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Abstract

Graph Contrastive Learning (GCL) has emerged as a popular unsupervised graph
representation learning method. However, it has been shown that GCL is vulnerable
to adversarial attacks on both the graph structure and node attributes. Although
empirical approaches have been proposed to enhance the robustness of GCL, the
certifiable robustness of GCL is still remain unexplored. In this paper, we develop
the first certifiably robust framework in GCL. Specifically, we first propose a uni-
fied criteria to evaluate and certify the robustness of GCL. We then introduce a
novel technique, RES (Randomized Edgedrop Smoothing), to ensure certifiable
robustness for any GCL model, and this certified robustness can be provably pre-
served in downstream tasks. Furthermore, an effective training method is proposed
for robust GCL. Extensive experiments on real-world datasets demonstrate the
effectiveness of our proposed method in providing effective certifiable robustness
and enhancing the robustness of any GCL model. The source code of RES is
available at https://github.com/ventr1c/RES-GCL.

1 Introduction

Graph structured data are ubiquitous in real-world applications such as social networks [1], finance
systems [2], and molecular graphs [3]. Graph Neural Networks (GNNs) have emerged as a popular
approach to learn graph representations by adopting a message passing scheme [4, 5, 6], which
updates a node’s representation by aggregating information from its neighbors. Recently, graph
contrastive learning has gained popularity as an unsupervised approach to learn node or graph
representations [7, 8, 9]. The graph contrastive learning creates augmented views and minimizes
the distances among positive pairs while maximizing the distances among negative pairs in the
embedding space.

Despite the great success of GNNs, some existing works [10, 11, 12, 13] have shown that GNNs
are vulnerable to adversarial attacks where the attackers can deliberately manipulate the graph
structures and/or node features to degrade the model’s performance. The representations learned
by Graph Contrastive Learning (GCL) are also susceptible to such attacks, which can lead to poor
performance in downstream tasks with a small amount of perturbations [14, 15, 16]. To defend
against graph adversarial attacks, several empirical-based works have been conducted in robust
GNNs for classification tasks [17, 18] and representation learning with contrastive learning [14, 15].
Nevertheless, with the advancement of new defense strategies, new attacks may be developed to
invalidate the defense methods [19, 20, 21, 22], leading to an endless arms race. Therefore, it
is important to develop a certifiably robust GNNs under contrastive learning, which can provide
certificates to nodes/graphs that are robust to potential perturbations in considered space. There are
several efforts in certifiable robustness of GNNs under supervised learning, which requires labels for
the certifiable robustness analysis [23, 24, 25, 26]. For instance, [23] firstly analyze the certifiable
robustness against the perturbation on node features. Some following works [24, 25, 26] further study
the certified robustness of GNN under graph topology attacks. However, the certifiable robustness of
GCL, which is in unsupervised setting, is still rarely explored.
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Certifying the robustness of GCL is rather challenging. First, quantifying the robustness of GCL
consistently and reliably is a difficult task. Existing GCL methods [27, 14, 15] often use empirical
robustness metrics (e.g., robust accuracy) that rely on the knowledge of specific downstream tasks
(e.g., task types, node/graph labels) for evaluating GCL robustness. However, these criteria may
not be universally applicable across different downstream tasks. The lack of clarity in defining
and assessing robustness within GCL further compounds the difficulty of developing certifiably
robust GCL methods. Second, the absence of labels in GCL makes it challenging to study certifiable
robustness. Existing works [23, 28, 29, 25, 24] on certifiable robustness of GNNs are designed for
supervised or semi-supervised settings, which are not applicable to GCL. They typically try to provide
certificates by analyzing the worst-case attack on labeled nodes. However, it is difficult to conduct
such analyses due to the absence of labels in GCL. Additionally, some works [29, 24] that rely on
randomized smoothing to obtain robustness certificates can not be directly applied to GCL as they
may require injecting noise into the whole graph during data augmentation, introducing too many
spurious edges and hurting downstream task performance, particularly for large and sparse graphs.
Third, it is unclear whether certifiable robustness of GCL can be converted into robust performance
in downstream tasks. The challenge arises due to the misalignment of objectives between GCL and
downstream tasks. For instance, GCL usually focuses on discriminating between different instances,
while some downstream tasks may also require understanding the relations among instances. This
discrepancy engenders a divide between unsupervised GCL and its downstream tasks, making it
difficult to prove the robust performance of the certified robust GNN encoder in downstream tasks.

In this work, we propose the first certifiably robust GCL framework, RES (Randomized Edgedrop
Smoothing). (i) To address the ambiguity in evaluating and certifying robustness of GCL, we propose
a unified criteria based on the semantic similarity between node or graph representations in the
latent space. (ii) To address the label absence challenges and avoid adding too many noisy edges
for certifying the robustness in GCL, we employ the robustness defined at (i) for unlabeled data
and introduce a novel technique called randomized edgedrop smoothing, which can transform any
base GNN encoder trained by GCL into a certifiably robust encoder. Therein, some randomized
edgedrop noises are injected into the graphs by stochastically dropping observed edges with a certain
probability, preventing the introduction of excessive noisy edges and yielding effective and efficient
performance. (iii) We theoretically demonstrate that the representations learned by our robust encoder
can achieve provably robust performance in downstream tasks. (iv) Moreover, we present an effective
training method that enhances the robustness of GCL by incorporating randomized edgedrop noise.
Our experimental results show that GRACE [30] with our RES can outperform the state-of-the-art
baselines against several structural attacks and also achieve 43.96% certified accuracy in OGB-arxiv
dataset when the attacker arbitrarily adds at most 10 edges.

Our main contributions are: (i) We study a novel problem of certifying the robustness of GCL
to various perturbations. We introduce a unified definition of robustness in GCL and design a
novel framework RES to certify the robustness; (ii) Theoretical analysis demonstrates that the
representations learned by our robust encoder can achieve provably robust performance in downstream
tasks; (iii) We design an effective training method for robust GCL by incorporating randomize
edgedrop noise; and (iv) Extensive empirical evaluations show that our method can provide certifiable
robustness for downstream tasks (i.e., node and graph classifications) on real-world datasets, and also
enhance the robust performance of any GNN encoder through GCL.

2 Related Work

Graph Contrastive Learning. GCL has recently gained significant attention and shows promise
for improving graph representations in scenarios where labeled data is scarce [31, 32, 9, 30, 27,
15, 33, 32, 34, 35]. Generally, GCL creates two views through data augmentation and contrasts
representations between two views. Several recent works [16, 36] show that GCL is vulnerable
to adversarial attacks. Despite very few empirical works [9, 15, 14] on robustness of GCL, there
are no existing works studying the certified robustness of GCL. In contrast, we propose to provide
robustness certificates for GCL by using randomized edgedrop smoothing. More details are shown
in Appendix A.1. To the best of our knowledge, our method is the first work to study the certified
robustness of GCL.

Certifiable Robustness of GNNs. Several recent studies investigate the certified robustness of GNNs
in the (semi)-supervised setting[23, 28, 29, 26, 24, 25, 37]. Zunger et al. [23] are the first to explore
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certifiable robustness with respect to node feature perturbations. Subsequent works[28, 26, 29, 24, 38]
extend the analysis to certifiable robustness under topological attacks. More details are shown in
Appendix A.2. Our work is inherently different from them: (i) we provide an unified definition
to evalute and certify the robustness of GCL; (ii) we theoretically provide the certified robustness
for GCL in the absence of labeled data, and this certified robustness can provably sustained in
downstream tasks; (iii) we design an effective training method to enhance the robustness of GCL.

3 Backgrounds and Preliminaries

3.1 Graph Contrastive Learning

Notations. Let G = (V, E ,X) denote a graph, where V = {v1, . . . , vN} is the set of N nodes,
E ⊆ V × V is the set of edges, and X = {x1, ...,xN} is the set of node attributes with xi being
the node attribute of vi. A ∈ RN×N is the adjacency matrix of G, where Aij = 1 if nodes vi and
vj are connected; otherwise Aij = 0. In this paper, we focus on unsupervised graph contrastive
learning, where label information of nodes and graphs are unavailable during training for both node-
and graph-level tasks. For the node-level task, given a graph G, the goal is to learn a GNN encoder h
to produce representation zv for v, which can be used to conduct prediction for node v in downstream
tasks. For the graph-level task, given a set of graph G = {G1,G2, · · · }, the goal is to learn the latent
representation zG for each graph G, which can be used to predict downstream label yG of G. For
simplicity and clarity, in this paper, we uniformly denote a node or graph as a concatenation vector v.
The representation of v from encoder h is denoted as h(v). More details are shown in Appendix E.2.

Graph Contrastive Learning. Generally, GCL consists of three steps: (i) multiple views are
generated for each instance through stochastic data augmentation. Positive pairs are defined as two
views generated from the same instance; while negative pairs are sampled from different instances;
(ii) these views are fed into a set of GNN encoders {h1, h2, · · · }, which may share weights; (iii) a
contrastive loss is applied to minimize the distance between positive pairs and maximize the distance
between negative pairs in latent space. To achieve the certified robustness of GCL to downstream
tasks, we introduce latent class to formalize the contrastive loss for GCL, which is inspired by [39, 40].

Definition 1 (Latent Class). We utilize the latent class to formalize semantic similarity of positive
and negative pairs in GCL [39]. Consider a GNN encoder h learnt by GCL. Let V denote the set of
all possible nodes/graphs in the input space. There exists a set of latent class, denoted as C, where
each sample v ∈ V is associated with a latent class c ∈ C. Each class c ∈ C is associated with a
distribution Dc over the latent space of samples belonging to class c under h. The distribution on
C is denoted as η. Intuitively, Dc(v) captures how relevant v is to class c in the latent space under
h, similar to the meaning of class in supervised settings. The latent class is related to the specific
downstream task. For instance, when the downstream task is a classification problem, the latent class
can be interpreted as the specific class to which the instances belong.

Typically, GCL is based on the label-invariant augmentation intuition: the augmented operations
preserve the nature of graphs and make the augmented positive views have consistent latent classes
with the original ones [41]. Let c+,c−∈ C denote the positive and negative latent classes drawn
from η, Dc+ and Dc− are the distributions to sample positive and negative samples, respectively.
For each positive pair (v,v+) ∼ D2

c+ associated with n negative samples {v−
i ∼ Dc− |i ∈ [n]}, the

widely-used loss for GCL, which is also known as InfoNCE loss [42], can be written as follows:

LGCL = E
c+,c−∼η2

[
E

v,v+∼D2
c+

,v−
i ∼D

c−

[− log(
eh(v)

⊤h(v+)

eh(v)⊤h(v+) +
∑n

i=1 e
h(v)⊤h(v−

i )
)]
]
, (1)

3.2 Threat Model

Attacker’s Goal. We consider an attacker conducts an evasion attack in GCL. Given a well-trained
GNN encoder h on a clean graph G via GCL, an attacker aims to degrade the performance of h
in downstream tasks by injecting noise into the graph. For instance, an attacker may attempt to
manipulate a social network by injecting fake edges, which could affect the performance of a well-
trained h in tasks such as community detection, node classification, or link prediction. The noise can
take different forms, including adding/deleting nodes/edges or augmenting node features.
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Attacker’s Knowledge and Capability. We assume that the attacker follows the grey-box setting to
conduct an evasion attack. Specifically, the attacker has access to a benign GNN encoder h trained on
a clean dataset through GCL, and the training data to train downstream classifier is available to the
attacker. The model architecture and other related information of the GNN encoder are unknown
to the attacker. During inference phase, the attacker is capable of injecting noises to the graph
within a given budget to degrade the performance of target nodes/graphs in downstream tasks. In
this paper, we focus on perturbations on the graph structure A, i.e, only structural noises such as
adding new edges/nodes are injected into the graph as structure attack is more effective than feature
attack [11, 24, 43]. We leave the extension to feature attack and defense of GCL as future work. We
denote δ ∈ {0, 1}N as the structural noise to a node/graph v, where N denote the number of nodes
on the graph v or K-hop subgraph of node v and δi = 1 indicates the addition of a noisy edge to v in
the i-th entry, and its L0-norm ||δ||0 indicates the number of noisy edges. We then have the perturbed
version of v by the attacker, denoted as v′ = v ⊕ δ.

3.3 Problem Statement

Our objective is to develop a certifiably robust GCL. We aim to train a GNN encoder that exhibits
provably benign behaviors in downstream tasks. The problem can be formulated as follows:
Problem 1. Given a GNN encoder h, a node or graph v. Let v′ = v ⊕ δ denote the perturbed
version of v by the attacker, where the structural noise δ with ∥δ∥0 ≤ k is injected into v. Suppose
that c∗ is the latent class of v and f is the downstream classifier. Our goal is to develop a certifiably
robust GCL for h such that for any c ̸= c∗, the representation of v′ under h can satisfy the following
requirement in downstream tasks:

m(v′, c∗;h) = min
c̸=c∗

[
P(f(h(v′)) = c∗)− P(f(h(v′)) = c)

]
> 0, (2)

where m(v′, c∗;h) is the worst-case margin of h(v′) between c∗ and y in the downstream task for
any c ̸= c∗, and P(f(h(v′)) = c) denotes the probability of the representation h(v′) being classified
into class c by f in the downstream task. Eq. (2) implies that f(h(v′)) = f(h(v)) = c∗ for any δ
within the budget k, i.e., h is a certifiably robust at (v, c∗) when perturbing at most k edges.

4 Certifying Robustness for GCL

In this section, we present the details of our RES, which aims to provide certifiable robustness for
GCL models. There are mainly three challenges: (i) how to define the certified robustness of GCL;
(ii) how to derive the certified robustness; and (iii) how to transfer the certified robustness of GCL
to downstream tasks. To address these challenges, we first define certified robustness for GCL in
Sec. 4.1. We then propose the RES method to derive the certificates and theoretically guarantee
certifiable robustness in Sec. 4.2. Finally, we show that the certifiably robust representations learned
from our approach are still provably robust in downstream tasks in Sec. 4.3.

4.1 Certified Robustness of GCL

To give the definition of certified robustness of GCL, we first give the conditions for successfully
attacking the GNN encoder. The core idea behind it comes from supervised learning, where the objec-
tive is to judge whether the predictions of target nodes/graphs are altered under specific perturbations.
Inspired by [40], we consider the following scenario of a successful attack against the GNN encoder.

Given a clean input v, with positive and negative samples v+ and v− used in the learning process
of GCL, respectively, we consider v′ = v ⊕ δ, where δ represents structural noise on v and v− is
the attack target of v. The attacker’s goal is to produce an adversarial example v′ that can deceive
the model into classifying v as similar to v−. Formally, given a well-trained GNN encoder h via
GCL, we say that h has been successfully attacked at v if the cosine similarity s (h(v′), h(v+)) is
less than s (h(v′), h(v−)). This indicates that v′ is more similar to v− than to v+ in the latent space.
Otherwise, we conclude that h has not been successfully attacked. This definition of successful attack
provides the basis for the definition of certified robustness of GCL. The formal definition of certified
robustness problem for GCL is then given as
Definition 2 (Certified Robustness of GCL). Given a well trained GNN encoder h via GCL. Let v be
a clean input. v+ is the positive sample of v and V− = {v−

1 , · · · ,v−
n } denotes all possible negative

4



samples of v+, which are sampled as discussed in Sec. 3.1. Suppose that v′ is a perturbed sample
obtained by adding structural noise δ to v, where ||δ||0 ≤ k, and s(·, ·) is a cosine similarity function.
Then, h is certifiably lk0 -robust at (v,v+) if the following inequality is satisfied:

s(h(v′), h(v+)) > max
v−∈V−

s(h(v−), h(v′)), ∀δ : ∥δ∥0 ≤ k. (3)

Similar to the supervised certified robustness, this problem is to prove that the point v′ = v⊕ δ under
the perturbation within budget k is still the positive sample of v+. However, unlike the supervised
learning, where we can estimate the prediction distribution of v by leveraging the labels of the
training data, it is difficult to estimate such a distribution in GCL because the label information is
unavailable. To address this issue, we first consider a space B for a sample v+, where each sample
within it is the positive sample of v+. Formally, given a sample v+ with the latent class c+ from the
probability distribution D+

c , B(v+) is defined as

B(v+) := {v|v ∈ c+}. (4)

GCL maximizes the agreement of the positive pair in the latent space and assume access to similar
data in the form of pairs (v,v+) that comes from a distribution D2

c+ given the latent class c+. Thus,
it is natural to connect the latent class and the similarity between representations. The probability
that v is the positive sample of v+ can be given by the following theorem.
Theorem 1. Let B(v+) be a space around v+ as defined in Eq. (4). Given an input sample v and a
GNN encoder h learnt by GCL in Eq. (1), the probability of v being the positive sample of v+ is:

Pr(v ∈ B(v+);h) = exp
[
− (

1− s(h(v), h(v+))

a
)σ
]
, (5)

where s(·, ·) is the cosine similarity function. a, σ > 0 are Weibull shape and scale parameters [44].
The proof is in Appendix C.1. Theorem 1 manifests that we can derive the probability of v being the
positive sample of v+ based on the cosine similarity under h, providing us a feasible way to study
the certified robustness problem for GCL without the label information.

4.2 Certifying Robustness by the Proposed Randomized EdgeDrop Smoothing (RES)

With the definition of certifiable robustness of GCL, we introduce our proposed Randomized Edgedrop
Smoothing (RES), which provides certifiable robustness for GCL. RES injects randomized edgedrop
noise by randomly dropping each edge of the input sample with a certain probability. We will also
demonstrate the theoretical basis for the certifiable robustness of GCL achieved by RES.

Firstly, we define an randomized edgedrop noise ϵ for v that remove each edge of v with the
probability β. Formally, given a sample v, the probability distribution of ϵ for v is given as:

P(ϵi = 0|vi = 0) = 1, P(ϵi = 0|vi = 1) = β, and P(ϵi = 1|vi = 1) = 1− β, (6)

where vi denotes the connection status of i-th entry of v. Given a well-trained GNN encoder h via
GCL and a noise ϵ with the distribution in Eq. (6), the smoothed GNN encoder g is defined as:

g(v) = h(v ⊕ ϵ), where v ⊕ ϵ ∈ B(argmax
v̂∈V

P(v ⊕ ϵ ∈ B(v̂);h)). (7)

Here V is the set of all nodes/graphs in the dataset. It implies g will return the representation of v⊕ δ
whose latent class is the same as that of the most probable instance that v ⊕ ϵ is its positive sample.
Therefore, consider the scenario where some noisy edges are injected into a clean input v, resulting
in a perturbed sample v′. With a smoothed GNN encoder g learnt through our method, if we set β to
a large value, it is highly probable that the noisy edges will be eliminated from v′. Consequently,
by running multiple randomized edgedrop on v and v′, a majority of them will possess identical
structural vectors, that is, v ⊕ ϵ = v′ ⊕ ϵ, which implies v and v′ will have the same latent class
and the robust performance of v′ in downstream tasks. We can then derive an upper bound on the
expected difference in vote count for each class between v and v′. With this, we can theoretically
demonstrate that g is certifiably robust at v against any perturbation within a specific attack budget.
Specifically, let pv+,h(v) = P(v ∈ B(v+);h) for simplicity of notation, pv+,h(v ⊕ ϵ) denotes a
lower bound on pv+,h(v ⊕ ϵ) with (1 − α) confidence and pv−

i ,h(v ⊕ ϵ) denotes a similar upper
bound, the formal theorem is presented as follows:
Theorem 2. Let v be a clean input and v′ = v ⊕ δ be its perturbed version, where ||δ||0 ≤ k.
V− = {v−

1 , · · · ,v−
n } is the set of negative samples of v. If for all v−

i ∈ V−:
pv+,h(v ⊕ ϵ)− max

v−
i ∈V−

p
v−
i ,h

(v ⊕ ϵ) > 2∆, (8)
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Figure 1: General Framework of training GNN encoder via RES.

where ∆ = 1 − (de)
(d+k

e )
· βk and e = ∥v ⊕ ϵ∥0 denotes the number of remaining edges of v after

injecting ϵ. Then, with a confidence level of at least 1− α, we have:
pv+,h(v

′ ⊕ ϵ) > max
v−
i ∈V−

p
v−
i ,h

(v′ ⊕ ϵ). (9)

The proof is in Appendix C.2. Theorem 2 theoretically guarantees that of v′ is still the positive
sample of v+ with (1− α) confidence if the worst-case margin of v ⊕ ϵ under h is larger than 2∆,
which indicates that the certified robustness of h at (v,v+) is holds in this case. Moreover, it also
paves us a efficient way to compute the certified perturbation size in practical (See in Sec. 5.2).

4.3 Transfer the Certified Robustness to Downstream Tasks
Though we have theoretically shown the capability of learning lk0 -certifiably robust node/graph
representations with RES, it is unclear whether the certified robustness of the smoothed GNN encoder
can be preserved in downstream tasks. To address this concern, we propose a theorem that establishes
a direct relationship between the certified robustness of GCL and that of downstream tasks.
Theorem 3. Given a GNN encoder h trained via GCL and an clean input v. v+ and V− =
{v−

1 , · · · ,v−
n } are the positive sample and the set of negative samples of v, respectively. Let c+ and

c−i denote the latent classes of v+ and v−
i , respectively. Suppose f is the downstream classifier that

classify a data point into one of the classes in C. Then, we have

P(f(h(v)) = c+) > max
v−
i ∈V−

P(f(h(v)) = c−i ) (10)

The proof is in Appendix C.3. By applying Theorem 3, we can prove given v’s perturbed version
v′ = v ⊕ δ, where ||δ||0 ≤ k, if v and v′ satisfy Eq. (8) and Eq. (9) in Theorem 2, we have

P(f(h(v′ ⊕ ϵ)) = c+) > max
v−
i ∈V−

P(f(h(v′ ⊕ ϵ)) = c−i ), ∀ ∥δ∥0 ≤ k, (11)

which implies provable lk0 -certified robustness retention of h at (v, c+) in downstream tasks.

5 Practical Algorithms
In this section, we first propose a simple yet effective GCL method to train the GNN encoder h
robustly. Then we introduce the practical algorithms for the prediction and robustness certification.

5.1 Training Robust Base Encoder
Theorem 2 holds regardless how the base GNN encoder h is trained. However, introducing random-
ized edgedrop noise solely to test samples during the inference phase could potentially compromise
performance in downstream tasks, which further negatively impact the certified robustness perfor-
mance based on Eq. 8. In order to make g can classify and certify (v, c+) correctly and robustly,
inspire by [45], we propose to train the base GNN encoder h via GCL with randomized edgedrop
noise. Our key idea is to inject randomized edgedrop noise to one augmented view and maximize the
probability in Eq. 5 by using GCL to maximize the agreement between two views. Fig. 1 gives an
illustration of general process of training the base GNN encoder via our RES. Given an input graph
G, two contrasting views Gi and Gj are generated from G through stochastic data augmentations.
Specifically, two views generated from the same instance are usually considered as a positive pair,
while two views constructed from different instances are considered as a negative pair. After that, we
inject the randomized edgedrop noise ϵ to one of the two views Gi and obtain Gi′. Finally, two GNN
encoders are used to generate embeddings of the views and a contrastive loss is applied to maximize
the agreement between Gi′ and Gj . The training algorithm is summarized in Appendix D.
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5.2 Prediction & Certification
Following [46, 24], we then present the algorithm to use the smoothed GNN encoder g(v) in the
downstream tasks and derive the robustness certificates through Monte Carlo algorithms.

Prediction on Downstream Tasks. We draw µ samples of h(v ⊕ ϵ), corrupted by randomized
edgedrop noises. Then we obtain their predictions via the downstream classifier. If cA is the class
which has the largest frequency µcA among the µ predictions, cA is returned as the final prediction.

Compute Robustness Certificates. One of robustness certificates is the certified perturbation size,
which is the maximum attack budget that do not change the prediction of an instance no matter what
perturbations within the budget are used. To derive the certified perturbation size of an instance v,
we need to estimate the lower bound pv+,h(v⊕ ϵ) and upper bound pv−

i ,h(v⊕ ϵ)in Eq. 8. Since it is
challenging to directly estimate them in GCL, inspired by Theorem 3, if the prediction of h(v ⊕ ϵ)
in downstream tasks is correct, v ⊕ ϵ will also be the positive sample of v under h, which indicates
the connection between pv+,h(v ⊕ ϵ) and the probability of correctly classified in the downstream
tasks. Formally, given a label set C for the downstream task, let pA denotes the lower bound of the
probability that h(v ⊕ ϵ) is correctly classified as cA ∈ C in the downstream task, pB is the upper
bound of the probability that h(v ⊕ ϵ) is classified as c for c ∈ C\{cA}. we have the following
probability bound by a confidence level at least 1− α:

pv+,h(v ⊕ ϵ) = pA = B(
α

|C| ;µcA , µ− µcA + 1), p
v−
i ,h

(v ⊕ ϵ) = pB = min (max
c̸=cA

pc, 1− pA) (12)

where pc = B(1 − α
|C| ;µc + 1, µ − µc),∀c ̸= cA, and B(q;u,w) is the q-th quantile of a beta

distribution with shape parameter u and w. After that, we calculate ∆ based on Theorem 2 and the
maximum k that satisfies Eq. 8 is the certified perturbation size.

6 Experiments
In this section, we conduct experiments to answer the following research questions: (Q1) How robust
is RES under various adversarial attacks? (Q2) Can RES effectively provide certifiable robustness for
various GCL methods? (Q3) How does RES contribute to the robustness in GCL?

6.1 Experimental Setup
Datasets. We conduct experiments on 4 public benchmark datasets for node classification, i.e.,
Cora, Pubmed [47], Coauthor-Physics [48] and OGB-arxiv [49], and 3 widely used dataset for graph
classification i.e., MUTAG, PROTEINS [50] and OGB-molhiv [49]. We use public splits for Cora
and Pubmed, and for five other datasets, we perform a 10/10/80 random split for training, validation,
and testing, respectively. The details and splits of these datasets are summarized in Appendix G.1.

Attack Methods. To demonstrate the robustness of RES to various structural noises, we evaluate RES
on 4 types of structural attacks in an evasion setting, i.e., Random attack, Nettack [11], PRBCD [51],
CLGA [16] for both node and graph classification. In our evaluation, we first train a GNN encoder on
a clean dataset using GCL, and then subject RES to attacks during the inference phase by employing
perturbed graphs in downstream tasks. Especially, CLGA is an poisoning attack methods for GCL.
To align it with our evasion setting, we directly employ the poisoned graph generated by CLGA in
downstream tasks for evaluation. The details of these attacks are given in Appendix G.2.

Compared Methods. We employ 4 state-of-the-art GCL methods, i.e., GRACE [30], BGRL [52],
DGI [31] and GraphCL [9], as baselines. More specifically, GRACE, BGRL and DGI are for node
classification, GraphCL and BGRL are for graph classification. We apply our RES on them to train
the smoothed GNN encoders. Recall one of our goal is to validate that our method can enhance
the robustness of GCL against structural noises, we also consider two robust GCL methods (i.e.,
Ariel [15] and GCL-Jaccard [12]) and two unsupervised methods ( i.e., Node2Vec [53] and GAE [54])
as the baselines. All hyperparameters of the baselines are tuned based on the validation set to make
fair comparisons. The detailed descriptions of the baselines are given in Appendix G.3

Evaluation Protocol. In this paper, we conduct experiments on both transductive node classification
and inductive graph classification tasks. For each experiment, a 2-layer GCN is employed as the
backbone GNN encoder. We adopt the common used linear evaluation scheme [31], where each
model is firstly trained via GCL and then the resulting embeddings are used to train and test a
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Table 1: Robust accuracy results for node classification.
Dataset Graph Node2Vec GAE GCL-Jac. Ariel GRACE RES-GRACE

Cora
Raw 67.6±1.0 76.8±0.9 76.1±2.0 79.8±0.6 77.1±1.6 79.7±1.0
Random 57.7±0.7 74.2±0.9 74.1±2.0 76.3±0.6 74.5±2.1 79.1±1.2
CLGA 64.7±0.7 72.7±1.3 73.7±1.2 76.6±0.4 74.9±2.0 78.2±1.0
PRBCD 63.3±3.2 75.6±2.1 75.3±1.2 75.6±0.2 75.8±2.5 78.5±1.7

Pubmed
Raw 66.4±2.0 78.4±0.4 78.2±2.7 78.0±1.1 79.5±2.9 79.5±1.2
Random 56.8±1.4 71.8±1.0 75.8±2.4 75.9±0.2 75.0±1.0 78.2±0.9
CLGA 61.9±1.2 77.6±0.5 76.2±2.8 77.5±1.1 76.6±2.5 78.3±1.1
PRBCD 55.9±1.5 74.8±2.5 73.1±2.0 73.5±1.6 73.2±2.3 78.8±1.7

Physics
Raw 92.9±0.1 95.2±0.1 94.1±0.3 95.3±0.3 94.0±0.4 94.7±0.2
Random 85.7±0.3 93.7±0.1 93.4±0.3 93.8±0.1 92.6±0.5 94.2±0.3
PRBCD 81.8±0.6 91.1±0.7 91.6±0.2 91.0±0.9 89.2±0.6 94.1±0.2

OGB-arxiv
Raw 64.6±0.1 61.5±0.5 64.7±0.2 64.7±0.3 65.1±0.5 65.2±0.1
Random 52.4±0.1 57.4±0.5 59.0±0.1 59.4±0.4 59.0±0.2 60.0±0.1
PRBCD 56.5±0.5 54.1±0.5 56.5±0.4 57.0±0.9 55.7±0.4 58.3±0.4
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Figure 2: Certified accuracy of smoothed GCL

l2-regularized logistic regression classifier. The certified accuracy and robust accuracy on test nodes
are used to evaluate the robustness performance. Specifically, certified accuracy [46, 24] denotes the
fraction of correctly predicted test nodes/graphs whose certified perturbation size is no smaller than
the given perturbation size. Each experiment is conduct 5 times and the average results are reported.

6.2 Performance of Robustness
To answer Q1, we compare RES with the baselines on various noisy graphs. We also conduct
experiments to demonstrate that RES can improve the robustness against different noisy levels, which
can be found in Appendix I.2. We focus on node classification as the downstream task on four types of
noisy graphs, i.e., raw graphs, random attack perturbed graphs, CLGA perturbed graphs and PRBCD
perturbed graphs. The perturbation rate of noisy graphs is 0.1. The details of the noisy graphs are
presented in Appendix G.2. GRACE is used as the target GCL method to train a GCN encoder. The
smoothed version of GRACE is denoted as RES-GRACE. The results on Cora, Coauthor-Physics
and OGB-arxiv are given in Table 1. From the table, we observe: (i) When no attack is applied on
the clean graph, our RES-GRACE achieve state-of-the-art performance, especially on large-scale
datasets, which indicates RES is beneficial to learn good representation by injecting random edgedrop
noise to the graph. (ii) The structural noises degrade the performances of all baselines. However, its
impact to RES-GRACE is negligible. RES-GRACE outperforms all baselines including two robust
GCL methods, which indicates RES could eliminate the effects of the noisy edges. More results on
graph classification are shown in Appendix I.1.

6.3 Performance of Certificates
To answer Q2, we use certified accuracy as the metric to evaluate the performance of robustness
certificates. We choose GCN as the GNN encoder and employ our method on GRACE [30] and
GraphCL [9] for node classification and graph classification, respectively. We select the overall test
nodes as the target nodes and set µ = 200, (1− α) = 99.9% to compute the certified accuracy. The
results for various β are shown in Fig. 2, where the x-axis denotes the given perturbation size. From
the figures, we can observe that β controls the tradeoff between robustness and model utility. When β
is larger, the certified accuracy on clean graph is larger, but it drops more quickly as the perturbation
size increases. Especially, when β = 0.999, the certified accuracy is nearly independent of the
perturbation size. Our analysis reveals that when β is low, more structural information is retained
on the graph, which benefits the performance of RES under no attack, but also results in more noisy
edges being retained on the noisy graph, leading to lower certified accuracy. Conversely, when β is
large, less structural information is retained on the graph, which may affect the performance of RES
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(a) Clean (b) Noisy (c) Clean (d) Noisy
Figure 3: Ablation Study Results: Comparisons (a) and (b) with FLIP, (c) and (d) with RESiSjS

under no attack, but also results in fewer noisy edges remaining on the noisy graph, leading to higher
certified accuracy for larger perturbation sizes.

6.4 Ablation Study

To answer Q3, we conduct several ablation studies to investigate the effects of our proposed RES
method. More results of ablation studies are shown in Appendix J. We also investigate how hyperpa-
rameters (1− α) and µ affect the performance of our RES, which can be found in Appendix K.

Our first goal is to demonstrate RES is more effective in GCL compared with vanilla binary ran-
domized smoothing in [24], We implement a variant of our model, FLIP, which replaces the random
edgedrop noise with binary random noise [24], thereby flipping the connection status within the
graph with the probability β. For our method, we set β = 0.9, 1− α = 99%, and µ = 50. For FLIP,
to ensure a fair comparison, we set α = 99% and µ = 50, and vary β over {0.1, 0.2, · · · , 0.9} and
select the value which yields the best performance on the validation set of clean graphs. The target
GCL method is selected as GRACE. We compare the robust accuracy of the two methods on the clean
graph and noisy graph under Nettack with attack budget 3. The average robust accuracy and standard
deviation on Cora and Pubmed are reported in Fig. 3 (a) and (b). We observe: (i) RES achieves better
results on various graphs (i.e., clean and noisy graph) compared to FLIP and the base GCL method.
(ii) FLIP performs much worse than the base GCL method and RES on the clean graph, suggesting
that vanilla binary randomized smoothing is ineffective in GCL. That is because FLIP introduces
excessive noisy edges, which in turn makes it challenging for GCL to learn accurate representations.

Second goal is to understand how RES contributes to the robustness of GCL. We implement several
variants of our model by removing structural information in the training and testing phases, which are
named RESiSjS, where i ∈ {0, 1, 2} and j ∈ {0, 1} denote the number of removed structures in the
training and testing phases, respectively. For our method, we set β = 0.9, 1− α = 99% and µ = 50.
We compare the robust accuracy on clean and noisy graphs and use PRBCD to perturb 10% of the
total number of edges in the graph (before attack) for noisy graphs. The overall test set was selected
as the target nodes. The results on Cora and OGB-arxiv are shown in Fig. 3 (c) and (d). We observe:
(i) Our method significantly outperforms the ablative methods on various graphs, corroborating the
effectiveness of randomized edgedrop smoothing for GCL. (ii) Our method and RES1S0S achieve
better robust accuracy on various graphs compared to other ablative methods. This is because
dropping edges in only one augmented view during training both alleviates over-fitting and increases
the worst-case margin, which is helpful for robustness and model utility. (iii) RES2SjS and RESiS1S
perform worse than other methods because of the absence of structural information in training and
test phases, highlighting the importance of structural information in GCL. Moreover, the ablation
studies on the effectiveness of our approach for training the GNN encoder are in Appendix J.1.

7 Conclusion

In this paper, we present the first work to study the certifiable robustness of GCL. We address the
existing ambiguity in quantifying the robustness of GCL to perturbations by introducing a unified
definition for robustness in GCL. Our proposed approach, Randomized Edgedrop Smoothing, injects
randomized edgedrop noise into graphs to provide certified robustness for GCL on unlabeled data,
while minimizing the introduction of spurious edges. Theoretical analysis establishes the provable
robust performance of our encoder in downstream tasks. Additionally, we present an effective training
method for robust GCL. Extensive empirical evaluations on various real-world datasets show that our
method guarantees certifiable robustness and enhances the robustness of any GCL model.
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A Details of Related Works

A.1 Graph Contrastive Learning

GCL has recently gained significant attention and shows promise for improving graph representations
in scenarios where labeled data is scarce [31, 32, 9, 30, 27, 15, 33, 32]. Generally, GCL creates two
views through data augmentation and contrasts representations between two views. GraphCL [9]
focuses on graph classification by exploring four types of augmentations including node dropping,
edge perturbation, attribute masking and subgraph sampling. GRACE [30] and GCA [27] adapt
SimCLR [55] to graphs to maximize the mutual information between two views for each node
through a variety of data augmentation. DGI [31] applied InfoMax principle [56] to train a GNN
encoder by maximizing the mutual information between node-level and graph-level representations.
MVGRL [32] proposes to learn representations by maximizing the mutual information between the
cross-view representations of nodes and graphs. Several recent works [16, 36] show that GCL is
vulnerable to adversarial attacks. CLGA [16] is an unsupervised poisoning attacks for attack graph
contrastive learning. In detail, the gradients of the adjacency matrices for both views are computed,
and edge flipping is performed using gradient ascent to maximize the contrastive loss. Despite very
few empirical works [9, 15, 14] on robustness of GCL, there are no existing works studying the
certified robustness of GCL. In contrast, we propose to provide robustness certificates for GCL by
using randomized edgedrop smoothing. To the best of our knowledge, our method is the first work to
study the certified robustness of GCL.

A.2 Certifiable Robustness of Graph Neural Networks

Several recent studies investigate the certified robustness of GNNs in the supervised setting [23, 28,
29, 26, 24, 25, 37]. Zügner et al. [23] are the first to explore certifiable robustness with respect to
node feature perturbations. Subsequent works[28, 26, 29, 24, 38] extend the analysis to certifiable
robustness under topological attacks. For instance, Bojchevski et al. [28] propose a branch-and-bound
algorithm to achieve tight bounds on the global optimum of certificates for topological attacks.
Bojchevski et al. [29] further adapt the randomized smoothing technique to sparse settings, deriving
certified robustness for GNNs. This approach involves injecting random noise into test samples
to mitigate the negative effects of adversarial perturbations. Wang et al. [24] further refine this
technique to provide theoretically tight robust certificates. Our work is inherently different from
them: (i) existing work focues on the certified robustness of GNN under (semi)-supervised setting;
while we provide a unified definition to evaluate and certify the robustness of GCL for unsupervised
representation learning. (ii) we theoretically provide the certified robustness for GCL in the absence
of labeled data, and this certified robustness can provably sustained in downstream tasks. (iii) we
design an effective training method to enhance the robustness of GCL.

B Preliminary of Randomized Smoothing

One potential solution for achieving certified robustness in GNNs is binary randomized smoothing
presented in [24]. Specifically, consider a noisy vector ϵ in the discrete space {0, 1}N

P(ϵi = 0) = β, P(ϵi = 1) = 1− β, (B.1)

where i = 1, 2, · · · , N . This indicates that the connection status of the i-th entry of v will be flipped
with probability 1− β and preserved with probability β. Given a base node or graph classifier f(v)
that returns the class label with highest label probability, the smoothed classifier g is defined as:

g(v) = argmax
y∈Y

P(f(v ⊕ ϵ) = y), (B.2)

where Y denotes the label set, and ⊕ represents the XOR operation between two binary variables,
which combines the structural information of both variables. P(f(v ⊕ ϵ) = y) is the probability
that the base classifier f predicts class y when random noise ϵ is added to v. According to [24], by
injecting multiple ϵ to v and returning the most likely class yA (the majority vote), if it is holds that:

minP(f(v ⊕ ϵ) = yA) ≥ max
y ̸=yA

P(f(v ⊕ ϵ) = y), s.t. ∥ϵ∥0 ≤ k, (B.3)

where yA is the class with the highest label probability. Then we can guarantee there exists a certified
perturbation size k such that for any perturbation δ with ||δ||0 ≤ k, the predictions of v ⊕ δ will
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remain unchanged, that is, g(v ⊕ δ) = f(v ⊕ δ ⊕ ϵ) = f(v ⊕ ϵ) = yA. Thus, f is certifiably robust
at (v, yA) when perturbing at most k edges. For more deatils of the proof, please refer to [24].

However, directly applying the vanilla randomized smoothing approach to certify robustness in GCL
is inapplicable. This approach may require injecting random noise into the entire graph during data
augmentation, resulting in an excessive number of noisy/spurious edges that can significantly harm
downstream task performance, particularly for large and sparse graphs. In contrast, our proposed
method, Randomized Edgedrop Smoothing (RES), aims to prevent the introduction of excessive
spurious edges in graphs. RES achieves this by injecting randomized edgedrop noises, where observed
edges are randomly removed from the graphs with a certain probability. Additionally, we propose an
effective training method for robust GCL. Our experimental results in Sec. 6.4 demonstrate that our
method significantly outperforms the ablative method, FLIP, that directly applies vanilla randomized
smoothing [24] in GCL. Specifically, on the clean Cora and Pubmed graphs, our method achieves
accuracies of 82% and 85.6% respectively. On the Nettack perturbed [11] Cora and Pubmed graphs,
our method achieves robust accuracies of 79.4% and 82.5%, respectively. In contrast, FLIP achieves
only up to 27% and 42% robust accuracies on the Cora and Pubmed datasets, respectively. These
results strongly validate the effectiveness of our RES approach,

C Detailed Proofs

C.1 Proof of Theorem 1

To begin, we provide a formalization of similarity in relation to the latent class.

Given a GNN encoder h and an input sample v, which consists of a positive sample v+ and a
negative sample v− an input sample v with positive sample v+ and negative sample v−, according
to Def. 1, we assume that c+, c− ∈ C represent the latent classes of v+ and v− in the latent space
of h, respectively. These latent classes are based on the distribution η over C. we assume that
c+, c− ∈ C are the latent class of v+ and v− in the latent space of h, respectively, which are
randomly determined based on the distribution η on C. Similar data h(v), h(v+) are i.i.d. draws
from the same class distribution Dc+ , whereas negative samples originate from the marginal of Dsim,
which are formalized as follow:

Dsim(v,v+) = E
c+∼η
Dc+(v)Dc+(v

+).

Dneg(v
−) = E

c−∼η
Dc−(v

−).
(C.4)

Since classes are allowed to overlap and/or be fine-grained [39], this is a plausible formalization of
"similarity". The formalization connects similarity with latent class, thereby offering a viable way
to employ the similarity between samples under the latent space h for defining the probability of v
being the positive sample of v+.

Lemma 1 (The Generalized Extreme Value Distribution [44]). Let v1,v2, · · · be a sequence of
i.i.d samples from a common distribution function F . Let MN = max{v1, · · · ,vN}, indicting the
maximum of {v1, · · · ,vN}. Then if {aN > 0} and {bN ∈ R} are sequences of constants such that

P{(MN − bN )/aN ≤ z} → G(z), (C.5)

where G is a non-degenerate distribution function. It is a member of the generalized extreme value
family of distributions, which belongs to either the Gumbel family (Type I), the Fréchet family (Type
II) or the Reverse Weibull family (Type III) with their CDFs as follows:

Gumbel family (Type I): G(z) = exp{− exp[−(z − b

a
)]}, z ∈ R,

Fréchet family (Type II): G(z) =

{
0, z<b,
exp{−( z−b

a )−σ}, z≥b,

Reverse Weibull family (Type III): G(z) =

{
exp{−( b−z

a )−σ}, z<b,
1, z≥b,

(C.6)

where a > 0, b ∈ R and σ > 0 are the scale, location and shape parameters, respectively.
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Theorem 1. Let B(v+) be a space around v+ as defined in Eq. 4. Given an input sample v and a
GNN encoder h learnt by GCL in Eq. 1, the probability of v being the positive sample of v+ is:

Pr(v ∈ B(v+);h) = exp
[
− (

1− s(h(v), h(v+))

a
)σ
]
, (C.7)

where s(·, ·) is the cosine similarity function. a, σ > 0 are Weibull shape and scale parameters [44].

Proof. We first assume {h(v1), h(v2), · · · } are i.i.d samples under the latent space h. Then, suppose
V− = {v−

1 , ·,v−
n } is the set of negative samples of v. We assume there exists a continuous

non-degenerate margin distribution M , which is denoted as follows:

M := min
i∈[n]

Di, with Di := (1− s(h(v+), h(v−
i )))/2, (C.8)

where M,Di ∈ [0, 1], and s(·, ·) is the cosine similarity function. M indicates the half of the
minimum distance between h(v+) and h(v−

i ).

According to Lemma 1, we know that there exists G(z) in the three types of generalized extreme
value family. And since Lemma 1 is applied to the maximum, refer to Eq. (C.8), we transfer the
variable M to M := maxi∈[n]−Di, Since −Di is bounded (−Di < 0), let b = 0, the marginal
distribution of Di series, for i = 1, 2, · · · , can be Reverse Weibull family. Therefore, the asymptotic
marginal distribution of M fits into the Reverse Weibull distribution:

G(z) =

{
exp{−(−z

a )−σ}, z<0,
1, z≥0,

where σ > 0 is the shape parameter and a is the scale parameter. Compared to Eq. (C.6), here, b = 0
because −Di is bound (−Di < 0). We use margin distances Di of the λ closest samples with v+ to
estimate the parameters α and σ, which means to estimate Ŵ of the distribution function W .

Following Eq. (C.4), if the similarity s(h(v), h(v+)) is larger, v is more possible to be from the
same latent class as v+, which implies v is the positive sample of v+. Since the distance between
h(v) and h(v+) can be denoted as 1− s(h(v+), h(v−

i )), the probability of v is the positive sample
of v+ can be written as:

P(v ∈ B(v+);h)

=P(1− s(h(v), h(v+)) < min{D1, · · · , Dn})
=P(s(h(v), h(v+)− 1) > max{−D1, · · · ,−Dn})
=P(M < s(h(v), h(v+))− 1)

=Ŵ (s(h(v), h(v+))− 1).

(C.9)

Let bn = 0, an = 0 and z = s(h(v), h(v+))−1, since z = s(h(v), h(v+))−1 < 0, we can rewrite
Eq. (C.9) as (C.7) according to Lemma 1.

C.2 Proof of Theorem 2

For simplicity of notation, let pv+,h(v) = P(v ∈ B(v+);h). Then, given a randomized edgedrop
noise ϵ ∈ Dϵ with the following probability distribution:

P(ϵi = 0|vi = 0) = 1, P(ϵi = 0|vi = 1) = β, and P(ϵi = 1|vi = 1) = 1− β, (C.10)

where ϵi is the i-entry of noisy vector ϵ and vi is the connection status of i-th entry of v. Then, we let

pv+,h(v ⊕ ϵ) = inf
ϵ∈Dϵ

pv+,h(v ⊕ ϵ), pv+,h(v ⊕ ϵ) = sup
ϵ∈Dϵ

pv+,h(v ⊕ ϵ), (C.11)

where pv+,h(v⊕ ϵ) and pv−
i ,h(v⊕ ϵ) denote the lower bound and the upper bound on pv+,h(v ⊕ ϵ),

respectively. The formal theorem is presented as follows:

Theorem 2. Let v be a clean input and v′ = v ⊕ δ be its perturbed version, where ||δ||0 ≤ k.
V− = {v−

1 , · · · ,v−
n } is the set of negative samples of v. If for all v−

i ∈ V−:

pv+,h(v ⊕ ϵ)− max
v−
i ∈V−

p
v−
i ,h

(v ⊕ ϵ) > 2∆, (C.12)
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where

∆ = 1−
(
d
e

)(
d+k
e

) · βk, (C.13)

and e = ∥v⊕ϵ∥0 denotes the number of remaining edges of v after injecting ϵ, then with a confidence
level of at least 1− α, we have:

pv+,h(v
′ ⊕ ϵ) > max

v−
i ∈V−

pv−
i ,h(v

′ ⊕ ϵ). (C.14)

Proof. Suppose V = {v+,v−
1 , · · · ,v−

n } is the set of positive and negative samples of v. For any
vi ∈ V, let pvi,h(v) = P(v ∈ B(vi);h) for simplicity, we have:

pvi,h(v ⊕ ϵ) = P(v ⊕ ϵ ∈ B(vi);h)

pvi,h(v
′ ⊕ ϵ) = P(v′ ⊕ ϵ ∈ B(vi);h).

(C.15)

As stated by the law of total probability, we have:

pvi,h(v ⊕ ϵ) = P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅])
+ P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅])

pvi,h(v
′ ⊕ ϵ) = P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅])

+ P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅]),

(C.16)

where (v′ ⊕ ϵ) ∩ δ represent the intersection of the edge sets (v′ ⊕ ϵ) and δ, that is, the set of edges
shared in the two structure vectors. Therefore, for v′ ⊕ ϵ ∩ δ = ∅, it means that no noisy edge of
δ exists in (v′ ⊕ ϵ), which indicates that v ⊕ ϵ and v′ ⊕ ϵ are structural identical at all indices, i.e.,
v′ ⊕ ϵ = v ⊕ ϵ. Therefore, we can then derive the following equality:

P([v ⊕ ϵ ∈ B(vi);h] | [(v′ ⊕ ϵ) ∩ δ = ∅]) = P([v′ ⊕ ϵ ∈ B(vi);h] | [(v′ ⊕ ϵ) ∩ δ = ∅]). (C.17)

By multiplying P((v′ ⊕ ϵ) ∩ δ = ∅) in both sides of Eq. (C.17), we have:

P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅]) = P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ = ∅]). (C.18)

Combining Eq. (C.16) with Eq. (C.18) results in:

pvi,h(v
′ ⊕ ϵ)− pvi,h(v ⊕ ϵ) =P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅])−

P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅]).
(C.19)

Since probabilities are non-negative, we can rewrite Eq. (C.19) into the following inequality:

pvi,h(v ⊕ ϵ)− P([v ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅])
≤ pvi,h(v

′ ⊕ ϵ) ≤
pvi,h(v ⊕ ϵ) + P([v′ ⊕ ϵ ∈ B(vi);h] ∧ [(v′ ⊕ ϵ) ∩ δ ̸= ∅]).

(C.20)

Applying the conjunction rule, we have:

pvi,h(v ⊕ ϵ)− P((v′ ⊕ ϵ) ∩ δ ̸= ∅) ≤ pvi,h(v
′ ⊕ ϵ) ≤

pvi,h(v ⊕ ϵ) + P((v′ ⊕ ϵ) ∩ δ ̸= ∅).
(C.21)

Since P((v′ ⊕ ϵ) ∩ δ ̸= ∅) = 1− P((v′ ⊕ ϵ) ∩ δ = ∅), and (v′ ⊕ ϵ) ∩ δ = ∅ implies that remaining
edges of v ⊕ ϵ and v′ ⊕ ϵ are identical after injecting the random masking noise, we can derive the
following probability:

P((v′ ⊕ ϵ) ∩ δ = ∅) =
(
d
e

)(
d+|δ|

e

) · β|δ|, (C.22)

where e denotes the number of remaining edges, and k = |δ| denotes the certified perturbation size.
βe(1− β)d−e+|δ| represents the probability that |δ| noise edges are all dropped and e edges of v are
retained in v′ ⊕ ϵ. Therefore, we have:

P((v′ ⊕ ϵ) ∩ δ ̸= ∅) = 1−
(
d
e

)(
d+|δ|

e

) · β|δ| ≤ 1−
(
d
e

)(
d+k
e

) · βk = ∆. (C.23)
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Substituting Eq. (C.23) into Eq. (C.21), then Eq. (C.21) can be rewritten as

pvi,h(v ⊕ ϵ)−∆ ≤ pvi,h(v
′ ⊕ ϵ) ≤ pvi,h(v ⊕ ϵ) + ∆. (C.24)

Referring to Eq. (C.24), for any v+ and corresponding v−
i ∈ V− we have

pv+,h(v
′ ⊕ ϵ) ≥ pv+,h(v ⊕ ϵ)−∆,

pv−
i ,h(v ⊕ ϵ) + ∆ ≥ pv−

i ,h(v
′ ⊕ ϵ).

(C.25)

Thus, we can derive the following inequality based on Eq. (C.25):

pv+,h(v
′ ⊕ ϵ) ≥ pv+,h(v ⊕ ϵ)−∆ ≥ pv+,h(v ⊕ ϵ)−∆

≥ max
v−
i ∈V

pv−
i ,h(v ⊕ ϵ) + ∆ ≥ pv−

i ,h(v ⊕ ϵ) + ∆ ≥ pv−
i ,h(v ⊕ ϵ) + ∆

≥pv−
i ,h(v

′ ⊕ ϵ),

(C.26)

which can be restated as Eq. (C.14). This completes our proof.

C.3 Proof of Theorem 3

In order to transfer the certified robustness of GCL to downstream tasks, we first introduce two loss
functions, namely, unsupervised loss and supervised loss. Subsequently, we introduce a lemma to
establish the relationship between GCL and downstream tasks. Finally, a theorem is proposed to
prove that the certified robustness of GCL is provably preserved in downstream tasks.

Unsupervised Loss Given an input sample v with its positive sample v+ and n negative samples
{v−

1 , . . . ,v
−
n }. Let h : {0, 1}n → Rd be the GNN encoder based on GCL to obtain representations.

The unsupervised loss for h at point v is defined as:

Lun(v;h) :=

n∑
i=1

ℓ(h(v)⊤(h(v+)− h(v−
i ))), (C.27)

where l is logistic loss l(v) = log (1 +
∑n

i=1 exp (−vi)) according to [57, 39]. Note that this loss is
essentially equivalent to the InfoNCE loss [42, 57] shown in Eq. 1, which is widely-used for GCL.

Supervised Loss Linear evaluation, which learns a downstream linear layer after the base encoder,
is a common way to evaluate the performance of GCL model in downstream tasks. Let C be denoted
as the set of latent classes, where |C| = m. We consider the standard supervised learning tasks that
classify a data point into one of the classes in C. To connect the GCL task with the downstream
classification task, the supervised loss of downstream classifier f at (x, y) is defined as:

Lsup(x, y; f) := ℓ({f(x)y − f(x)y′}y′ ̸=y), (C.28)

where l is the same as the loss function used in the unsupervised loss in Eq. (C.27). To evaluate
the learned representations on downstream tasks, we typically fix h and train a linear classifier
W ∈ Rm×d on the top of the encoder h. Therefore, the supervised loss of h at at (x, y) is defined as:

Lsup(x, y;h) := inf
W∈Rm×d

Lsup(x, y;Wh), (C.29)

Lemma 2 (Connection between GCL and Downstream Tasks [39]). Given a input sample v with
its positive sample v+ and the set of negative samples V− = {v−

1 , . . . ,v
−
n }. C is the set of latent

class with distribution η. The latent class of v+ is denoted as c+ ∈ C. Suppose any v− ∈ V− has
the latent class c− ∈ C. Then we have

Lun(v;h) ≥ (1− τ)Lsup(v, c
+;h) + τ, (C.30)

where τ = E
c+,c−∼η

1{c+ = c−}, which indicates the expectation that c+ = c−.
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Proof. Based on the definitions of Lun(v;h) and Lsup(v;h) in Eq. (C.27) and Eq. (C.29), we have

Lun(v;h) = E
c+,c−∼η2

[ E
v+∼Dc+ ,v−∼Dc−

ℓ(h(v)⊤(h(v+)− h(v−)))]

≥ E
c+,c−∼η2

ℓ(h(v)⊤( E
v+∼Dc+

[h(v+)]− E
v−∼Dc−

[h(v−)]))

= (1− τ) E
c+,c−∼η2

[Lsup(v, c
+; f)|c+ ̸= c−] + τ

= (1− τ)Lsup(v, c
+;h) + τ.

(C.31)

This completes proof.

Note that the above bound is similar to Lemma 4.3 in [39]. By leveraging our Theorem 2, we can
establish the connection between GCL and downstream tasks, and use this connection to prove the
transferability of the certified robustness of GCL to downstream tasks.

Theorem 3. Given a GNN encoder h trained via GCL and an clean input v. v+ and V− =
{v−

1 , · · · ,v−
n } are the positive sample and the set of negative samples of v, respectively. Let c+ and

c−i denote the latent classes of v+ and v−
i , respectively. Suppose f is the downstream classifier that

classify a data point into one of the classes in C. Then, we have

P(f(h(v)) = c+) > max
v−
i ∈V−

P(f(h(v)) = c−i ) (C.32)

Proof. Since v is a clean input, according to Eq. (C.4) and Sec. 4.1, the positive pair (v,v+) a pair of
similar data that come from the same class distribution Dc+ and they have the following relationship:

P(v ∈ B(v+);h) > max
i

P(v ∈ B(v−
i );h). (C.33)

Then, based on Theorem 1, we know that P(v ∈ B(v+);h) is monotonically increasing as
s(h(v), h(v+)) increases. Therefore, we have

s(h(v), h(v+)) > max
i

s(h(v), h(v−
i )) (C.34)

According to Eq. (C.34), we can obtain that:
n∑

i=1

[s(h(v), h(v+))− s(h(v), h(v−
i ))] > 0, (C.35)

and the equivalent form of Eq. (C.35) is given as:

(s̃(h(v+))− s̃(h(v−)))⊤h(v) > 0,∀v− ∈ {v−
1 , · · · ,v−

n }, (C.36)

where s̃ is the l2-normalization operation on vector v. Then, we can obtain:

(s̃(h(v+))− s̃(h(v−)))⊤s̃(h(v)) > 0,∀v− ∈ {v−
1 , · · · ,v−

n }. (C.37)

To relate the robustness of GCL to that of downstream tasks, we select the negative samples whose
latent class c−i is different from c+ and obtain the following relationship:

n∑
i=1

[(s̃(h(v+))− s̃(h(v−)))⊤s̃(h(v))|c+ ̸= c−i ] > 0. (C.38)

Substitute the left side of Eq. (C.38) into Eq (C.27), we have Lun(v;h) < 1. According to Lemma 2,
we know that:

Lsup(v, c
+;h) ≤ Lun(v;h)− τ

1− τ
< 1. (C.39)

Hence, according to the definition of Lsup in Eq. (C.29), we have:

P(f(h(v)) = c+) > P(f(h(v)) = c−), ∀c− ∈ {c−1 , · · · , c−n } (C.40)

which means that the logit output of the positive latent class c+ is always larger than any negative
latent class c−i for v. Thus, we can rewrite Eq. (C.40) to Eq. (C.32), and conclude the proof.
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Algorithm 1 The Training Algorithm of RES.

Input: G = (V, E ,X).
Output: Trained GNN encoder hθ.

1: Randomly initialize θ for hθ;
2: for epoch=1, 2, . . . , do
3: Generate two augmented graphs Gi and Gj by qi(G) ∼ T and qj(G) ∼ T ;
4: Inject randomized edgedrop noise ϵ to Gi;
5: Obtain node or graph representation Zi and Zj from Gi and Gj by using hθ;
6: Update θ by applying gradient descent to minimize Eq. (1).
7: end for
8: return hθ;

By applying Theorem 3, we can demonstrate that given v’s perturbed version v′ = v ⊕ δ, where
||δ||0 ≤ k, if v and v′ satisfy Eq. (8) and Eq. (9) in Theorem 2, we have

P(f(h(v′ ⊕ ϵ)) = c+) > max
v−
i ∈V−

P(f(h(v′ ⊕ ϵ)) = c−i ), ∀ ∥δ∥0 ≤ k, (C.41)

which implies provable lk0 -certified robustness retention of h at (v, c+) in downstream tasks. The
proof is completed.

D Training Algorithms

We summarize the training method of Sec. 5.1 for training smoothed GNN encoders in Algorithm 1.
Specifically, at each training epoch, we first generate two augmented graphs Gi and Gj via qi(G)
and qj(G), respectively, where qi(G) and qj(G) are two graph augmentations sampled from an
augmentation pool T . The graph augmentation includes edge perturbation, feature masking, node
dropping, etc. (line 3). Then we inject randomized edgedrop noise ϵ to one of the augmented graphs
Gi (line 4). From line 5 to line 10, we train the GNN encoder hθ through GCL by maximizing the
agreement of representations in these two views. In detail, we apply hθ to obtain node or graph
representations Zi and Zj from Gi and Gj , respectively (line 5), then we do gradient descent on θ
based on Eq. (1).

E Discussions

E.1 Difference between RES and Edge-dropping Augmentations in [9] and [58]

Our RES is inherently different from the random edge-dropping augmentation in GraphCL [9]
and the learnable edge-dropping augmentation in ADGCL [58]: (i) Random edge-dropping is an
augmentation method to generate different augmented views and maximize the agreement between
views, and the learnable edge-dropping [58] is also an augmentation method to enhance downstream
task performance. However, RES is devised from the robustness perspective, providing certifiable
robustness and enhancing the robustness of any GCL method. (ii) While random edge-dropping
and learnable edge-dropping are only applied to augment graphs for GCL, RES extends beyond this.
Following the generation of two augmented views as shown in Sec. 5.1, RES injects randomized
edgedrop noise into one augmented view during GCL training. Then, it performs randomized
edgedrop smoothing in the inference phase through Monte Carlo, as shown in Sec. 5.2. Specifically,
for inference using RES, µ samples of h(v ⊕ ϵ) are drawn by injecting randomized edge-drop noise
ϵ to v µ times. The final prediction is from Monte Carlo, selecting the µ predictions with the highest
frequency in µ samples.

To demonstrate the effectiveness of RES, we further compare ADGCL with RES-GraphCL on
MUTAG and PROTEINS. We also add RES-ADGCL into comparisons. More details are shown in
Appendix. I.4.

E.2 Additional Details of Concatenation Vector

The concatenation vector v is a vector to depict the structure of the node/graph for learning represen-
tations. For node-level tasks, it represents the connection status of any pair of nodes in the K-hop
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subgraph of the node v. For graph-level tasks, it represents the connection status of any pair of nodes
in the graph G. To construct such a vector, we select the upper triangular part of the adjacency matrix
of the K-hop subgraph of v or the graph G and flatten it into the vector, where each item in this vector
can denote the connection status of any pair of nodes in the K-hop subgraph of the node v or the
graph G.

The motivation for using this notation is that since we focus on perturbations on the graph structure A
in this paper, we treat the feature vector of v as a constant and use the adjacency matrix of the K-hop
subgraph of the node or the adjacency matrix of the graph to represent the structure of the node or
graph. For simplicity and clarity, given a GNN encoder h and the concatenation vector v of the node
v or the graph G as above, we then omit the node feature matrix X and simply write the node v’s
representation hv(A,X) and the graph G’s representation h(G) as h(v). Therefore, we use a unified
notation v to denote the node v or the graph G, and further facilitate our theoretical derivations.

E.3 Definition of Well-trained GNN encoders

The well-trained GNN encoder is defined as an encoder that can extract meaningful and discriminative
representations by mapping the positive pairs closer in the latent space while pushing dissimilar
samples away.

To evaluate whether a GNN encoder h is well trained or not mathematically, we introduce criteria
based on the similarity between node/graph representations in the latent space. For each positive pair
(v,v+) with its negative samples V− = {v1, · · · ,vn}, we clarify that h is well-trained at (v,v+)
if the following inequality is satisfied:

s(h(v), h(v+)) > max
v−∈V−

s(h(v), h(v−)), (E.42)

where s(·, ·) is a cosine similarity function. This implies that h can effectively discriminate v from
all its negative samples in V− and learn the meaningful representations for v in the latent space.
Therefore, based on Eq. (E.42), we can further extend the criteria for certifying robustness in GCL,
which is shown in Definition 2.

E.4 Rationale behind Setting High Values for β

The proposed robust encoder training method in Sec. 5.1 improves the model utility of GCL. Even
setting a large β for RES, we can still obtain high robust accuracy on clean graphs, further leading to
high certified accuracies.

Specifically, as shown in Sec. 6.1, certified accuracy denotes the fraction of correctly predicted test
nodes/graphs whose certified perturbation size is not smaller than the given perturbation size. It
implies that these certified robust samples should also be correctly predicted by RES in the clean
datasets. However, as the reviewer said, introducing randomized edgedrop solely to test samples
during the inference could potentially hurt downstream task performance and further negatively
impact the certified robustness based on Eq.(8). Thus, we propose robust encoder training for RES in
Sec. 5.1 by injecting randomized edgedrop noise into one augmented view during GCL . It ensures
the samples with randomized edgedrop noises align in latent class with clean samples under the
encoder, thereby mitigating the negative impacts of such noises and further benefiting the robustness
and certification of RES.

F Code

Our code is available at https://github.com/ventr1c/RES-GCL.

G Additonal Details of Experiment Settings

G.1 Dataset Statistics

For node classification, we conduct experiments on 4 public benchmark datasets: Cora, Pubmed [47],
Amazon-Computers [48] and OGB-arxiv [49], Cora and Pubmed are small citation networks.
Amazon-Computers is a network of goods represented as nodes, and edges between nodes represent
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that the two goods are frequently bought together. OGB-arxiv is a large-scale citation network. For
graph classification, we use 3 well-known dataset: MUTAG, PROTEINS [50] and OGB-molhiv [49].
MUTAG is a collection of nitroaromatic compounds. PROTEINS is a set of proteins that are classified
as enzymes or non-enzymes. OGB-molhiv is a dataset contains molecules, which is adopted from
MoleculeNet [59]. Among these datasets, for Cora and Pubmed, we evaluate the models on the
public splits. Regarding to the other 5 datasets, Coauthor-Physics, OGB-arxiv, MUTAG, PROTEINS
and OGB-molhiv, we instead randomly select 10%, 10%, and 80% nodes/graphs for the training,
validation and test, respectively. The statistics details of these datasets are summarized in Table 2.

Table 2: Dataset Statistics
Datasets #Graphs #Avg. Nodes #Avg. Edges #Avg. Feature #Classes

Cora 1 2,708 5,429 1,443 7
Pubmed 1 19,717 44,338 500 3
Coauthor-Physics 1 34,493 495,924 8415 5
OGB-arxiv 1 169,343 1,166,243 128 40
MUTAG 188 17.9 39.6 7 2
PROTEINS 1,113 39.1 145.6 3 2
OGB-molhiv 41,127 25.5 27.5 9 2

G.2 Attack Methods

One of our goals is to show RES is robust to various structural noises, we evaluate RES on 4 types of
structural attacks in evasion setting, i.e., Random attack, Nettack [11], PRBCD [51], CLGA [16] for
both node and graph classification. The procedure of the evasion attack against GCL in transductive
node classification is shown in Algorithm 2. The details of these attacks are described following:

1. Random Attack: We randomly add some noisy edges to the graphs for node classification and
graph classification, respectively, until the attack budget is satisfied. Specifically, we consider
two kinds of attack settings for node classification, that is, global random attack and targeted
random attack. For global random attack, which is used in Sec. 6.2, we randomly inject some
fake edges (10% in our setting) into the whole graph. For targeted attack, we randomly connect
some fake edges to the direct neighbors of target nodes.

2. Nettack [11]: It is a targeted attacks for node classification that manipulate the graph structure
to mislead the prediction of target nodes.

3. PRBCD [51]: It is a scalable global attack for node classification that aims to decrease the
overall accuracy of the graph.

4. CLGA [16]: It is an unsupervised gradient-based poisoning attack targeting graph contrastive
learning for node classification. Since we focus on evasion attacks, we directly use the poisoned
graph generated by CLGA in the downstream tasks to evaluate the performance and regard it as
an evasion global attack.

Moreover, we further consider two graph injection attack methods, i.e., TDGIA [60] and AGIA [61],
as baselines to demonstrate the robustness of RES. The details of experimental results are shown in
Sec. I.3.

G.3 Compared Methods

We select four state-of-the-art GCL methods and employ RES on them to train smoothed GNN
encoders:

1. GRACE [30]: It is node-level GCL method which creates multiple augmented views by
perturbing graph structure and masking node features. Then it encourages consistency between
the same nodes in different views.

2. BGRL [52]:Insipred by BYOL [62], it is performs graph contrastive learning that does not
require negative samples. Specifically, it applies two graph encoders (i.e., online and targeted
encoders), and update them iteratively to make the predicted representations closer to the true
representations for each node.
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Algorithm 2 The Evasion Attack Procedure against GCL in Transductive Node Classification

Input: Clean graph G = (V, E ,X), GNN encoder hθ, target node v with class label c, perturbation
δ, downstream classifier f .

Output: success (i.e., attack v successfully or not)
1: Train hθ on G via GCL;
2: Obtain perturbed node v′ by adding perturbation δ to v;
3: Generate the representation of v′ as h(v′);
4: if f(h(v′)) = c then
5: return success← false;
6: else
7: return success← true;
8: end if

3. DGI [31]: It is a state-of-the-art GCL method which adapted from Deep InfoMax [63] to
maximize the mutual information between local and global features.

4. GraphCL [9]: It is the first work to study GCL at graph-level. Specifically, it constructs four
types of graph augmentations and adapts SimCLR [55] to learn graph-level embeddings.

Moreover, we also compare RES-GCL with several representative and state-of-the-art graph represen-
tation learning methods and robust GCLs against structural noises:

1. Node2Vec [53]: It is a traditional unsupervised methods. Its key idea is to perform random
walks on the graph to generate sequences of nodes that capture both the local and global structure
of the graph.

2. GAE [54]: It is a representative unsupervised learning method which learns a low-dimensional
representation of a graph by encoding its nodes and edges into a vector space, and then decoding
this representation back into a graph structure. It is trained to minimize the reconstruction error
between the original graph and the reconstructed graph.

3. GCL-Jaccard: It is implemented by removing dissimilar edges based on Jaccard similarity
before and after the training phase, respectively, which is inspired from GCN-Jaccard [64].

4. Ariel [15]: It is a robust GCL method which uses an additional adversarial graph view in graph
contrastive learning to improve the robustness. An information regularizer is also applied to
stabilize its performance.

G.4 Implementation details

A 2-layer GCN is employed as the backbone GNN encoder and a common used linear evaluation
scheme [31] is adopt in the downstream tasks. More specifically, each GNN encoder is firstly trained
via GCL method and then the resulting embeddings are used to train and test a l2-regularized logistic
regression classifier. GRACE is implemented based on the source code published by authors 1. BGRL
and DGI methods are implemented based on PyGCL library [65]. All hyperparameters of all methods
are tuned based on the validation set for fair comparison. All models are trained on an A6000 GPU
with 48G memory.

G.5 Attack Settings

In this paper, we assume that the attacker can conduct attack in two settings: transductive node
classification and inductive graph classification. These two settings are described below:

• Transductive Setting: In this setting, test instances (nodes/graphs) are visible during both
training the GNN encoder and inference in downstream tasks. Specifically, we first train a GNN
encoder h via GCL on a clean dataset that includes test nodes to generate node representations.
Then, an attacker adds perturbations to the test nodes, causing h to produce poor representations
that degrade performance on downstream tasks. For example, an attacker may attempt to
manipulate a social network by injecting fake edges, which could affect the performance of

1https://github.com/CRIPAC-DIG/GRACE
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a well-trained h in tasks such as community detection, influential node identification, or link
prediction.

• Inductive Setting: In this setting, test instances only appear in downstream tasks and are
invisible during the training phase. This setting is similar to the transductive setting, but the
test nodes/graphs are not seen during training. This scenario commonly arises in real-world
applications such as new drug discovery, where an attacker may attempt to manipulate a new
molecular graph in the test set to mislead the model, resulting in incorrect predictions in
downstream tasks.

H Additional Results of the Performance of Certificates

In this section, we extend the experiments in Sec. 6.3 and present comprehensive results on the
performance of robustness certificates. Our aim is to demonstrate that RES can effectively provide
certifiable robustness for various GCL methods. We select GRACE, BGRL, DGI, and GraphCL as
the target GCL methods and integrate them with RES. We perform experiments on Cora, Pubmed,
Coauthor-Physics, and OGB-arxiv for node classification tasks, as well as MUTAG, PROTEINS, and
OGB-molhiv for graph classification tasks. Certified accuracy is selected as the evaluation metric.
Specifically, certified accuracy [46, 24] denotes the fraction of correctly predicted test nodes/graphs
whose certified perturbation size is no smaller than the given perturbation size. The complete results
are reported in Fig. 4 to Fig. 8.
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Figure 4: Certified accuracy of RES-GCL on Cora
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(c) DGI
Figure 5: Certified accuracy of RES-GCL on Pubmed
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(c) DGI
Figure 6: Certified accuracy of RES-GCL on Coauthor-Physics

I Additional Results of the Performance of Robustness

In this section, we provide additional experimental results to further showcase the effectiveness of
the RES in enhancing the robustness of GCL against various adversarial attacks. More specifically,
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(a) GRACE, OGB-arxiv
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(c) GraphCL, OGB-molhiv
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(d) BGRL, OGB-molhiv,
Figure 7: Certified accuracy of smoothed GCL on OGB-arxiv and OGB-molhiv
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(a) GraphCL, MUTAG
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(c) GraphCL, PROTEINS
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(d) BGRL, PROTEINS
Figure 8: Certified accuracy of smoothed GCL on MUTAG and PROTEINS

in Sec. I.1, we show the comparison results of RES with the baselines on graph classification. In
Sec. I.2, we conduct experiments to demonstrate GCL with RES is resistant to different levels of
structural noises. In Sec. I.3, we present the comparison results of three target GCL methods (i.e.,
GRACE, BGRL, DGI) against three types of structural attacks (i.e., Random, CLGA and PRBCD)
on node classification. In Sec. I.4, we present additional experimental results of two advanced GCL
methods (i.e., ADGCL [58] and RGCL [66]) on graph classification.

I.1 Robust Performance on Graph Classification

In this subsection, we conduct experiments on graph classification to demonstrate the effectiveness of
our method in this downstream task. Due to the limited availability of open-source attack methods
specifically designed for graph classification, we utilize random attacks as the attack method. However,
we believe that our method is robust against other attack methods as well. Specifically, we select
GraphCL as the target GCL methods. The perturbation rate of random attack is 0.1. The smoothed
version of GraphCL is denoted as RES-GraphCL. The results on MUTAG and PROTEINS are given
in Fig. 9. From the figure, we observe: (i) When no attack is applied to the raw graphs, RES-GraphCL
achieves comparable performance to the baseline GraphCL. (ii) When attacks are conducted on
the noisy graphs, RES-GraphCL consistently outperforms the baseline on both the MUTAG and
PROTEINS datasets. This result demonstrates the effectiveness of our method in enhancing the
robustness of GraphCL against adversarial attacks.
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Figure 9: Robust accuracy of GraphCL for graph classification against random attack

I.2 Robustness Under Different Noisy Levels.

To demonstrate the ability of our method to improve the robustness of Graph Contrastive Learning
(GCL) against different levels of structural noise, we compare the robust accuracy of the GCL
methods w/o applying our RES under evasion attacks for node classification. Specifically, we select
GRACE, BGRL and DGI as target GCL methods. We set (1− β) = 0.05 and µ = 50. We consider
two targeted attack method, random attack and Nettack [11] to conduct targeted attacks. The attack
budget is set from 0 to 5. We randomly select 15% of the test nodes as the target nodes to compute
the robust accuracy. The results on the Cora and Pubmed datasets are reported in Fig. 10 and Fig. 11.
We observe: (i) The robust accuracies of the baseline methods exhibit a significant drop as the
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Figure 10: Robust accuracy under different perturbation sizes of random attack
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Figure 11: Robust accuracy under different perturbation sizes of Nettack

perturbation sizes increase, which is expected. In contrast, the performances of RES are much more
stable and consistently outperform the baselines. This demonstrates the robustness of GCL with RES
against various levels of structural noise. (ii) The high robust accuracies of the three GCL models
demonstrate that our RES is effectively applicable to various GCL method.

I.3 Additonal Results of Robust Performance on Node Classification

In this subsection, we provide additional experimental results from Section 6.2, focusing on node
classification. We select GRACE, BGRL, and DGI as the target GCL methods and evaluate their
performance on four types of graphs: raw graphs, random attack perturbed graphs, CLGA perturbed
graphs, and PRBCD perturbed graphs. The perturbation ratio is set to 0.1. Table 3 presents the results
of these experiments. The highlighted results denote the best performance for each pair of GCL
and RES-GCL. Note that BGRL, implemented based on PyGCL [65], encounters out-of-memory
(OOM) errors in our platform, and hence the results for BGRL on OGB-arxiv are left blank. From
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the table, we observe that all three GCL methods, when combined with RES, achieve state-of-the-art
performance. This demonstrates the effectiveness of our method in enhancing the robustness of
various GCL methods. By incorporating RES, the GCL models are more resilient to adversarial
attacks and exhibit improved performance across different types of perturbed graphs.

Moreover, we further consider two graph injection attack methods, i.e., TDGIA [60] and AGIA [61],
as baselines to demonstrate the robustness of RES. Specificially, we select GRACE as the target GCL
methods and evaluate them on three types of graphs: raw graphs, TDGIA perturbed graphs and AGIA
perturbed graphs. We insert the same number of fake nodes as the target nodes. We set (1− β) = 0.1
and µ = 50. The comparison results on four datasets are shown in Table. 4. From the results, we
observe that (i) RES-GRACE consistently outperforms the baselines across 4 datasets in defending
graph injection attacks. (ii) Both TDGIA and AGIA are much more powerful than the structural
attack methods in Table 3 against GCL.

Table 3: Robust accuracy results of GCL methods for node classification.
Dataset Graph GRACE RES-GRACE BGRL RES-BGRL DGI RES-DGI

Cora
Raw 77.1±1.6 79.7±1.0 78.5±1.6 79.9±1.2 81.3±0.7 81.4±0.8
Random 74.5±2.1 79.7±1.0 76.2±1.2 79.6±1.1 77.5±1.0 79.2±0.6
CLGA 74.9±2.0 78.2±1.0 75.8±1.6 79.4±0.9 79.5±0.5 80.9±1.0
PRBCD 75.8±2.5 78.5±1.7 76.4±0.6 79.5±0.8 79.6±1.4 80.9±1.1

Pubmed
Raw 79.5±2.9 79.5±1.2 79.9±1.4 81.5±0.6 80.1±0.9 80.0±0.8
Random 75.0±1.0 78.2±0.9 74.0±1.0 81.0±0.7 76.7±0.7 78.8±0.6
CLGA 76.6±2.5 78.3±1.1 77.9±0.3 81.6±0.2 79.6±0.6 80.0±1.2
PRBCD 73.2±2.3 78.8±1.7 71.6±2.4 80.9±0.5 75.4±0.9 78.0±0.6

Physics
Raw 94.0±0.4 94.7±0.2 95.3±0.1 95.6±0.1 93.5±0.6 94.1±0.3
Random 92.6±0.5 94.2±0.3 94.0±0.2 95.5±0.2 91.5±0.9 92.2±0.4
PRBCD 89.2±0.6 94.1±0.2 92.3±0.2 95.4±0.2 88.8±0.5 90.0±0.4

OGB-arxiv
Raw 65.1±0.5 65.2±0.1 - - 65.0±0.2 64.8±0.1
Random 59.0±0.2 60.0±0.1 - - 58.0±0.1 58.9±0.1
PRBCD 55.7±0.4 58.3±0.4 - - 56.9±0.9 57.2±0.3

Table 4: Robust accuracy results of GCL methods against injection attacks.
Dataset Graph GRACE RES-GRACE

Cora
Raw 77.1±1.6 79.7±1.0
TDGIA 22.4±1.5 78.7±1.1
AGIA 21.1±1.4 78.4±0.9

Pubmed
Raw 79.5±3.1 79.5±1.2
TDGIA 50.6±1.2 77.0±0.4
AGIA 50.2±1.6 77.5±1.0

Physics
Raw 94.0±0.4 94.7±0.2
TDGIA 52.2±1.0 93.8±0.1
AGIA 52.3±0.5 94.0±0.2

OGB-arxiv
Raw 65.1±0.5 65.1±0.1
TDGIA 40.3±0.4 46.9±0.1
AGIA 40.4±0.3 47.0±0.1

I.4 Additional Results of RES for Advanced GCLs
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Figure 12: Robust accuracy of ADGCL and RGCL for graph classification against random attack

To further demonstrate the effectiveness of RES, we further add ADGCL [58] and RGCL [66]
as baselines and implement RES-ADGCL and RES-RGCL. We set graph classification as the
downstream task. The hyperparameter is tuned based on the performance of the validation set. We use
random attack to get the noisy graphs and the perturbation rate is 0.1. Each experiment is conducted
5 times and the average results are reported. Comparison results on MUTAG and PROTEINS are
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(b) PROTEINS
Figure 13: Certified accuracy of RGCL on MUTAG and PROTEINS

shown in Fig. 12. From this figure, we observe that all RES-GCL methods achieve comparable
performances to the baselines on raw graphs and consistently outperform the baselines in the noisy
graphs of two datasets, which validates the effectiveness of RES in any GCL model.

We also report the certified accuracy of RES-RGCL on the two datasets. The results are shown in
Fig. 13. From the figure, we can observe there is a tradeoff between certified robustness and model
utility, which is similar to that of Sec. 6.3.
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Figure 14: Ablation Studies of Training with RES on Cora and OGB-arxiv
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Figure 15: Ablation Studies of Comparisons RES with FLIP

J Additional Results of Ablation Studies

J.1 Ablation Studies on Training with RES

In this subsection, we conduct ablation studies to investigate the effect of our training method for
robust GCL. To demonstrate that our training method improves the robustness of GCL, we do not
inject random edgedrop noise during the training phase and obtain a variant called NoRES. We select
PRBCD as the attack method to generate noisy graphs, and set µ = 50. We vary the value of β as
{0.5, 0.6, 0.7, 0.8, 0.9} and compare the robust accuracy of RES and NoRES on both raw graphs
and PRBCD-perturbed graphs. The results of the variant NoRES on raw and PRBCD-perturbed
graphs are denoted as NoRES-Raw and NoRES-Ptb, respectively. We report the results on the Cora
and OGB-arxiv datasets in Fig. 14. From the figure, we observe the following: (i) RES consistently
outperforms NoRES on both raw and perturbed graphs in all settings, implying the effectiveness of
our training method for robust GCL. (ii) The variance of RES is lower than that of NoRES. This
is because we inject randomized edgedrop noise into the graphs during the training phase, helping
the models better understand and generalize from the data with randomized edgedrop noise, thereby
ensuring the robustness and utility of the models.
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Figure 16: Hyperparameter Sensitivity Analysis on Cora
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Figure 17: Hyperparameter Sensitivity Analysis on Coauthor-Physics

J.2 Additional Results of Comparisons RES with FLIP

In this subsection, we present additional experimental results in Sec. 6.4 to further demonstrate that our
RES method is significantly more effective in GCL compared to vanilla randomized smoothing [24].
We introduce two variants of our model, namely FLIP and FLIP/T, which replace the randomized
edgedrop noise with binary random noise [24]. This noise flips the connection status within the
graph with a probability of β. The key difference between FLIP and FLIP/T is that FLIP injects
binary random noise into the graphs during both the training and inference phases, while FLIP/T
only injects binary random noise during the inference phase. For our RES method, we set β = 0.9,
and µ = 50. For FLIP and FLIP/T, to ensure a fair comparison, we set µ = 50, and vary β over
{0.1, 0.2, · · · , 0.9} and select the value that yields the best performance on the validation set of clean
graphs. We select GRACE as the targeted GCL method and compare the robust accuracy of our RES
with FLIP and FLIP/T on the clean and noisy graph under Nettack with an attack budget of 3. The
average robust accuracy and standard deviation on Cora and Pubmed datasets are reported in Fig. 15.
We observe: (i) RES consistently outperforms FLIP and FLIP/T on clean and noisy graphs of Cora
and Pubmed datasets, further validating the effectiveness of RES in providing certified robustness for
GCL. (ii) FLIP and FLIP/T exhibit comparable performance on all graphs, but significantly lower
than RES. This finding confirms our analysis that vanilla randomized smoothing introduces numerous
spurious/noisy edges to the graph, resulting in poor representation learning by the GNN encoder and
compromising downstream task performance.

K Hyperparameter Sensitivity Analysis

We further investigate how hyperparameter (1 − α) and µ affect the performance of robustness
certificates of our RES, where (1 − α) and µ control the confidence level and the number of
Monte Carlo samples used to compute the certified accuracy. We vary the value of (1 − α) as
{90%, 95%, 99%, 99.9%, 99.99%} and fix µ as 200, vary µ as {20, 50, 200, 500, 1000} and fix (1−
α) as 99%, respectively. β is set as 0.9. We report the certified accuracy of RES-GRACE on Cora
and Coauthor-Physics dataset in Fig. 16 and Fig. 17. From the figures, we observe: (i) As µ increases,
the certified accuracy curve becomes higher. The reason for this is that a larger value of µ makes the
estimated probability bound pv+,h(v ⊕ ϵ) and pv−

i ,h(v ⊕ ϵ) in Eq. (8) tighter, resulting in a higher
certified perturbation size of a test sample. (ii) As (1 − α) increases, the certified accuracy curve
becomes slightly lower. This is because a higher confidence level leads to a looser estimation of
pv+,h(v ⊕ ϵ) and pv−

i ,h(v ⊕ ϵ) in Eq. (8), meaning that fewer nodes satisfy Theorem 2 under the
same perturbation size, resulting in a smaller certified perturbation size of a test sample.
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L Limitations

In this paper, we propose a unified criteria to evaluate and certify the robustness of GCL. Our proposed
approach, Randomized Edgedrop Smoothing (RES), injects randomized edgedrop noise into graphs
to provide certified robustness for GCL on unlabeled data. Moreover, we design an effective training
method for robust GCL by incorporating randomized edgedrop noise during the training phase. The
theoretical analysis and extensive experiments show the effectiveness of our proposed RES.

Limitation & future work: Our current results are limited mainly to GCL while we believe it is
also interesting to develop new techniques to other graph self-supervised methods e.g. generative
and neighborhood prediction methods based on our framework, which we leave for immediate future
work. We hope that this work could inspire future certifiably defense algorithms of adversarial attacks.
Additionally, in this paper, we only focus on the graph-structured data. Thus, it is also interesting to
investigate how to extend it to other domains, e.g., images and texts. Furthermore, in this paper, we
utilize Monte Carlo algorithms to calculate robustness certificates for GCL, potentially increasing
the computational demands. Therefore, it is also worthwhile to investigate methods to improve the
efficiency of the robustness certification for GCL. Due to the nature of this work, there may not be
any potential negative social impact that is easily predictable.
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