples under the latent space h for defining the probability of v
being the positive sample of v+.

Lemma 1 (The Generalized Extreme Value Distribution [44]). Let v1,v2, · · · be a sequence of
i.i.d samples from a common distribution function F . Let MN = max{v1, · · · ,vN}, indicting the
maximum of {v1, · · · ,vN}. Then if {aN > 0} and {bN ∈ R} are sequences of constants such that

P{(MN − bN )/aN ≤ z} → G(z), (C.5)

where G is a non-degenerate distribution function. It is a member of the generalized extreme value
family of distributions, which belongs to either the Gumbel family (Type I), the Fréchet family (Type
II) or the Reverse Weibull family (Type III) with their CDFs as follows:

Gumbel family (Type I): G(z) = exp{− exp[−(z − b

a
)]}, z ∈ R,

Fréchet family (Type II): G(z) =

{
0, z<b,
exp{−( z−b

a )−σ}, z≥b,

Reverse Weibull family (Type III): G(z) =

{
exp{−( b−z

a )−σ}, z<b,
1, z≥b,

(C.6)

where a > 0, b ∈ R and σ > 0 are the scale, location and shape parameters, respectively.
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Theorem 1. Let B(v+) be a space around v+ as defined in Eq. 4. Given an input sample v and a
GNN encoder h learnt by GCL in Eq. 1, the probability of v being the positive sample of v+ is:

Pr(v ∈ B(v+);h) = exp
[
− (

1− s(h(v), h(v+))

a
)σ
]
, (C.7)

where s(·, ·) is the cosine similarity function. a, σ > 0 are Weibull shape and scale parameters [44].

Proof. We first assume {h(v1), h(v2), · · · } are i.i.d samples under the latent space h. Then, suppose
V− = {v−

1 , ·,v−
n } is the set of negative samples of v. We assume there exists a continuous

non-degenerate margin distribution M , which is denoted as follows:

M := min
i∈[n]

Di, with Di := (1− s(h(v+), h(v−
i )))/2, (C.8)

where M,Di ∈ [0, 1], and s(·, ·) is the cosine similarity function. M indicates the half of the
minimum distance between h(v+) and h(v−

i ).

According to Lemma 1, we know that there exists G(z) in the three types of generalized extreme
value family. And since Lemma 1 is applied to the maximum, refer to Eq. (C.8), we transfer the
variable M to M := maxi∈[n]−Di, Since −Di is bounded (−Di < 0), let b = 0, the marginal
distribution of Di series, for i = 1, 2, · · · , can be Reverse Weibull family. Therefore, the asymptotic
marginal distribution of M fits into the Reverse Weibull distribution:

G(z) =

{
exp{−(−z

a )−σ}, z<0,
1, z≥0,

where σ > 0 is the shape parameter and a is the scale parameter. Compared to Eq. (C.6), here, b = 0
because −Di is bound (−Di < 0). We use margin distances Di of the λ closest samples with v+ to
estimate the parameters α and σ, which means to estimate Ŵ of the distribution function W .

Following Eq. (C.4), if the similarity s(h(v), h(v+)) is larger, v is more possible to be from the
same latent class as v+, which implies v is the positive sample of v+. Since the distance between
h(v) and h(v+) can be denoted as 1− s(h(v+), h(v−

i )), the probability of v is the positive sample
of v+ can be written as:

P(v ∈ B(v+);h)

=P(1− s(h(v), h(v+)) < min{D1, · · · , Dn})
=P(s(h(v), h(v+)− 1) > max{−D1, · · · ,−Dn})
=P(M < s(h(v), h(v+))− 1)

=Ŵ (s(h(v), h(v+))− 1).

(C.9)

Let bn = 0, an = 0 and z = s(h(v), h(v+))−1, since z = s(h(v), h(v+))−1 < 0, we can rewrite
Eq. (C.9) as (C.7) according to Lemma 1.

C.2 Proof of Theorem 2

For simplicity of notation, let pv+,h(v) = P(v ∈ B(v+);h). Then, given a randomized edgedrop
noise ϵ ∈ Dϵ with the following probability distribution:

P(ϵi = 0|vi = 0) = 1, P(ϵi = 0|vi = 1) = β, and P(ϵi = 1|vi = 1) = 1− β, (C.10)

where ϵi is the i-entry of noisy vector ϵ and vi is the connection status of i-th entry of v. Then, we let

pv+,h(v ⊕ ϵ) = inf
ϵ∈Dϵ

pv+,h(v ⊕ ϵ), pv+,h(v ⊕ ϵ) = sup
ϵ∈Dϵ

pv+,h(v ⊕ ϵ), (C.11)

where pv+,h(v⊕ ϵ) and pv−
i ,h(v⊕ ϵ) denote the lower bound and the upper bound on pv+,h(v ⊕ ϵ),

respectively. The formal theorem is presented as follows:

Theorem 2. Let v be a clean input and v′ = v ⊕ δ be its perturbed version, where ||δ||0 ≤ k.
V− = {v−

1 , · · · ,v−
n } is the set of negative samples of v. If for all v−

i ∈ V−:

pv+,h(v ⊕ ϵ)− max
v−
i ∈V−

p
v−
i ,h

(v ⊕ ϵ) > 2∆, (C.12)
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where

∆ = 1−
(
d
e

)(
d+k
e

) · βk, (C.13)

and e = ∥v⊕ϵ∥0 denotes the number of remaining edges of v after injecting ϵ, then with a confidence
level of at least 1− α, we have:

pv+,h(v
′ ⊕ ϵ) > max

v−
i ∈V−

pv−
i ,h(v

′ ⊕ ϵ). (C.14)

Proof. Suppose V = {v+,v−
1 , · · · ,v−

n } is the set of positive and negative samples of v. For any
vi ∈ V, let pvi,h(v) = P(v ∈ B(vi);h) for simplicity, we have:

pvi,h(v ⊕ ϵ) = P(v ⊕ ϵ ∈ B(vi);h)

pvi,h(v
′ ⊕ ϵ) = P(v′ ⊕ ϵ ∈ B(vi);h).

(C.15)

As stated by the law of total probability, we have:

pvi,h(v ⊕ ϵ) = P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅])
+ P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅])

pvi,h(v
′ ⊕ ϵ) = P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅])

+ P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅]),

(C.16)

where (v′ ⊕ ϵ) ∩ δ represent the intersection of the edge sets (v′ ⊕ ϵ) and δ, that is, the set of edges
shared in the two structure vectors. Therefore, for v′ ⊕ ϵ ∩ δ = ∅, it means that no noisy edge of
δ exists in (v′ ⊕ ϵ), which indicates that v ⊕ ϵ and v′ ⊕ ϵ are structural identical at all indices, i.e.,
v′ ⊕ ϵ = v ⊕ ϵ. Therefore, we can then derive the following equality:

P([v ⊕ ϵ ∈ B(vi);h] | [(v′ ⊕ ϵ) ∩ δ = ∅]) = P([v′ ⊕ ϵ ∈ B(vi);h] | [(v′ ⊕ ϵ) ∩ δ = ∅]). (C.17)

By multiplying P((v′ ⊕ ϵ) ∩ δ = ∅) in both sides of Eq. (C.17), we have:

P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅]) = P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅]). (C.18)

Combining Eq. (C.16) with Eq. (C.18) results in:

pvi,h(v
′ ⊕ ϵ)− pvi,h(v ⊕ ϵ) =P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅])−

P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅]).
(C.19)

Since probabilities are non-negative, we can rewrite Eq. (C.19) into the following inequality:

pvi,h(v ⊕ ϵ)− P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅])
≤ pvi,h(v

′ ⊕ ϵ) ≤
pvi,h(v ⊕ ϵ) + P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅]).

(C.20)

Applying the conjunction rule, we have:

pvi,h(v ⊕ ϵ)− P((v′ ⊕ ϵ) ∩ δ ̸= ∅) ≤ pvi,h(v
′ ⊕ ϵ) ≤

pvi,h(v ⊕ ϵ) + P((v′ ⊕ ϵ) ∩ δ ̸= ∅).
(C.21)

Since P((v′ ⊕ ϵ) ∩ δ ̸= ∅) = 1− P((v′ ⊕ ϵ) ∩ δ = ∅), and (v′ ⊕ ϵ) ∩ δ = ∅ implies that remaining
edges of v ⊕ ϵ and v′ ⊕ ϵ are identical after injecting the random masking noise, we can derive the
following probability:

P((v′ ⊕ ϵ) ∩ δ = ∅) =
(
d
e

)(
d+|δ|

e

) · β|δ|, (C.22)

where e denotes the number of remaining edges, and k = |δ| denotes the certified perturbation size.
βe(1− β)d−e+|δ| represents the probability that |δ| noise edges are all dropped and e edges of v are
retained in v′ ⊕ ϵ. Therefore, we have:

P((v′ ⊕ ϵ) ∩ δ ̸= ∅) = 1−
(
d
e

)(
d+|δ|

e

) · β|δ| ≤ 1−
(
d
e

)(
d+k
e

) · βk = ∆. (C.23)
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Substituting Eq. (C.23) into Eq. (C.21), then Eq. (C.21) can be rewritten as

pvi,h(v ⊕ ϵ)−∆ ≤ pvi,h(v
′ ⊕ ϵ) ≤ pvi,h(v ⊕ ϵ) + ∆. (C.24)

Referring to Eq. (C.24), for any v+ and corresponding v−
i ∈ V− we have

pv+,h(v
′ ⊕ ϵ) ≥ pv+,h(v ⊕ ϵ)−∆,

pv−
i ,h(v ⊕ ϵ) + ∆ ≥ pv−

i ,h(v
′ ⊕ ϵ).

(C.25)

Thus, we can derive the following inequality based on Eq. (C.25):

pv+,h(v
′ ⊕ ϵ) ≥ pv+,h(v ⊕ ϵ)−∆ ≥ pv+,h(v ⊕ ϵ)−∆

≥ max
v−
i ∈V

pv−
i ,h(v ⊕ ϵ) + ∆ ≥ pv−

i ,h(v ⊕ ϵ) + ∆ ≥ pv−
i ,h(v ⊕ ϵ) + ∆

≥pv−
i ,h(v

′ ⊕ ϵ),

(C.26)

which can be restated as Eq. (C.14). This completes our proof.

C.3 Proof of Theorem 3

In order to transfer the certified robustness of GCL to downstream tasks, we first introduce two loss
functions, namely, unsupervised loss and supervised loss. Subsequently, we introduce a lemma to
establish the relationship between GCL and downstream tasks. Finally, a theorem is proposed to
prove that the certified robustness of GCL is provably preserved in downstream tasks.

Unsupervised Loss Given an input sample v with its positive sample v+ and n negative samples
{v−

1 , . . . ,v
−
n }. Let h : {0, 1}n → Rd be the GNN encoder based on GCL to obtain representations.

The unsupervised loss for h at point v is defined as:

Lun(v;h) :=

n∑
i=1

ℓ(h(v)⊤(h(v+)− h(v−
i ))), (C.27)

where l is logistic loss l(v) = log (1 +
∑n

i=1 exp (−vi)) according to [57, 39]. Note that this loss is
essentially equivalent to the InfoNCE loss [42, 57] shown in Eq. 1, which is widely-used for GCL.

Supervised Loss Linear evaluation, which learns a downstream linear layer after the base encoder,
is a common way to evaluate the performance of GCL model in downstream tasks. Let C be denoted
as the set of latent classes, where |C| = m. We consider the standard supervised learning tasks that
classify a data point into one of the classes in C. To connect the GCL task with the downstream
classification task, the supervised loss of downstream classifier f at (x, y) is defined as:

Lsup(x, y; f) := ℓ({f(x)y − f(x)y′}y′ ̸=y), (C.28)

where l is the same as the loss function used in the unsupervised loss in Eq. (C.27). To evaluate
the learned representations on downstream tasks, we typically fix h and train a linear classifier
W ∈ Rm×d on the top of the encoder h. Therefore, the supervised loss of h at at (x, y) is defined as:

Lsup(x, y;h) := inf
W∈Rm×d

Lsup(x, y;Wh), (C.29)

Lemma 2 (Connection between GCL and Downstream Tasks [39]). Given a input sample v with
its positive sample v+ and the set of negative samples V− = {v−

1 , . . . ,v
−
n }. C is the set of latent

class with distribution η. The latent class of v+ is denoted as c+ ∈ C. Suppose any v− ∈ V− has
the latent class c− ∈ C. Then we have

Lun(v;h) ≥ (1− τ)Lsup(v, c
+;h) + τ, (C.30)

where τ = E
c+,c−∼η

1{c+ = c−}, which indicates the expectation that c+ = c−.
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Proof. Based on the definitions of Lun(v;h) and Lsup(v;h) in Eq. (C.27) and Eq. (C.29), we have

Lun(v;h) = E
c+,c−∼η2

[ E
v+∼Dc+ ,v−∼Dc−

ℓ(h(v)⊤(h(v+)− h(v−)))]

≥ E
c+,c−∼η2

ℓ(h(v)⊤( E
v+∼Dc+

[h(v+)]− E
v−∼Dc−

[h(v−)]))

= (1− τ) E
c+,c−∼η2

[Lsup(v, c
+; f)|c+ ̸= c−] + τ

= (1− τ)Lsup(v, c
+;h) + τ.

(C.31)

This completes proof.

Note that the above bound is similar to Lemma 4.3 in [39]. By leveraging our Theorem 2, we can
establish the connection between GCL and downstream tasks, and use this connection to prove the
transferability of the certified robustness of GCL to downstream tasks.

Theorem 3. Given a GNN encoder h trained via GCL and an clean input v. v+ and V− =
{v−

1 , · · · ,v−
n } are the positive sample and the set of negative samples of v, respectively. Let c+ and

c−i denote the latent classes of v+ and v−
i , respectively. Suppose f is the downstream classifier that

classify a data point into one of the classes in C. Then, we have

P(f(h(v)) = c+) > max
v−
i ∈V−

P(f(h(v)) = c−i ) (C.32)

Proof. Since v is a clean input, according to Eq. (C.4) and Sec. 4.1, the positive pair (v,v+) a pair of
similar data that come from the same class distribution Dc+ and they have the following relationship:

P(v ∈ B(v+);h) > max
i

P(v ∈ B(v−
i );h). (C.33)

Then, based on Theorem 1, we know that P(v ∈ B(v+);h) is monotonically increasing as
s(h(v), h(v+)) increases. Therefore, we have

s(h(v), h(v+)) > max
i

s(h(v), h(v−
i )) (C.34)

According to Eq. (C.34), we can obtain that:
n∑

i=1

[s(h(v), h(v+))− s(h(v), h(v−
i ))] > 0, (C.35)

and the equivalent form of Eq. (C.35) is given as:

(s̃(h(v+))− s̃(h(v−)))⊤h(v) > 0,∀v− ∈ {v−
1 , · · · ,v−

n }, (C.36)

where s̃ is the l2-normalization operation on vector v. Then, we can obtain:

(s̃(h(v+))− s̃(h(v−)))⊤s̃(h(v)) > 0,∀v− ∈ {v−
1 , · · · ,v−

n }. (C.37)

To relate the robustness of GCL to that of downstream tasks, we select the negative samples whose
latent class c−i is different from c+ and obtain the following relationship:

n∑
i=1

[(s̃(h(v+))− s̃(h(v−)))⊤s̃(h(v))|c+ ̸= c−i ] > 0. (C.38)

Substitute the left side of Eq. (C.38) into Eq (C.27), we have Lun(v;h) < 1. According to Lemma 2,
we know that:

Lsup(v, c
+;h) ≤ Lun(v;h)− τ

1− τ
< 1. (C.39)

Hence, according to the definition of Lsup in Eq. (C.29), we have:

P(f(h(v)) = c+) > P(f(h(v)) = c−), ∀c− ∈ {c−1 , · · · , c−n } (C.40)

which means that the logit output of the positive latent class c+ is always larger than any negative
latent class c−i for v. Thus, we can rewrite Eq. (C.40) to Eq. (C.32), and conclude the proof.
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Algorithm 1 The Training Algorithm of RES.

Input: G = (V, E ,X).
Output: Trained GNN encoder hθ.

1: Randomly initialize θ for hθ;
2: for epoch=1, 2, . . . , do
3: Generate two augmented graphs Gi and Gj by qi(G) ∼ T and qj(G) ∼ T ;
4: Inject randomized edgedrop noise ϵ to Gi;
5: Obtain node or graph representation Zi and Zj from Gi and Gj by using hθ;
6: Update θ by applying gradient descent to minimize Eq. (1).
7: end for
8: return hθ;

By applying Theorem 3, we can demonstrate that given v’s perturbed version v′ = v ⊕ δ, where
||δ||0 ≤ k, if v and v′ satisfy Eq. (8) and Eq. (9) in Theorem 2, we have

P(f(h(v′ ⊕ ϵ)) = c+) > max
v−
i ∈V−

P(f(h(v′ ⊕ ϵ)) = c−i ), ∀ ∥δ∥0 ≤ k, (C.41)

which implies provable lk0 -certified robustness retention of h at (v, c+) in downstream tasks. The
proof is completed.

D Training Algorithms

We summarize the training method of Sec. 5.1 for training smoothed GNN encoders in Algorithm 1.
Specifically, at each training epoch, we first generate two augmented graphs Gi and Gj via qi(G)
and qj(G), respectively, where qi(G) and qj(G) are two graph augmentations sampled from an
augmentation pool T . The graph augmentation includes edge perturbation, feature masking, node
dropping, etc. (line 3). Then we inject randomized edgedrop noise ϵ to one of the augmented graphs
Gi (line 4). From line 5 to line 10, we train the GNN encoder hθ through GCL by maximizing the
agreement of representations in these two views. In detail, we apply hθ to obtain node or graph
representations Zi and Zj from Gi and Gj , respectively (line 5), then we do gradient descent on θ
based on Eq. (1).

E Discussions

E.1 Difference between RES and Edge-dropping Augmentations in [9] and [58]

Our RES is inherently different from the random edge-dropping augmentation in GraphCL [9]
and the learnable edge-dropping augmentation in ADGCL [58]: (i) Random edge-dropping is an
augmentation method to generate different augmented views and maximize the agreement between
views, and the learnable edge-dropping [58] is also an augmentation method to enhance downstream
task performance. However, RES is devised from the robustness perspective, providing certifiable
robustness and enhancing the robustness of any GCL method. (ii) While random edge-dropping
and learnable edge-dropping are only applied to augment graphs for GCL, RES extends beyond this.
Following the generation of two augmented views as shown in Sec. 5.1, RES injects randomized
edgedrop noise into one augmented view during GCL training. Then, it performs randomized
edgedrop smoothing in the inference phase through Monte Carlo, as shown in Sec. 5.2. Specifically,
for inference using RES, µ samples of h(v ⊕ ϵ) are drawn by injecting randomized edge-drop noise
ϵ to v µ times. The final prediction is from Monte Carlo, selecting the µ predictions with the highest
frequency in µ samples.

To demonstrate the effectiveness of RES, we further compare ADGCL with RES-GraphCL on
MUTAG and PROTEINS. We also add RES-ADGCL into comparisons. More details are shown in
Appendix. I.4.

E.2 Additional Details of Concatenation Vector

The concatenation vector v is a vector to depict the structure of the node/graph for learning represen-
tations. For node-level tasks, it represents the connection status of any pair of nodes in the K-hop
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subgraph of the node v. For graph-level tasks, it represents the connection status of any pair of nodes
in the graph G. To construct such a vector, we select the upper triangular part of the adjacency matrix
of the K-hop subgraph of v or the graph G and flatten it into the vector, where each item in this vector
can denote the connection status of any pair of nodes in the K-hop subgraph of the node v or the
graph G.

The motivation for using this notation is that since we focus on perturbations on the graph structure A
in this paper, we treat the feature vector of v as a constant and use the adjacency matrix of the K-hop
subgraph of the node or the adjacency matrix of the graph to represent the structure of the node or
graph. For simplicity and clarity, given a GNN encoder h and the concatenation vector v of the node
v or the graph G as above, we then omit the node feature matrix X and simply write the node v’s
representation hv(A,X) and the graph G’s representation h(G) as h(v). Therefore, we use a unified
notation v to denote the node v or the graph G, and further facilitate our theoretical derivations.

E.3 Definition of Well-trained GNN encoders

The well-trained GNN encoder is defined as an encoder that can extract meaningful and discriminative
representations by mapping the positive pairs closer in the latent space while pushing dissimilar
samples away.

To evaluate whether a GNN encoder h is well trained or not mathematically, we introduce criteria
based on the similarity between node/graph representations in the latent space. For each positive pair
(v,v+) with its negative samples V− = {v1, · · · ,vn}, we clarify that h is well-trained at (v,v+)
if the following inequality is satisfied:

s(h(v), h(v+)) > max
v−∈V−

s(h(v), h(v−)), (E.42)

where s(·, ·) is a cosine similarity function. This implies that h can effectively discriminate v from
all its negative samples in V− and learn the meaningful representations for v in the latent space.
Therefore, based on Eq. (E.42), we can further extend the criteria for certifying robustness in GCL,
which is shown in Definition 2.

E.4 Rationale behind Setting High Values for β

The proposed robust encoder training method in Sec. 5.1 improves the model utility of GCL. Even
setting a large β for RES, we can still obtain high robust accuracy on clean graphs, further leading to
high certified accuracies.

Specifically, as shown in Sec. 6.1, certified accuracy denotes the fraction of correctly predicted test
nodes/graphs whose certified perturbation size is not smaller than the given perturbation size. It
implies that these certified robust samples should also be correctly predicted by RES in the clean
datasets. However, as the reviewer said, introducing randomized edgedrop solely to test samples
during the inference could potentially hurt downstream task performance and further negatively
impact the certified robustness based on Eq.(8). Thus, we propose robust encoder training for RES in
Sec. 5.1 by injecting randomized edgedrop noise into one augmented view during GCL . It ensures
the samples with randomized edgedrop noises align in latent class with clean samples under the
encoder, thereby mitigating the negative impacts of such noises and further benefiting the robustness
and certification of RES.

F Code

Our code is available at https://github.com/ventr1c/RES-GCL.

G Additonal Details of Experiment Settings

G.1 Dataset Statistics

For node classification, we conduct experiments on 4 public benchmark datasets: Cora, Pubmed [47],
Amazon-Computers [48] and OGB-arxiv [49], Cora and Pubmed are small citation networks.
Amazon-Computers is a network of goods represented as nodes, and edges between nodes represent
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that the two goods are frequently bought together. OGB-arxiv is a large-scale citation network. For
graph classification, we use 3 well-known dataset: MUTAG, PROTEINS [50] and OGB-molhiv [49].
MUTAG is a collection of nitroaromatic compounds. PROTEINS is a set of proteins that are classified
as enzymes or non-enzymes. OGB-molhiv is a dataset contains molecules, which is adopted from
MoleculeNet [59]. Among these datasets, for Cora and Pubmed, we evaluate the models on the
public splits. Regarding to the other 5 datasets, Coauthor-Physics, OGB-arxiv, MUTAG, PROTEINS
and OGB-molhiv, we instead randomly select 10%, 10%, and 80% nodes/graphs for the training,
validation and test, respectively. The statistics details of these datasets are summarized in Table 2.

Table 2: Dataset Statistics
Datasets #Graphs #Avg. Nodes #Avg. Edges #Avg. Feature #Classes

Cora 1 2,708 5,429 1,443 7
Pubmed 1 19,717 44,338 500 3
Coauthor-Physics 1 34,493 495,924 8415 5
OGB-arxiv 1 169,343 1,166,243 128 40
MUTAG 188 17.9 39.6 7 2
PROTEINS 1,113 39.1 145.6 3 2
OGB-molhiv 41,127 25.5 27.5 9 2

G.2 Attack Methods

One of our goals is to show RES is robust to various structural noises, we evaluate RES on 4 types of
structural attacks in evasion setting, i.e., Random attack, Nettack [11], PRBCD [51], CLGA [16] for
both node and graph classification. The procedure of the evasion attack against GCL in transductive
node classification is shown in Algorithm 2. The details of these attacks are described following:

1. Random Attack: We randomly add some noisy edges to the graphs for node classification and
graph classification, respectively, until the attack budget is satisfied. Specifically, we consider
two kinds of attack settings for node classification, that is, global random attack and targeted
random attack. For global random attack, which is used in Sec. 6.2, we randomly inject some
fake edges (10% in our setting) into the whole graph. For targeted attack, we randomly connect
some fake edges to the direct neighbors of target nodes.

2. Nettack [11]: It is a targeted attacks for node classification that manipulate the graph structure
to mislead the prediction of target nodes.

3. PRBCD [51]: It is a scalable global attack for node classification that aims to decrease the
overall accuracy of the graph.

4. CLGA [16]: It is an unsupervised gradient-based poisoning attack targeting graph contrastive
learning for node classification. Since we focus on evasion attacks, we directly use the poisoned
graph generated by CLGA in the downstream tasks to evaluate the performance and regard it as
an evasion global attack.

Moreover, we further consider two graph injection attack methods, i.e., TDGIA [60] and AGIA [61],
as baselines to demonstrate the robustness of RES. The details of experimental results are shown in
Sec. I.3.

G.3 Compared Methods

We select four state-of-the-art GCL methods and employ RES on them to train smoothed GNN
encoders:

1. GRACE [30]: It is node-level GCL method which creates multiple augmented views by
perturbing graph structure and masking node features. Then it encourages consistency between
the same nodes in different views.

2. BGRL [52]:Insipred by BYOL [62], it is performs graph contrastive learning that does not
require negative samples. Specifically, it applies two graph encoders (i.e., online and targeted
encoders), and update them iteratively to make the predicted representations closer to the true
representations for each node.
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Algorithm 2 The Evasion Attack Procedure against GCL in Transductive Node Classification

Input: Clean graph G = (V, E ,X), GNN encoder hθ, target node v with class label c, perturbation
δ, downstream classifier f .

Output: success (i.e., attack v successfully or not)
1: Train hθ on G via GCL;
2: Obtain perturbed node v′ by adding perturbation δ to v;
3: Generate the representation of v′ as h(v′);
4: if f(h(v′)) = c then
5: return success← false;
6: else
7: return success← true;
8: end if

3. DGI [31]: It is a state-of-the-art GCL method which adapted from Deep InfoMax [63] to
maximize the mutual information between local and global features.

4. GraphCL [9]: It is the first work to study GCL at graph-level. Specifically, it constructs four
types of graph augmentations and adapts SimCLR [55] to learn graph-level embeddings.

Moreover, we also compare RES-GCL with several representative and state-of-the-art graph represen-
tation learning methods and robust GCLs against structural noises:

1. Node2Vec [53]: It is a traditional unsupervised methods. Its key idea is to perform random
walks on the graph to generate sequences of nodes that capture both the local and global structure
of the graph.

2. GAE [54]: It is a representative unsupervised learning method which learns a low-dimensional
representation of a graph by encoding its nodes and edges into a vector space, and then decoding
this representation back into a graph structure. It is trained to minimize the reconstruction error
between the original graph and the reconstructed graph.

3. GCL-Jaccard: It is implemented by removing dissimilar edges based on Jaccard similarity
before and after the training phase, respectively, which is inspired from GCN-Jaccard [64].

4. Ariel [15]: It is a robust GCL method which uses an additional adversarial graph view in graph
contrastive learning to improve the robustness. An information regularizer is also applied to
stabilize its performance.

G.4 Implementation details

A 2-layer GCN is employed as the backbone GNN encoder and a common used linear evaluation
scheme [31] is adopt in the downstream tasks. More specifically, each GNN encoder is firstly trained
via GCL method and then the resulting embeddings are used to train and test a l2-regularized logistic
regression classifier. GRACE is implemented based on the source code published by authors 1. BGRL
and DGI methods are implemented based on PyGCL library [65]. All hyperparameters of all methods
are tuned based on the validation set for fair comparison. All models are trained on an A6000 GPU
with 48G memory.

G.5 Attack Settings

In this paper, we assume that the attacker can conduct attack in two settings: transductive node
classification and inductive graph classification. These two settings are described below:

• Transductive Setting: In this setting, test instances (nodes/graphs) are visible during both
training the GNN encoder and inference in downstream tasks. Specifically, we first train a GNN
encoder h via GCL on a clean dataset that includes test nodes to generate node representations.
Then, an attacker adds perturbations to the test nodes, causing h to produce poor representations
that degrade performance on downstream tasks. For example, an attacker may attempt to
manipulate a social network by injecting fake edges, which could affect the performance of

1https://github.com/CRIPAC-DIG/GRACE
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a well-trained h in tasks such as community detection, influential node identification, or link
prediction.

• Inductive Setting: In this setting, test instances only appear in downstream tasks and are
invisible during the training phase. This setting is similar to the transductive setting, but the
test nodes/graphs are not seen during training. This scenario commonly arises in real-world
applications such as new drug discovery, where an attacker may attempt to manipulate a new
molecular graph in the test set to mislead the model, resulting in incorrect predictions in
downstream tasks.

H Additional Results of the Performance of Certificates

In this section, we extend the experiments in Sec. 6.3 and present comprehensive results on the
performance of robustness certificates. Our aim is to demonstrate that RES can effectively provide
certifiable robustness for various GCL methods. We select GRACE, BGRL, DGI, and GraphCL as
the target GCL methods and integrate them with RES. We perform experiments on Cora, Pubmed,
Coauthor-Physics, and OGB-arxiv for node classification tasks, as well as MUTAG, PROTEINS, and
OGB-molhiv for graph classification tasks. Certified accuracy is selected as the evaluation metric.
Specifically, certified accuracy [46, 24] denotes the fraction of correctly predicted test nodes/graphs
whose certified perturbation size is no smaller than the given perturbation size. The complete results
are reported in Fig. 4 to Fig. 8.
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Figure 4: Certified accuracy of RES-GCL on Cora
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(c) DGI
Figure 5: Certified accuracy of RES-GCL on Pubmed
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Figure 6: Certified accuracy of RES-GCL on Coauthor-Physics

I Additional Results of the Performance of Robustness

In this section, we provide additional experimental results to further showcase the effectiveness of
the RES in enhancing the robustness of GCL against various adversarial attacks. More specifically,
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(a) GRACE, OGB-arxiv
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(c) GraphCL, OGB-molhiv
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(d) BGRL, OGB-molhiv,
Figure 7: Certified accuracy of smoothed GCL on OGB-arxiv and OGB-molhiv
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(a) GraphCL, MUTAG
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(c) GraphCL, PROTEINS
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(d) BGRL, PROTEINS
Figure 8: Certified accuracy of smoothed GCL on MUTAG and PROTEINS

in Sec. I.1, we show the comparison results of RES with the baselines on graph classification. In
Sec. I.2, we conduct experiments to demonstrate GCL with RES is resistant to different levels of
structural noises. In Sec. I.3, we present the comparison results of three target GCL methods (i.e.,
GRACE, BGRL, DGI) against three types of structural attacks (i.e., Random, CLGA and PRBCD)
on node classification. In Sec. I.4, we present additional experimental results of two advanced GCL
methods (i.e., ADGCL [58] and RGCL [66]) on graph classification.

I.1 Robust Performance on Graph Classification

In this subsection, we conduct experiments on graph classification to demonstrate the effectiveness of
our method in this downstream task. Due to the limited availability of open-source attack methods
specifically designed for graph classification, we utilize random attacks as the attack method. However,
we believe that our method is robust against other attack methods as well. Specifically, we select
GraphCL as the target GCL methods. The perturbation rate of random attack is 0.1. The smoothed
version of GraphCL is denoted as RES-GraphCL. The results on MUTAG and PROTEINS are given
in Fig. 9. From the figure, we observe: (i) When no attack is applied to the raw graphs, RES-GraphCL
achieves comparable performance to the baseline GraphCL. (ii) When attacks are conducted on
the noisy graphs, RES-GraphCL consistently outperforms the baseline on both the MUTAG and
PROTEINS datasets. This result demonstrates the effectiveness of our method in enhancing the
robustness of GraphCL against adversarial attacks.
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Figure 9: Robust accuracy of GraphCL for graph classification against random attack

I.2 Robustness Under Different Noisy Levels.

To demonstrate the ability of our method to improve the robustness of Graph Contrastive Learning
(GCL) against different levels of structural noise, we compare the robust accuracy of the GCL
methods w/o applying our RES under evasion attacks for node classification. Specifically, we select
GRACE, BGRL and DGI as target GCL methods. We set (1− β) = 0.05 and µ = 50. We consider
two targeted attack method, random attack and Nettack [11] to conduct targeted attacks. The attack
budget is set from 0 to 5. We randomly select 15% of the test nodes as the target nodes to compute
the robust accuracy. The results on the Cora and Pubmed datasets are reported in Fig. 10 and Fig. 11.
We observe: (i) The robust accuracies of the baseline methods exhibit a significant drop as the
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Figure 10: Robust accuracy under different perturbation sizes of random attack
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Figure 11: Robust accuracy under different perturbation sizes of Nettack

perturbation sizes increase, which is expected. In contrast, the performances of RES are much more
stable and consistently outperform the baselines. This demonstrates the robustness of GCL with RES
against various levels of structural noise. (ii) The high robust accuracies of the three GCL models
demonstrate that our RES is effectively applicable to various GCL method.

I.3 Additonal Results of Robust Performance on Node Classification

In this subsection, we provide additional experimental results from Section 6.2, focusing on node
classification. We select GRACE, BGRL, and DGI as the target GCL methods and evaluate their
performance on four types of graphs: raw graphs, random attack perturbed graphs, CLGA perturbed
graphs, and PRBCD perturbed graphs. The perturbation ratio is set to 0.1. Table 3 presents the results
of these experiments. The highlighted results denote the best performance for each pair of GCL
and RES-GCL. Note that BGRL, implemented based on PyGCL [65], encounters out-of-memory
(OOM) errors in our platform, and hence the results for BGRL on OGB-arxiv are left blank. From

26



the table, we observe that all three GCL methods, when combined with RES, achieve state-of-the-art
performance. This demonstrates the effectiveness of our method in enhancing the robustness of
various GCL methods. By incorporating RES, the GCL models are more resilient to adversarial
attacks and exhibit improved performance across different types of perturbed graphs.

Moreover, we further consider two graph injection attack methods, i.e., TDGIA [60] and AGIA [61],
as baselines to demonstrate the robustness of RES. Specificially, we select GRACE as the target GCL
methods and evaluate them on three types of graphs: raw graphs, TDGIA perturbed graphs and AGIA
perturbed graphs. We insert the same number of fake nodes as the target nodes. We set (1− β) = 0.1
and µ = 50. The comparison results on four datasets are shown in Table. 4. From the results, we
observe that (i) RES-GRACE consistently outperforms the baselines across 4 datasets in defending
graph injection attacks. (ii) Both TDGIA and AGIA are much more powerful than the structural
attack methods in Table 3 against GCL.

Table 3: Robust accuracy results of GCL methods for node classification.
Dataset Graph GRACE RES-GRACE BGRL RES-BGRL DGI RES-DGI

Cora
Raw 77.1±1.6 79.7±1.0 78.5±1.6 79.9±1.2 81.3±0.7 81.4±0.8
Random 74.5±2.1 79.7±1.0 76.2±1.2 79.6±1.1 77.5±1.0 79.2±0.6
CLGA 74.9±2.0 78.2±1.0 75.8±1.6 79.4±0.9 79.5±0.5 80.9±1.0
PRBCD 75.8±2.5 78.5±1.7 76.4±0.6 79.5±0.8 79.6±1.4 80.9±1.1

Pubmed
Raw 79.5±2.9 79.5±1.2 79.9±1.4 81.5±0.6 80.1±0.9 80.0±0.8
Random 75.0±1.0 78.2±0.9 74.0±1.0 81.0±0.7 76.7±0.7 78.8±0.6
CLGA 76.6±2.5 78.3±1.1 77.9±0.3 81.6±0.2 79.6±0.6 80.0±1.2
PRBCD 73.2±2.3 78.8±1.7 71.6±2.4 80.9±0.5 75.4±0.9 78.0±0.6

Physics
Raw 94.0±0.4 94.7±0.2 95.3±0.1 95.6±0.1 93.5±0.6 94.1±0.3
Random 92.6±0.5 94.2±0.3 94.0±0.2 95.5±0.2 91.5±0.9 92.2±0.4
PRBCD 89.2±0.6 94.1±0.2 92.3±0.2 95.4±0.2 88.8±0.5 90.0±0.4

OGB-arxiv
Raw 65.1±0.5 65.2±0.1 - - 65.0±0.2 64.8±0.1
Random 59.0±0.2 60.0±0.1 - - 58.0±0.1 58.9±0.1
PRBCD 55.7±0.4 58.3±0.4 - - 56.9±0.9 57.2±0.3

Table 4: Robust accuracy results of GCL methods against injection attacks.
Dataset Graph GRACE RES-GRACE

Cora
Raw 77.1±1.6 79.7±1.0
TDGIA 22.4±1.5 78.7±1.1
AGIA 21.1±1.4 78.4±0.9

Pubmed
Raw 79.5±3.1 79.5±1.2
TDGIA 50.6±1.2 77.0±0.4
AGIA 50.2±1.6 77.5±1.0

Physics
Raw 94.0±0.4 94.7±0.2
TDGIA 52.2±1.0 93.8±0.1
AGIA 52.3±0.5 94.0±0.2

OGB-arxiv
Raw 65.1±0.5 65.1±0.1
TDGIA 40.3±0.4 46.9±0.1
AGIA 40.4±0.3 47.0±0.1

I.4 Additional Results of RES for Advanced GCLs
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Figure 12: Robust accuracy of ADGCL and RGCL for graph classification against random attack

To further demonstrate the effectiveness of RES, we further add ADGCL [58] and RGCL [66]
as baselines and implement RES-ADGCL and RES-RGCL. We set graph classification as the
downstream task. The hyperparameter is tuned based on the performance of the validation set. We use
random attack to get the noisy graphs and the perturbation rate is 0.1. Each experiment is conducted
5 times and the average results are reported. Comparison results on MUTAG and PROTEINS are
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Figure 13: Certified accuracy of RGCL on MUTAG and PROTEINS

shown in Fig. 12. From this figure, we observe that all RES-GCL methods achieve comparable
performances to the baselines on raw graphs and consistently outperform the baselines in the noisy
graphs of two datasets, which validates the effectiveness of RES in any GCL model.

We also report the certified accuracy of RES-RGCL on the two datasets. The results are shown in
Fig. 13. From the figure, we can observe there is a tradeoff between certified robustness and model
utility, which is similar to that of Sec. 6.3.
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Figure 14: Ablation Studies of Training with RES on Cora and OGB-arxiv
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Figure 15: Ablation Studies of Comparisons RES with FLIP

J Additional Results of Ablation Studies

J.1 Ablation Studies on Training with RES

In this subsection, we conduct ablation studies to investigate the effect of our training method for
robust GCL. To demonstrate that our training method improves the robustness of GCL, we do not
inject random edgedrop noise during the training phase and obtain a variant called NoRES. We select
PRBCD as the attack method to generate noisy graphs, and set µ = 50. We vary the value of β as
{0.5, 0.6, 0.7, 0.8, 0.9} and compare the robust accuracy of RES and NoRES on both raw graphs
and PRBCD-perturbed graphs. The results of the variant NoRES on raw and PRBCD-perturbed
graphs are denoted as NoRES-Raw and NoRES-Ptb, respectively. We report the results on the Cora
and OGB-arxiv datasets in Fig. 14. From the figure, we observe the following: (i) RES consistently
outperforms NoRES on both raw and perturbed graphs in all settings, implying the effectiveness of
our training method for robust GCL. (ii) The variance of RES is lower than that of NoRES. This
is because we inject randomized edgedrop noise into the graphs during the training phase, helping
the models better understand and generalize from the data with randomized edgedrop noise, thereby
ensuring the robustness and utility of the models.
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Figure 16: Hyperparameter Sensitivity Analysis on Cora
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Figure 17: Hyperparameter Sensitivity Analysis on Coauthor-Physics

J.2 Additional Results of Comparisons RES with FLIP

In this subsection, we present additional experimental results in Sec. 6.4 to further demonstrate that our
RES method is significantly more effective in GCL compared to vanilla randomized smoothing [24].
We introduce two variants of our model, namely FLIP and FLIP/T, which replace the randomized
edgedrop noise with binary random noise [24]. This noise flips the connection status within the
graph with a probability of β. The key difference between FLIP and FLIP/T is that FLIP injects
binary random noise into the graphs during both the training and inference phases, while FLIP/T
only injects binary random noise during the inference phase. For our RES method, we set β = 0.9,
and µ = 50. For FLIP and FLIP/T, to ensure a fair comparison, we set µ = 50, and vary β over
{0.1, 0.2, · · · , 0.9} and select the value that yields the best performance on the validation set of clean
graphs. We select GRACE as the targeted GCL method and compare the robust accuracy of our RES
with FLIP and FLIP/T on the clean and noisy graph under Nettack with an attack budget of 3. The
average robust accuracy and standard deviation on Cora and Pubmed datasets are reported in Fig. 15.
We observe: (i) RES consistently outperforms FLIP and FLIP/T on clean and noisy graphs of Cora
and Pubmed datasets, further validating the effectiveness of RES in providing certified robustness for
GCL. (ii) FLIP and FLIP/T exhibit comparable performance on all graphs, but significantly lower
than RES. This finding confirms our analysis that vanilla randomized smoothing introduces numerous
spurious/noisy edges to the graph, resulting in poor representation learning by the GNN encoder and
compromising downstream task performance.

K Hyperparameter Sensitivity Analysis

We further investigate how hyperparameter (1 − α) and µ affect the performance of robustness
certificates of our RES, where (1 − α) and µ control the confidence level and the number of
Monte Carlo samples used to compute the certified accuracy. We vary the value of (1 − α) as
{90%, 95%, 99%, 99.9%, 99.99%} and fix µ as 200, vary µ as {20, 50, 200, 500, 1000} and fix (1−
α) as 99%, respectively. β is set as 0.9. We report the certified accuracy of RES-GRACE on Cora
and Coauthor-Physics dataset in Fig. 16 and Fig. 17. From the figures, we observe: (i) As µ increases,
the certified accuracy curve becomes higher. The reason for this is that a larger value of µ makes the
estimated probability bound pv+,h(v ⊕ ϵ) and pv−

i ,h(v ⊕ ϵ) in Eq. (8) tighter, resulting in a higher
certified perturbation size of a test sample. (ii) As (1 − α) increases, the certified accuracy curve
becomes slightly lower. This is because a higher confidence level leads to a looser estimation of
pv+,h(v ⊕ ϵ) and pv−

i ,h(v ⊕ ϵ) in Eq. (8), meaning that fewer nodes satisfy Theorem 2 under the
same perturbation size, resulting in a smaller certified perturbation size of a test sample.
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L Limitations

In this paper, we propose a unified criteria to evaluate and certify the robustness of GCL. Our proposed
approach, Randomized Edgedrop Smoothing (RES), injects randomized edgedrop noise into graphs
to provide certified robustness for GCL on unlabeled data. Moreover, we design an effective training
method for robust GCL by incorporating randomized edgedrop noise during the training phase. The
theoretical analysis and extensive experiments show the effectiveness of our proposed RES.

Limitation & future work: Our current results are limited mainly to GCL while we believe it is
also interesting to develop new techniques to other graph self-supervised methods e.g. generative
and neighborhood prediction methods based on our framework, which we leave for immediate future
work. We hope that this work could inspire future certifiably defense algorithms of adversarial attacks.
Additionally, in this paper, we only focus on the graph-structured data. Thus, it is also interesting to
investigate how to extend it to other domains, e.g., images and texts. Furthermore, in this paper, we
utilize Monte Carlo algorithms to calculate robustness certificates for GCL, potentially increasing
the computational demands. Therefore, it is also worthwhile to investigate methods to improve the
efficiency of the robustness certification for GCL. Due to the nature of this work, there may not be
any potential negative social impact that is easily predictable.
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