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Abstract

We develop a general framework for finding approximately-optimal preconditioners
for solving linear systems. Leveraging this framework we obtain improved runtimes
for fundamental preconditioning and linear system solving problems including:

• Diagonal preconditioning. We give an algorithm which, given positive
definite K ∈ Rd×d with nnz(K) nonzero entries, computes an ε-optimal
diagonal preconditioner in time Õ(nnz(K) · poly(κ?, ε−1)), where κ? is the
optimal condition number of the rescaled matrix.

• Structured linear systems. We give an algorithm which, given M ∈ Rd×d
that is either the pseudoinverse of a graph Laplacian matrix or a constant
spectral approximation of one, solves linear systems in M in Õ(d2) time.

Our diagonal preconditioning results improve state-of-the-art runtimes of Ω(d3.5)
attained by general-purpose semidefinite programming, and our solvers improve
state-of-the-art runtimes of Ω(dω) where ω > 2.3 is the current matrix multiplica-
tion constant. We attain our results via new algorithms for a class of semidefinite
programs (SDPs) we call matrix-dictionary approximation SDPs, which we lever-
age to solve an associated problem we call matrix-dictionary recovery.

1 Introduction

Preconditioning is a fundamental primitive in the theory and practice of numerical linear algebra,
optimization, and data science. Broadly, its goal is to improve conditioning properties (e.g., the range
of eigenvalues) of a matrix M by finding another matrix N which approximates the inverse of M
and is more efficient to construct and apply than computing M−1. This strategy underpins a variety
of popular recently-developed tools, such as adaptive gradient methods for machine learning (e.g.,
Adagrad and Adam [DHS11, KB15]), and near-linear time solvers for combinatorially-structured
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matrices (e.g., graph Laplacians [ST04]). Despite widespread practical adoption of such techniques,
there is a surprising lack of provably efficient algorithms for preconditioning.

Our work introduces a new tool, matrix-dictionary recovery, and leverages it to obtain the first near-
linear time algorithms for several structured preconditioning problems in well-studied applications.
Informally, the problem we study is as follows (see Section 4 for the formal definition).

Given a matrix M and a “matrix-dictionary” {Mi}, find the best preconditioner

N =
∑
i

wiMi of M expressible as a nonnegative linear combination of {Mi}. (1)

We develop general-purpose solvers for the problem (1). We further apply these solvers to obtain state-
of-the-art algorithms for fundamental tasks such as preconditioning linear systems and regression,
and approximately recovering structured matrices, including the following results.

• Diagonal preconditioning. We consider the classical numerical linear algebra problem of diagonal
preconditioning [vdS69]. Given K ∈ Sd�0, the goal is to find a diagonal W ∈ Sd�0 minimizing the
condition number of W

1
2KW

1
2 . Theorem 1 obtains the first near-linear time algorithms for this

problem when the optimal condition number of the rescaled matrix is small.

• Semi-random regression. We consider a related problem, motivated by semi-random noise models,
which takes full-rank A ∈ Rn×d with n ≥ d and seeks W ∈ Sn�0 minimizing the condition number
of A>WA. Theorem 2 gives the first near-linear time algorithm for this problem, and applications
of it reduce risk bounds for statistical linear regression.

• Structured linear systems. We robustify Laplacian system solvers, e.g., [ST04], to obtain near-
linear time solvers for systems in dense matrices well-approximated spectrally by Laplacians in
Theorem 3. We also give new near-linear time solvers for several families of structured matrices,
e.g., dense inverse Laplacians and M-matrices,4 in Theorems 4 and 5.

For the preconditioning problems considered in Theorems 1, 2, and 3, we give the first runtimes
faster than a generic SDP solver, for which, state-of-the-art runtimes [JKL+20, HJS+22] are highly
superlinear (Ω(d3.5) for diagonal preconditioning and Ω(d2ω) for approximating Laplacians, where
d is the matrix dimension and ω > 2.3 is the current matrix multiplication constant [AW21]). For the
corresponding linear system solving problems in each case, as well as in Theorems 4 and 5, the prior
state-of-the-art was to treat the linear system as generic and ran in Ω(dω) time.

Organization. We begin by overviewing the main applications of our matrix-dictionary recovery
framework in Sections 2 and 3, which respectively cover our results on diagonal preconditioning
and structured linear algebra. These sections are self-contained (with some definitions of the matrix
families we study in Section 3 deferred to the supplementary material), and can be read independently.
In Section 4, we contextualize and formalize the general matrix-dictionary recovery problem (1) we
introduce and study. We also provide our main meta-algorithm and its guarantees, and an overview of
how the results of Sections 2 and 3 follow from applications of it. We finally compare our framework
to related algorithms and give a more thorough runtime comparison in Section 5.

Notation. In Section 2 (focusing on diagonal preconditioning and semi-random regression) only, we
refer to the matrices to be preconditioned as K or A. This is for consistency with the numerical linear
algebra literature, where K represents a positive definite kernel matrix, and A denotes the data in a
regression problem minx ‖Ax− b‖2. In the rest of the paper, our notation will be consistent with (1).
The d× d symmetric matrices are Sd, the positive semidefinite (PSD) and definite (PD) cones are
Sd�0 and Sd�0; the remainder of our notation is standard and deferred to Section 2 of the supplement.

2 Diagonal preconditioning

When solving linear systems via iterative methods, one of the most popular preconditioning strategies
is to use a diagonal matrix. This is appealing because diagonal matrices can be applied and inverted
quickly. Determining the best diagonal preconditioner is a classical numerical linear algebra problem
studied since the 1950s [FS55, vdS69, PG90], and has gained recent popularity due to its use in
adaptive gradient methods [DHS11, KB15]. In Section 4, we discuss how diagonal preconditioning

4Inverse M-matrices are necessarily dense, see Appendix B of the supplementary material.
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is an instance of (1) in the matrix-dictionary Mi = eie
>
i , where ei is the ith basis vector. Leveraging

this viewpoint, we design algorithms for two natural instantiations of diagonal preconditioning.

Outer scaling. One formulation of the optimal diagonal preconditioning problem, which we refer to
as outer scaling, asks to optimally reduce the condition number of positive definite K ∈ Rd×d with a
diagonal matrix W, i.e., return diagonal W = diag (w) for w ∈ Rd>0 such that5

κ(W
1
2KW

1
2 ) ≈ κ?o(K) := min

diagonal W�0
κ(W

1
2KW

1
2 ).

Given W, a solution to Kx = b can be obtained by solving the better-conditioned W
1
2KW

1
2 y =

W
1
2 b and returning x = W

1
2 y. The optimal W can be obtained via a semidefinite program (SDP)

[QYZ20], but the computational cost of general-purpose SDP solvers outweighs benefits for solving
linear systems. Outer scaling is poorly understood algorithmically; prior to our work, even attaining a
constant-factor approximation to κ?o(K) without a generic SDP solver was unknown.

This state of affairs has resulted in the widespread use of heuristics for constructing W, such as Jacobi
preconditioning [vdS69, GR89] and matrix scaling [AZLOW17, CMTV17a, GO18]. The former
strategy, where the preconditioner is taken as the inverse diagonal to K, was notably highlighted by
Adagrad [DHS11], which used Jacobi preconditioning to improve computational costs. However,
both heuristics have clear drawbacks from theoretical or practical perspectives.

Prior to our work the best approximation guarantee known for Jacobi preconditioning was a result of
van der Sluis [vdS69, GR89], which shows the Jacobi preconditioner is an m-factor approximation to
the optimal preconditioning problem where m ≤ d is the maximum number of non-zeros in any row
of K: in dense matrices this is linear in the problem dimension and can be much larger than κ?o(K).
We review and slightly strengthen this result in Appendix C of the supplement. We also prove a new
dimension-independent baseline result of independent interest: the Jacobi preconditioner obtains
condition number no worse than (κ?o(K))2. Unfortunately, we exhibit a family of matrices showing
this bound is tight, dashing hopes they solve outer scaling near-optimally. On the other hand, while
sometimes effective as a heuristic [KRU14], matrix scaling algorithms target a different objective
(normalizing row and column sums) and do not yield provable guarantees on κ(W

1
2KW

1
2 ).

Inner scaling. Another formulation of diagonal preconditioning, which we refer to as inner scaling,
takes as input a full-rank A ∈ Rn×d and asks to find an n× n positive diagonal W with

κ(A>WA) ≈ κ?i (A) := min
diagonal W�0

κ(A>WA).

As a comparison, when outer scaling is applied to the kernel matrix K = A>A, W
1
2KW

1
2 can be

seen as rescaling the columns of A. On the other hand, in inner scaling we instead rescale rows of A.
Inner scaling has natural applications to improving risk bounds in a robust statistical variant of linear
regression, which we comment upon shortly. Nonetheless, as in the outer scaling case, no algorithms
faster than general SDP solvers are known to obtain even a constant-factor approximation to κ?i (A).
Further, despite clear problem similarities, it is unclear how to best extend heuristics (e.g., Jacobi
preconditioning and matrix scaling) for outer scaling to inner scaling.

Our results. We give the first nontrivial approximation algorithms (beyond generic SDP solvers) for
both the outer and inner scaling problems, yielding diagonal preconditioners attaining constant-factor
approximations to κ?o and κ?i in near-linear time.6 Tmv(M) denotes the time required to multiply a
vector by M; this is at most the sparsity of M, but can be substantially faster for structured M.
Theorem 1 (Outer scaling). Let ε > 0 be a fixed constant.7 There is an algorithm, which given
full-rank K ∈ Sd�0 computes w ∈ Rd≥0 such that κ(W

1
2KW

1
2 ) ≤ (1 + ε)κ?o(K) with probability

≥ 1− δ in time O(Tmv(K) · (κ?o(K))1.5 · polylog(
dκ?o(K)

δ )).
Theorem 2 (Inner scaling). Let ε > 0 be a fixed constant. There is an algorithm, which given
full-rank A ∈ Rn×d for n ≥ d computes w ∈ Rn≥0 such that κ(A>WA) ≤ (1 + ε)κ?i (A) with

probability ≥ 1− δ in time O(Tmv(A) · (κ?i (A))1.5 · polylog(
nκ?i (A)

δ )).
5κ(M) is the condition number of positive definite M, i.e. the eigenvalue ratio λmax(M)/λmin(M).
6We are not currently aware of a variant of our matrix dictionary recovery framework which extends to

simultaneous inner and outer scaling, though it is worth noting that prior work [QGH+22] does obtain such a
result via semidefinite programming. Obtaining such a variant is an interesting open problem for future work.

7We do not focus on the ε dependence and instead take it to be constant since, in applications involving
solving linear systems, there is little advantage to obtaining better than a 2-approximation (i.e., ε = 1).
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Our methods pay a small polynomial overhead in the quantities κ?o and κ?i , but notably suffer no
dependence on the original conditioning of the matrices. Typically, the interesting use case for
diagonal preconditioning is when κ?o(K) or κ?i (A) is small but κ(K) or κ(A>A) is large, a regime
where our runtimes are near-linear and substantially faster than directly applying iterative methods.

It is worth noting that in light of our new results on Jacobi preconditioning, the end-to-end runtime
of Theorem 1 for solving linear systems (rather than optimal preconditioning) can be improved:
accelerated gradient methods on a preconditioned system with condition number (κ?o)

2 have runtimes
scaling as κ?o. That said, when repeatedly solving multiple systems in the same matrix, Theorem 1
may offer an advantage over Jacobi preconditioning. Our framework also gives a potential route to
achieve the optimal end-to-end runtime scaling as

√
κ?o, detailed in Appendix D of the supplement.

Beyond that which is obtainable by black-box using general SDP solvers, we are not aware of any
other claimed runtime in the literature for solving the inner and outer scaling problems considered in
Theorems 1 and 2. Directly using state-of-the-art SDP solvers [JKL+20, HJS+22] incurs substantial
overhead Ω(nω

√
d + nd2.5) or Ω(nω + d4.5 + n2

√
d), where ω < 2.372 is the current matrix

multiplication constant [Wil12, Gal14, AW21, DWZ23, WXXZ23]. For outer scaling, where n =
d, this implies an Ω(d3.5) runtime; for other applications, e.g., preconditioning d × d perturbed
Laplacians where n = d2, the runtime is Ω(d2ω). Applying state-of-the-art approximate SDP solvers
(rather than our custom ones, i.e., Theorems 6 and 7) appears to yield runtimes Ω(nnz(A) · d2.5), as
described in Appendix E.2 of [LSTZ20]. This is in contrast with our Theorems 1, 2 which achieve
Õ
(
nnz(A) · (κ?)1.5

)
. Hence, we improve existing tools by poly(d) factors in the main regime of

interest where the optimal rescaled condition number κ? is small. Concurrent to our work, [QGH+22]
gave algorithms for constructing optimal diagonal preconditioners using interior point methods for
SDPs, which run in at least the superlinear times discussed previously.

Statistical aspects of preconditioning. Unlike an outer scaling, a good inner scaling does not
speed up a least squares regression problem minx ‖Ax− b‖2. Instead, it allows for a faster solution
to the reweighted problem minx ‖W

1
2 (Ax − b)‖2. This has a number of implications from a

statistical perspective. We explore an interesting connection between inner scaling preconditoning
and semi-random noise models for least-squares regression, situated in the literature in Section 5.

As a motivating example of our noise model, consider the case when there is a hidden parameter vector
xtrue ∈ Rd that we want to recover, and we have a “good” set of consistent observations Agxtrue = bg ,
in the sense that κ(A>g Ag) is small. Here, we can think of Ag as being drawn from a well-conditioned
distribution. Now, suppose an adversary gives us a superset of these observations (A, b) such that
Axtrue = b, and Ag are an (unknown) subset of rows of A, but κ(A>A) � κ(A>g Ag). This can
occur when rows are sampled from heterogeneous sources. Perhaps counterintuitively, by giving
additional consistent data, the adversary can arbitrarily hinder the cost of iterative methods. This
failure can be interpreted as being due to overfitting to generative assumptions (e.g., sampling rows
from a well-conditioned covariance, instead of a mixture): standard iterative methods assume too
much structure, where ideally they would use as little as information-theoretically possible.

Our inner scaling methods can be viewed as “robustifying” linear system solving to such semi-
random noise models (by finding W yielding a rescaled condition number comparable or better
than the indicator of the rows of Ag , which are not known a priori). In Section 6 of the supplement,
we demonstrate applications of inner scaling in reducing the mean-squared error risk in statistical
regression settings encompassing our semi-random noise model, where the observations b are
corrupted by (homoskedastic or heteroskedastic) noise. In all settings, our preconditioning algorithms
yield computational gains, improved risk bounds, or both, by factors of roughly κ(A>A)/κ?i (A).

3 Robust linear algebra for structured matrices

Over the past decade, the theoretical computer science and numerical linear algebra communities
have dedicated substantial effort to developing faster solvers for regression problems in various
families of combinatorially-structured matrices. Perhaps the most prominent example is [ST04], who
gave a near-linear time solver for linear systems in graph Laplacian matrices.8 A long line of exciting

8We recall definitions of the families of matrices we study here. We call a square matrix A a Z-matrix if
Aij ≤ 0 for all i 6= j. We call a matrix L a Laplacian if it is a symmetric Z-matrix with L1 = 0. We call M an
invertible M -matrix if M = sI−A where s > 0, A ∈ Rd×d≥0 , and ρ(A) < s where ρ is the spectral radius.
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work has obtained improved solvers for these systems [KMP10, KMP11, KOSZ13, LS13, CKM+14,
PS14, KLP+16, KS16, JS21], which have been used to improve the runtimes for a wide variety of
graph-structured problems, including maximum flow [CKM+11, Mad13, LS14], sampling random
spanning trees [KM09, MST15, DKP+17, Sch18], graph clustering [ST04, OV11, OSV12], and
more [DS08, KRSS15, CMSV17, CMTV17b]. Additionally, efficient linear system solvers have been
developed for solving systems in other types of structured matrices, e.g., block diagonally dominant
systems [KLP+16], M-matrices [AJSS19], and directed Laplacians [CKP+16, CKP+17, CKK+18].

Perturbations of structured matrices. Despite the importance of these matrices with combinatorial
structure, previously-developed solvers are in some ways quite brittle. For example, there are
simple matrix families closely related to Laplacians for which the best-known runtimes for solving
linear systems are achieved by ignoring problem structure, and using generic matrix multiplication
techniques as a black box. Perhaps the simplest example is solving systems in perturbed Laplacians,
i.e., matrices which admit constant-factor approximations by a Laplacian matrix, but which are not
Laplacians themselves. This situation can arise when a Laplacian is used to approximate a physical
phenomenon [BHV08]. We show that the framework we develop for (1) yields, as a consequence,
robustifications and recovery routines building upon previously-developed solvers for structured
linear systems. As a first example, we give the following perturbed Laplacian solver.
Theorem 3 (Perturbed Laplacian solver). Let M � 0 ∈ Rn×n be such that there exists an (unknown)
Laplacian L with M � L � κ?M, and that L corresponds to a graph with edge weights between
wmin and wmax, with wmax

wmin
≤ U . For any δ ∈ (0, 1) and ε > 0, there is an algorithm recovering

a Laplacian L′ with M � L′ � (1 + ε)κ?M with probability ≥ 1 − δ in time O(n2 · (κ?)2 ·
poly(

log nκ
?U
δ

ε )). Consequently, there is an algorithm for solving linear systems in M to ε-relative
accuracy with probability ≥ 1− δ, in time O(n2 · (κ?)2 · polylog(nκ

?U
δε )).9

Theorem 3 can be viewed as solving a preconditioner construction problem, where we know there
exists a Laplacian matrix L which spectrally resembles M, and wish to efficiently recover a Laplacian
with similar guarantees. Our matrix-dictionary recovery framework (1) captures the setting of
Theorem 3 by leveraging an appropriate matrix-dictionary of edge Laplacians, discussed in Section 4.
The conceptual message of Theorem 3 is that near-linear time solvers for Laplacians robustly extend
through our preconditioning framework to efficiently solve matrices approximated by Laplacians.
Beyond this specific application, our framework could be used to solve perturbed generalizations of
future families of structured matrices.

Recovery of structured matrices. In addition to directly spectrally approximating and solving in
matrices which are well-approximated by preconditioners with diagonal or combinatorial structure,
our framework also yields solvers for new families of matrices. We show that our preconditioning
techniques can be used in conjunction with properties of graph-structured matrices to provide solvers
and spectral approximations for inverse M-matrices and Laplacian pseudoinverses. Recovering
Laplacians from their pseudoinverses and solving linear systems in the Laplacian pseudoinverse arise
when trying to fit a graph to data or recover a graph from effective resistances, a natural distance
measure (see [HMMT18] for motivation and discussion of related problems). More broadly, the
problem of solving linear systems in inverse symmetric M-matrices is prevalent and corresponds to
statistical inference problems involving distributions that are multivariate totally positive of order 2
(MTP2) [KR83, SH14, FLS+17]. Our main results are the following.
Theorem 4 (M-matrix recovery and inverse M-matrix solver). Let M be the inverse of an unknown
invertible symmetric M-matrix, let κ upper bound its condition number, and let U be the multiplicative
range of M1.10 For any δ ∈ (0, 1) and ε > 0, there is an algorithm recovering a (1 + ε)-spectral

approximation to M−1 in timeO(n2 ·poly(
log nκUδ

ε )). Consequently, there is an algorithm for solving
linear systems in M to ε-relative accuracy with probability ≥ 1− δ, in time O(n2 · polylog(nκUδε )).

Theorem 5 (Laplacian recovery and Laplacian pseudoinverse solver). Let M be the pseudoinverse of
unknown Laplacian L, and that L corresponds to a graph with edge weights between wmin and wmax,
with wmax

wmin
≤ U . For any δ ∈ (0, 1) and ε > 0, there is an algorithm recovering a Laplacian L′ with

M† � L′ � (1+ ε)M† in time O(n2 ·poly(
log nUδ
ε )). Consequently, there is an algorithm for solving

linear systems in M to ε-relative accuracy with probability ≥ 1− δ, in time O(n2 · polylog(nUδε )).
9See (6) and the following discussion for the definition of solving to relative accuracy.

10M1 is entrywise positive, as shown in Appendix B of the supplement.
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Theorems 4 and 5 are perhaps a surprising demonstration of the utility of our techniques: just
because a matrix family is well-approximated by structured preconditioners, it is not a priori clear
that their inverses also are. However, we show that by applying recursive preconditioning tools in
conjunction with our recovery methods, we can obtain analogous results for these inverse families.
These results add to the extensive list of combinatorially-structured matrix families admitting efficient
linear algebra primitives. We view our approach as a proof-of-concept of further implications in
designing near-linear time system solvers for structured families via algorithms for (1).

Similarly to our results in Section 2, our results on solving matrix-dictionary recovery for graph-
structured matrices (Theorems 3, 4, and 5) are the first we are aware of with runtimes improving upon
black-box generic algorithms. In particular, for key matrices in each of these cases (e.g., constant-
factor spectral approximations of Laplacians, inverse M-matrices, and Laplacian pseudoinverses)
we obtain Õ(n2) time algorithms for solving linear systems in these matrices to inverse polynomial
accuracy. This runtime is near-linear when the input is dense and in each case when the input is dense
the state-of-the-art prior methods were to run general linear system solvers using O(nω) time.

4 Matrix-dictionary recovery: a general preconditioning framework

Our general strategy for matrix-dictionary recovery, i.e., recovering preconditioners in the sense of
(1), is via applications of a new custom approximate solver we develop for a family of structured
SDPs. SDPs are fundamental optimization problems that have been the source of extensive study for
decades [VB96], with numerous applications across operations research and theoretical computer
science [GW95], statistical modeling [WSV00, GM12], and machine learning [RSL18]. Though
there have been recent advances in solving general SDPs (e.g., [JKL+20, HJS+22] and references
therein), the current state-of-the-art solvers have superlinear runtimes, prohibitive in large-scale
applications. Consequently, there has been extensive research on designing faster approximate SDP
solvers under different assumptions [KV05, WK06, AK07, BBN13, GHM15, AL17, CDST19].

We now provide context for our solver for structured “matrix-dictionary approximation” SDPs, state
our algorithm and its guarantees, and summarize how it is used to obtain Theorems 1, 2, 3, 4, and 5.

Positive SDPs. One prominent class of structured SDPs are what we refer to as positive SDPs, namely
SDPs in which the cost and constraint matrices are all positive semidefinite (PSD), a type of structure
present in many important applications [GW95, ARV09, JJUW11, LS17, CG18, CDG19, CFB19,
CMY20], including those in this paper. Positive SDPs generalize positive linear programming, itself
a well-studied problem over the past several decades [LN93, PST95, You01, MRWZ16, AO19]. It
was recently shown that a prominent special case of positive SDPs known as packing SDPs can be
solved in nearly-linear time [ALO16, PTZ16], a fact that has had numerous applications in robust
learning and estimation [CG18, CDG19, CFB19, CMY20] as well as in combinatorial optimization
[LS17]. However, extending known packing SDP solvers to broader classes of positive SDPs, e.g.
mixed packing-covering SDPs has been elusive [JY12, JLL+20], and is a key open problem in
the algorithmic theory of structured optimization.11 The mixed packing-covering SDP problem is
parameterized by “packing” and “covering” matrices {Pi}i∈[n],P, {Ci}i∈[n],C ∈ Sd�0, and asks to
find the smallest µ > 0 such that there exists w ∈ Rn≥0 with

∑
i∈[n] wiPi � µP (packing into µP)

and
∑
i∈[n] wiCi � C (covering C). Redefining Pi ← 1

µP
− 1

2PiP
− 1

2 , Ci ← C−
1
2CiC

− 1
2 for all

i ∈ [n], (a slight strengthening of) this problem is equivalent to finding w ∈ Rn≥0 such that∑
i∈[n]

wiPi � I �
∑
i∈[n]

wiCi, (2)

or refuting its existence. This was studied by [JY12, JLL+20], and an important open problem in
structured convex programming is designing a “width-independent” solver for testing feasibility of
(2) up to a 1 + ε factor (i.e. testing whether (2) is approximately feasible with an iteration count
polynomial in ε−1 and polylogarithmic in other parameters). Such solvers have remained elusive
beyond pure packing SDPs [ALO16, PTZ16, JLT20], even for basic extensions such as pure covering.

Matrix-dictionary approximation SDPs. In Theorem 6, we develop our main meta-algorithm, an ef-
ficient solver for specializations of (2) where the packing and covering matrices {Pi}i∈[n], {Ci}i∈[n]

11A faster solver for general positive (mixed packing-covering) SDPs was claimed in [JLL+20], but an error
was later discovered in that work, as is recorded in the most recent arXiv version [JLL+21].
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are multiples of each other. As we will see, this family of structured SDPs, which we call matrix-
dictionary approximation SDPs, is highly effective for capturing the forms of approximation required
by (1). All our aforementioned preconditioning results follow via careful applications of our matrix-
dictionary approximation SDP solver in Theorem 6 (and a generalization of it in Theorem 7).

Specifically, we develop efficient algorithms for the following main meta-problem we study. Given a
set of matrices (a “matrix-dictionary”) {Mi}i∈[n] ∈ Sd�0, a constraint matrix B ∈ Sd�0, a tolerance
parameter ε ∈ (0, 1), and κ? ≥ 1 such that there exists w? ∈ Rn≥0 with

B �
∑
i∈[n]

w?iMi � κ?B, (3)

the goal of matrix-dictionary approximation is to return weights w ∈ Rn≥0 such that

B �
∑
i∈[n]

wiMi � (1 + ε)κ?B. (4)

When B = I, the problem in (3), (4) is a special case of (2) where each Mi = Ci = κ?Pi; we call
this the isotropic case. We further handle general B, and demonstrate that our formulation captures
many interesting applications. We refer to the problem in (3), (4) as matrix-dictionary recovery.

Our results: matrix-dictionary recovery. Our results concerning (3) and (4) assume that the
matrix-dictionary {Mi}i∈[n] is “simple” in two respects. First, we assume that we have explicit
factorizations

Mi = ViV
>
i , Vi ∈ Rd×m. (5)

Our applications in Sections 2 and 3 satisfy this assumption with m = 1. Second, denoting
M(w) :=

∑
i∈[n] wiMi, we assume we can approximately solve systems inM(w) + λI for any

w ∈ Rn≥0 and λ ≥ 0. Concretely, for any ε > 0, we assume there is a linear operator M̃w,λ,ε which

we can compute and apply in T sol
M · log 1

ε time,12 and that M̃w,λ,ε ≈ (M(w) + λI)−1 in that:∥∥∥M̃w,λ,εv − (M(w) + λI)
−1
v
∥∥∥
2
≤ ε

∥∥∥(M(w) + λI)
−1
v
∥∥∥
2

for all v ∈ Rd. (6)

In this case, we say “we can solve inM to ε-relative accuracy in T sol
M · log 1

ε time.” IfM is a single
matrix M, we say “we can solve in M to ε-relative accuracy in T sol

M · log 1
ε time.” Notably, for the

matrix-dictionaries in our applications, e.g., diagonal 1-sparse matrices or edge Laplacians, such
access to {Mi}i∈[n] exists so we obtain end-to-end efficient algorithms. Ideally (for near-linear time
algorithms), T sol

M is roughly the total sparsity of {Mi}i∈[n], which holds in all our applications.

Under these assumptions, we give the following novel meta-solvers for matrix-dictionary recovery.13

Theorem 6 (Matrix dictionary recovery, isotropic case). Given matrices {Mi}i∈[n] with explicit
factorizations (5), such that (3) is feasible for B = I and some κ? ≥ 1, we can return weights
w ∈ Rn≥0 satisfying (4) with probability ≥ 1− δ in time

O

(
Tmv({Vi}i∈[n]) · (κ?)1.5 · poly

(
log mndκ?

δ

ε

))
.

Here Tmv({Vi}i∈[n]) denotes the computational complexity of multiplying an arbitrary vector by all
matrices in {Vi}i∈[n]. Notably, in the isotropic case B = I, Theorem 6 does not require solvers in
the sense of (6). We next state our solver which handles the case of general B, under access to (6).

12We use this notation because, if T sol
M is the complexity of solving the system to constant error c < 1, then

we can use an iterative refinement procedure to solve the system to accuracy ε in time T sol
M · log 1

ε
for any ε > 0.

13We did not heavily optimize logarithmic factors and ε−1 dependences; for many applications (notably
Theorems 1, 2), ε is a constant, so our runtimes are near-linear for a natural representation of the problem under
the assumption (5). In several applications (e.g., Theorems 1 and 2) the most important parameter is the “relative
condition number” κ? in the promise (3), so we primarily optimized for the dependence on κ?.
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Theorem 7 (Matrix dictionary recovery, general case). Given matrices {Mi}i∈[n] with explicit
factorizations (5), such that (3) is feasible for some κ? ≥ 1 and we can solve inM to ε relative
accuracy in T sol

M · log 1
ε time, and B satisfying

B �M(1) � αB and I � B � βI, (7)

we can return weights w ∈ Rn≥0 satisfying (4) with probability ≥ 1− δ in time

O

(
Ttot · (κ?)2 · poly

(
log mndκ?αβ

δ

ε

))
, where Ttot := Tmv

(
{Vi}i∈[n] ∪ {B}

)
+ T sol
M .

The first condition in (7) is no more general than assuming we have a “warm start” reweighting
w0 ∈ Rn≥0 (not necessarily 1) satisfying B �

∑
i∈[n][w0]iMi � αB, by exploiting scale invariance

of the problem and setting Mi ← [w0]iMi. The second bound in (7) is equivalent to κ(B) ≤ β
up to constant factors, since given a bound β, we can use the power method to shift the scale of B
so it is spectrally larger than I. The operation requires just a logarithmic number of matrix vector
multiplications with B, which does not impact the runtime in Theorem 7.

Proof sketches of Theorems 6 and 7. We defer full proofs of Theorems 6 and 7 to Section 3 of the
supplement, but overview our techniques here. Our main workhorse is the following Algorithm 1,
which solves a decision variant of the isotropic matrix-dictionary recovery problem (i.e., B = I),
leveraging any subroutine Apack for solving pure packing instances of (2) from the literature.14

We define our approximation notions (used in Lines 6 and 10 of Algorithm 1) in Section 2 of the
supplement. In Section 3.1 of the supplement, we analyze correctness of Algorithm 1 using regret
bounds for the matrix multiplicative weights framework [ZLO15], which Lines 4-12 are an instance
of, and demonstrate tolerance to the stated approximations. Our proof shows that Algorithm 1 meets
its output guarantees, which directly implies a solver for the matrix-dictionary recovery problem (3),
(4) in the isotropic case B = I, provided we can efficiently implement the algorithm’s steps.15

By carefully combining polynomial approximations to the exponential, Johnson-Lindenstrauss
sketches, and the power method, we obtain the needed approximations in Lines 6 and 10 of Algo-
rithm 1, which combined with our correctness proof yields Theorem 6. Our proof of Theorem 7
in Section 3.2 of the supplement builds upon Theorem 6 and recursive preconditioning, based on
the observation that if we could efficiently apply B−

1
2 , setting Mi ← B−

1
2MiB

− 1
2 reduces to the

isotropic case. We show that at a
√
κ? overhead, we can use (6) to efficiently simulate (B + λI)−

1
2

for λ values which are recursively halved, allowing use of Theorem 6 for each recursive call. This
general type of adaptive regularization strategy, which we term a homotopy method, is reminiscent of
techniques used by other recent works in the literature on numerical linear algebra and structured
continuous optimization, such as [LMP13, KLM+14, BCLL18, AKPS19].

Preconditioning applications. Formal proofs of our applications in Section 2 are given in Section 5
of the supplement. Theorem 2 follows immediately from Theorem 6 with the dictionary Mi = aia

>
i ,

where {ai}i∈[n] are rows of A, which satisfies (5) with m = 1. Specifically, note for w ∈ Rn≥0,

M(w) =
∑
i∈[n]

wiMi =
∑
i∈[n]

wiaia
>
i = A>WA.

A result analogous to Theorem 1, but depending quadratically on κ?o(K), follows from applying
Theorem 7 with n = d, Mi = eie

>
i , κ = κ?o(K), and B = 1

κK (i.e., using the dictionary of
1-sparse diagonal matrices to approximate K, which satisfies (5) with m = 1 and (6) with T sol

M = d).
Compared to inner scaling, this application exchanges the role of the dictionary and the constraint
matrix. Theorem 1 goes beyond this black-box use via a homotopy method for simulating access to
matrix square roots (to reduce to the isotropic case), yielding an improved (κ?o(K))1.5 dependence.

14For simplicity, we assume each matrix dictionary element’s top eigenvalue is in a bounded range. We
explicitly bound the cost of achieving this in applications (via rescaling by a constant-factor approximation to the
top eigenvalue of each matrix using the power method, see Fact 3 of the supplement), and this does not dominate
the runtime. The runtime bottleneck in all our applications is the cost of approximate packing SDP oracles in
Line 7; this is an active research area and improvements therein would also reflect in our algorithm’s runtime.

15We show how to search for κ? in (3) using an incremental search over a small number of calls to Algorithm 1.
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Algorithm 1: DecideStructuredMPC({Mi}i∈[n], κ,Apack, δ, ε)

1 Input: {Mi}i∈[n] ∈ Sd�0 with λmax(Mi) ∈ [1, 2] for all i ∈ [n], κ > 1, δ ∈ (0, 1), ε ∈ (0, 1),
Apack which on input v ∈ Rn≥0 returns w ∈ Rn≥0 withM(w) � I that ε

10 -multiplicatively
approximates maxw:M(w)�I v

>w with probability 1− δ
2T , T = O(κ log d

ε2 ).
2 Output: With probability ≥ 1− δ: “yes” or “no” is returned. If there exists w ∈ Rn≥0 with

λmax

∑
i∈[n]

wiMi

 ≤ (1− ε)κλmin

∑
i∈[n]

wiMi

 , (8)

the algorithm must return “yes.” If “yes” is returned, a vector w is given with

λmax

∑
i∈[n]

wiMi

 ≤ (1 + ε)κλmin

∑
i∈[n]

wiMi

 . (9)

3 η ← ε
10κ , T ←

⌈
10 log d
ηε

⌉
, Y0 ← 1

dI, S0 ← 0

4 for 0 ≤ t < T do
5 Yt ← exp(St)

Tr exp(St)

6 vt ← entrywise ( ε
10 ,

ε
10κn )-approximations to {〈Mi,Yt〉}i∈[n], with probability ≥ 1− δ

4T

7 xt ← Apack(κvt)
8 if κ 〈xt, vt〉 < 1− ε

5 then return “no”
9 St+1 ← St − ηκM(xt)

10 τ ← log d
ε -additive approximation to λmin(−St+1), with probability ≥ 1− δ

4T

11 if τ ≥ 12 log d
ε then return (“yes”, x̄) for x̄ := 1

t+1

∑
0≤s≤t xs

12 end
13 return (“yes”, x̄) for x̄ := 1

T

∑
0≤t<T xt

Our applications in Section 3 are deferred to Section 4 of the supplement. Robust linear system
solvers for perturbed variants of structured matrix families follow directly from Theorem 7, taking
the matrix dictionary to be a suitable basis for the relevant non-perturbed structured family, which
naturally satisfy (6). As an example, to prove Theorem 3, we use Theorem 7 with the dictionary
of all beb>e for edges e of a complete graph, where be is the associated incidence vector; the access
(6) is then afforded by known Laplacian solvers. Finally, Theorems 4 and 5 follow by combining
Theorems 6, 7 with homotopy techniques, alongside structural facts about M-matrices and Laplacians.

Further work. A natural open question is if, e.g., for outer scaling, the κ?o(K) dependence in
Theorem 1 can be reduced further, ideally to

√
κ?o(K). This would match the most efficient solvers

in K under diagonal rescaling, if the best known outer scaling was known in advance. Towards this
goal, we prove in Appendix D of the supplement that if a width-independent variant of Theorem 6 is
developed, it can achieve such improved runtimes for Theorem 1 (with an analogous improvement for
Theorem 2). We also give generalizations of this improvement to finding rescalings which minimize
natural average notions of conditioning, under existence of such a conjectured solver.

5 Additional related work

Matrix-dictionary recovery. Our algorithm for Theorem 6 is based on matrix multiplicative weights
[WK06, AK07, AHK12], a popular meta-algorithm for approximately solving SDPs, with carefully
chosen gain matrices formed by using packing SDP solvers as a black box. In this sense, it is an
efficient reduction from structured SDP instances of the form (3), (4) to pure packing instances.

Similar ideas were previously used in [LS17] (repurposed in [CG18]) for solving graph-structured
matrix-dictionary recovery problems. Our Theorems 6 and 7 improve upon these results both in
generality (prior works only handled B = I, and κ? = 1 + ε for sufficiently small ε) and efficiency
(our reduction calls a packing solver ≈ log d times for constant ε, κ?, while [LS17] used ≈ log2 d
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calls). Perhaps the most direct analog of Theorem 6 is Theorem 3.1 of [CG18], which builds upon the
proof of Lemma 3.5 of [LS17] (but lifts the sparsity constraint). The primary qualitative difference
with Theorem 6 is that Theorem 3.1 of [CG18] only handles the case where the optimal rescaling κ?
is in [1, 1.1], whereas we handle general κ?. This restriction is important in the proof technique of
[CG18], as their approach relies on bounding the change in potential functions based on the matrix
exponential of dictionary linear combinations (e.g., the Taylor expansions in their Lemma B.1), which
scales poorly with large κ?. Moreover, our method is a natural application of the MMW framework,
and is arguably simpler. This simplicity is useful in diagonal scaling applications, as it allows us to
obtain a tighter characterization of our κ? dependence, the primary quantity of interest. Finally, to
our knowledge Theorem 7 (which handles general constraint matrices B, crucial for our applications
in Theorems 3, 4, and 5) has no analog in prior work, which focused on the isotropic case.

Semi-random models. The semi-random noise model we introduce in Section 2 for linear system
solving, presented in more detail and formality in Section 6 of the supplement, follows a line of
noise models originating in [BS95]. A semi-random model consists of an (unknown) planted instance
which a classical algorithm performs well against, augmented by additional information given by a
“monotone” or “helpful” adversary masking the planted instance. Conceptually, when an algorithm
fails given this “helpful” information, it may have overfit to its generative assumptions. This model
has been studied in various statistical settings [Jer92, FK00, FK01, MPW16, MMV12]. Of particular
relevance to our work, which studies robustness to semi-random noise in the context of fast algorithms
(as opposed to the distinction between polynomial-time algorithms and computational intractability)
is [CG18], which developed an algorithm for semi-random matrix completion.
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