
Scalarization for Multi-Task and
Multi-Domain Learning at Scale

Amélie Royer, Tijmen Blankevoort, Babak Ehteshami Bejnordi
Qualcomm AI Research∗

Amsterdam, The Netherlands
{aroyer, tijmen, behtesha}@qti.qualcomm.com

Abstract

Training a single model on multiple input domains and/or output tasks allows for
compressing information from multiple sources into a unified backbone hence
improves model efficiency. It also enables potential positive knowledge transfer
across tasks/domains, leading to improved accuracy and data-efficient training.
However, optimizing such networks is a challenge, in particular due to discrepancies
between the different tasks or domains: Despite several hypotheses and solutions
proposed over the years, recent work has shown that uniform scalarization training,
i.e., simply minimizing the average of the task losses, yields on-par performance
with more costly SotA optimization methods. This raises the issue of how well
we understand the training dynamics of multi-task and multi-domain networks.
In this work, we first devise a large-scale unified analysis of multi-domain and
multi-task learning to better understand the dynamics of scalarization across varied
task/domain combinations and model sizes. Following these insights, we then
propose to leverage population-based training to efficiently search for the optimal
scalarization weights when dealing with a large number of tasks or domains.

1 Introduction

Learning a unified architecture that can handle multiple domains and/or tasks offers the potential for
improved computational efficiency, better generalization, and reduced training data requirements.
However, training such models proves a challenge: In particular, when the tasks or domains are
dissimilar, practitioners often observe that the learning of one task or domain interferes with the
learning of others. This phenomenon is commonly known as interference or negative transfer. How
to best resolve this interference is an open problem spanning numerous bodies of literature, such as
multi-task learning, domain adaptation and generalization, or multi-modal learning.

In fact, there is currently no unanimous understanding of what causes, or how to predict, task
interference in practice: For instance, classical generalization bounds on training from multiple
data sources [3, 48, 56, 44] involve a measure of distance between the respective tasks/domains
distributions, which can be intuitively thought of as a measure of interference. In more practical
applications, task clustering methods [65, 58, 16] propose various metrics to measure task affinity,
and train tasks with low affinity separately, with separate backbones, thereby circumventing the
interference issue at the architecture level. Finally, in the multi-task optimization (MTO) literature,
the prevailing view is that gradients from different tasks may point in conflicting directions and cause
interference, which has led to a line of work on reducing gradient conflicts by normalizing gradients
or losses statistics [37, 7, 25, 64]. While MTO have established a new state-of-the-art for training
multi-task models in the past few years, recent work [63, 30] shows that, surprisingly, minimizing

∗ Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

a simple average of the tasks/domains losses, also known as scalarization, can yield performance
trade-off points on the same Pareto front as more costly MTO methods.

Nevertheless, there still remains some unexplored areas which we aim to shed lights on in this paper.
First, most previous experiments have only been conducted on multi-task settings, on benchmarks
with either few tasks or few training samples (e.g multi-MNIST, NYU-v2), and for a fixed architecture.
In particular, the link between model capacity and the observed MTL performance is often overlooked.
Secondly, it is not clear how the choice of scalarization weights links to and/or impacts the hypothesis
of gradient conflicts as a key underlying signal of task interference. Finally, scalarization can become
prohibitively expensive for a large number of tasks as the search space for the optimal loss weights
grows exponentially; This raises the issue of how to efficiently browse this search space. In this
work, we investigate these questions to further motivate scalarization as a simple and scalable training
scheme for multi-task and multi-domain problems.

Our key contributions. We perform a large-scale analysis of scalarization for both multi-task (MTL)
and multi-domain learning (MDL). We cover a wide range of model capacities, datasets with varying
sizes, and different task/domain combinations. Our key conclusions are as follows:

• (C1) When compared to a model trained on each task/domain individually, MDL/MTL performance
tends to improve for larger model sizes, showing that the benefits of MTL/MDL frameworks should
be put into perspective with respect to the backbone architecture capacity.

• (C2) Tuning the scalarization weights for a specific tasks/domains combination is crucial to
obtaining the optimal MTL/MDL performance in settings with high imbalance; Nevertheless, the
relative performance of different scalarization weights is often consistent across model capacities
inside a family architecture. This suggests that searching for optimal scalarization weights for a
lower model depth/width is also relevant for the full model size, while using less compute.

• (C3) Gradients conflicts between tasks/domains naturally occur during MTL training: They behave
differently across layers and learning rates, but are scarcely impacted by model capacity and
scalarization weights choice. These observations give new insights into the practical implications
of avoiding conflicting gradients throughout training.

• (C4) We leverage fast hyperparameter search methods such as population-based training [24] to
efficiently browse the search space of scalarization weights as the number of tasks grows.

2 Related work
Multi-Task Optimization (MTO) and scalarization. MTO methods aim to improve MTL training
by balancing the training dynamics of different tasks. Prior research can be split into two categories:
On the one hand, loss-based methods propose to align the task losses magnitudes by rescaling them
through various criteria, e.g., task uncertainty [26], task difficulty [21], random loss weighting [34], or
gradients statistics [7, 14, 60]. On the other hand, gradient-based methods directly act on the per-task
gradients rather than the losses. For instance, [55, 13] tackle MTL as a multi-objective optimization
problem using the Multiple Gradient Descent Algorithm to directly locate Pareto-optimal solutions.
Another major line of work considers conflicting gradient direction to be the main cause of task
interference. Consequently, these works [64, 37, 38, 62, 8, 25] aim to mitigate conflicts across per-task
gradients. For instance, PCGrad [64] suggests projecting each task’s gradient onto the normal plane
of other gradients to suppress conflicting directions, while GradDrop [8] ensures that all gradient
updates are pure in sign by randomly masking all positive or negative gradient values during training.
Unfortunately, gradient-based techniques require per-task gradients, leading to substantial memory
usage and increased runtime. Furthermore, recent work [63, 30] has shown that these methods often
perform on-par with the less costly approach of directly optimizing the average of the task losses,
also known as uniform scalarization. Building off these insights, we further investigate the benefits of
scalarization and the practical dynamics of gradient conflicts in this work.

Architectures for MTL. Orthogonal to our work, another line of research focuses on designing
multi-task architectures that mitigate task interference by optimizing the allocation of shared versus
task-specific parameters. Hard parameter sharing methods [27, 26, 6, 59, 61] build off a shared
backbone and carefully design task-specific decoder heads optimized for the tasks of interest. In
contrast, soft parameter sharing methods [45, 53, 20, 39] jointly train a shared backbone while
learning sparse binary masks specific to each task/domain which capture the parameter sharing
pattern across tasks. To select which tasks should share parameters or not, a prominent line of work

2

focuses on defining measures of task affinity [2, 58, 22, 16]: Tasks with high affinity are jointly
trained, while low affinity ones use different backbones, in the hope of reducing potential interference
by fully separating conflicting tasks. This results in multi-branch architectures where each branch
handles a specific subset of tasks with high affinities. The scope of our study is complementary to this
line of work, as we focus on how to best train a given set of tasks, without changing the architecture.

Multi-Domain Learning (MDL). MDL refers to the design and training of a single unified
architecture that can operate on data sources from different domains. Domain adaptation and
generalization methods often aim to align the learned representations of the different domains [19, 4,
66]; These are in particular targeting the setting where one of the domain lacks supervisory signals.
In the fully-supervised scenario, several methods have been proposed to use a unified backbone,
which captures common features across all tasks, while allowing the model to learn domain-specific
information via lightweight adapter modules [49, 51, 50]. Similar to soft parameter sharing method,
these methods bypass task interference by keeping the shared backbone frozen and only training
domain-specific modules. Alternatively, a common practice when training with multiple input datasets
is to use over- or undersampling techniques [1, 28, 43], in particular to handle class imbalance. As we
describe later, resampling can be seen as the MDL counterpart of scalarization in MTL. Both enable
a simple and lightweight training scheme, yet finding the optimal resampling/scalarizatoin weights is
nontrivial. This motivates us to empirically verify our findings in the MDL as well as MTL setting.

3 Motivation and experimental setting for MTL/MDL

3.1 Notations

We start by describing the MTL/MDL setup: Given T supervised datasets with respective inputs Xt

and outputs Yt, our goal is to find model parameters θ∗ that minimize the datasets’ respective losses:
(L1(X1, Y1), . . . ,LT (XT , YT)). In practice, this can be achieved either by solving a multi-objective
problem on the task losses [13, 42] or, more commonly, by minimizing a (possibly weighted) average
of the losses [27]. In both cases, most training methods for MTL/MDL can be phrased as updating
the model parameters θ using a weighted average of the individual tasks’ gradients:

θi+1 = θi + η

T∑
t=1

pit E(xt,yt)∼q(Xt,Yt)∇θiLt(xt, yt) , where η is the learning rate (1)

where p(i) = (pi1, . . . , p
i
T) captures the dynamic importance scaling weights for each dataset at

timestep i, and q(Xt, Yt) is the underlying distribution the t-th dataset is drawn from. We also follow
the common assumption that p is a probability distribution, i.e.,

∑
t pt = 1 and ∀t, pt ∈ {0, 1}.

We further distinguish between (i) multi-task learning (MTL) where every input is annotated for every
task (i.e., ∀i, j,Xi = Xj), and (ii) multi-domain learning (MDL) where the goal is to solve a common
output task across multiple input domains or modalities (∀i, j, Yi = Yj). In the MDL setting, we can
also rephrase (1) as resampling the data distributions according to p. Both formalisms are equivalent,
but resampling often performs better in practice when using stochastic gradient methods [1]:

T∑
t=1

ptEq(Xt,Yt)f(xt, yt)︸ ︷︷ ︸
Reweighing formalism of (1)

= Eq′(X,Y)f(x, y)︸ ︷︷ ︸
Resampling formalism

where q′(x, y) =

T∑
t=1

1x∈Xtq(x, y)pt︸ ︷︷ ︸
Resampling distribution

(2)

3.2 Motivation

Current state-of-the-art methods for training objectives such as (1) can be roughly organized into
three categories, based on how the datasets’ importance weights p are defined:

• Scalarization defines the weights pt as constant hyperparameters: The update rule of (1) reduces
to computing the gradient of the weighted average loss ∇θ (

∑
t ptLt). In the MDL formalism of

(2), scalarization is similar to classical oversampling/undersampling, where pt is defined either as a
scalar (per-domain) or a vector (to handle both per-class and per-domain biases). In both settings,
the key difficulty lies in tuning the weights p, as the search space grows exponentially with T .

3

• Loss-based adaptive methods [38, 26] dynamically compute pt for every batch, aiming to
uniformize training dynamics across tasks by rescaling the losses. For instance, IMTL-L [38]
dynamically reweighs the losses such that they all have the same magnitude.

• Gradient-based adaptive methods [7, 64, 38, 25, 8, 37, 13, 55, 36, 42] also dynamically compute
weights for every batch. While this line of work usually outperforms loss-based methods, they also
incur a higher compute and memory training cost, as they require T backward passes to obtain
each individual dataset gradient, which in turn need to be stored in memory.

While gradient-based approaches are generally considered SotA across MTO methods, they present
certain practical challenges: They come with a higher computational and memory cost, which
increases with T , as illustrated in Figure 1(b). The implicit weights pt computed by these methods
are also hard to extract and transfer to other training runs since they are tied to other hyperparameters
(training length, batch size, gradient clipping, etc.). In addition, recent work [63, 30, 52] has
shown that simple scalarization with uniform weights actually often performs on-par with both
loss- and gradient-based methods. Furthermore, scalarization is highly practical: It does not incur
additional costs during training, and scalarization weights are easily interpretable as a measure of
“task importance” in the optimization problem. However, some experiments in [58, 52] also suggest
that the benefits of uniform scalarization MTL are impacted by model capacity in some settings.

Motivated by these insights, we aim to better harness scalarization for scalable and practical
MTL/MDL training. In particular, we focus on the following two remaining gray areas: First,
we perform a large-scale analysis investigating the underlying effects of model capacity on MTL
and MDL (C1) in Section 4. We then discuss the impact of model capacity on the choice of optimal
scalarization weights (C2) in Section 4.1 and on the presence of conflicting gradients (C3) in Section
4.2. Secondly, browsing the search space of p to tune the scalarization weights becomes increas-
ingly costly as the number of tasks T grows. As an alternative to the usual grid- or random-search
approaches, we propose to leverage population-based training as a cost-efficient parameter search for
scalarization, and report our conclusions (C4) in Section 5.

MDL MTL

Dataset
CIFAR+STL DomainNet CelebA Taskonomy

[29, 9] [47] [40] [65] (tiny split)
tasks or

2 6 8 or 40 7
domains, T

Training
55k ∼ 410k ∼ 162k ∼ 275k

size, |X|

Backbone ViT-S/4 ResNet-101 ViT-S/4
ResNet-26

encoder/decoder
Depth

{3, 6, 9} {r26, r50, r101} {3, 6, 9}
{4, 2, 0} shared

sweep decoder layers
Width {0.25, 0.5,

{0.25, 0.5, 1.0}
{0.25, 0.5,

{ 0.5, 1.0}
sweep 0.75, 1.0} 0.75, 1.0}

(a) Summary of our experimental setting

2 5 10 20
Number of tasks

0

5

10

15

20

Pe
ak

 m
em

or
y

(G
B)

pcgrad
cagrad
graddrop

gradnorm
uncertainty
imtl_l

(b) Memory usage of various multi-task
optimization (MTO) methods

Figure 1: Table (a) summarizes the experimental setups used throughout the paper. Figure (b) reports
profiling results for popular multi-task optimization (MTO) methods in a small-scale (ResNet18,
batch size 16) and large-scale (ResNet50, size 128) setting, for 224px inputs: In practice, we find
that the main bottleneck for gradient-based methods is their high memory usage. Consequently,
training with reasonable batch sizes requires either high parallelism (compute demand) or gradient
accumulation (slower runs). In contrast, loss-based methods have much better-constrained costs.
However, they usually underperform their gradient-based counterpart in the literature.

3.3 Experimental setting

Here we briefly describe the experimental setup that is used throughout the paper. We aim to cover a
wide range of model sizes, datasets with varying sizes, and different task/domain combinations for
MDL and MTL. A summary is given in Figure 1(a) and further details can be found in Appendix 1.

For MDL, we first consider a two-domain example composed of CIFAR10 [29] and STL10 [9] with
a ViT-S backbone optimized for small datasets [18]. We then expand the results to the DomainNet

4

benchmark [47] containing 345 output classes and 6 input domains. We use ResNet as our main
backbone, following previous works [47, 32]. In both cases, the backbone parameters are fully shared
across all domains; We use cross-entropy as training loss and top-1 accuracy as our main metric.

For MTL, we use CelebA [40] with the same ViT-S backbone as for CIFAR/STL; We split the 40
attributes into semantically-coherent groups to form 8 output classification tasks, as described in the
appendix. The transformer backbone is fully shared across tasks, while the last linear classification
layer is task-specific. Then, we experiment on a larger MTL setting for dense prediction: Most
traditional benchmarks, such as Cityscapes [10] and NYU-v2 [57], are rather small, as they only
contain 2-3 dense tasks (segmentation, normals, depth) and ∼ 5k fully annotated images. Instead,
we perform our analysis on the challenging Taskonomy dataset [65]. To keep experiments scalable,
we filter the 26 tasks in Taskonomy down to 7 (e.g. by removing self-supervised tasks or clearly
overlapping ones such as 2D edges and 3D edges). For training, we follow the setup described in [58]:
We normalize every dense annotation to have zero mean and unit variance across the training set, and
use the L1 loss as our training loss and common metric for all tasks. The backbone is composed of a
(shared) ResNet encoder, followed by task-specific decoders built with upsampling operations and
1x1 convolutions. To control model capacity, we vary (i) the width of the model, (ii) the depth of the
encoder, as well as (iii) the number of layers in the decoder(s) which are shared across tasks.

Finally, in all settings, we sweep over the domains/tasks’ weights under the common assumption
that p is a probability vector (i.e. ∀t, pt ∈ {0, 1} and

∑
t pt = 1). All reported results are averaged

across 2 random seeds for DomainNet and Taskonomy, and 3 for the smaller benchmarks. Unless
stated, every experiment is conducted on a single NVIDIA V100 GPU.

4 Benefits of MDL/MTL under the lens of model capacity

We first investigate the behavior of scalarization for MDL/MTL training with two tasks, while varying
model capacity and for different tasks/domains combinations. To quantify the benefit or harm of
joint training with multiple datasets, we compare the model performance on each dataset with that of
a same-sized model, trained on a single dataset at once. We refer to this baseline as “SD” (single
dataset). Since we use SD as a reference point, we ensure that its training pipeline is well tuned: We
sweep over the hyperparameters (learning rate, weight decay, number of training steps, etc) of the
baseline SD and keep the same values for training the MDL/MTL models, while varying the task
weights (p1, p2 = 1− p1) from p1 = 0 (SD baseline of the first dataset) to p1 = 1 (SD baseline of
the second dataset). Further details on the training hyperparameters can be found in Appendix 1.
Finally, we summarize our analysis results in Figure 2: For each task/domain pair, we first plot the
weight p∗1 yielding the best accuracy averaged across both tasks/domains, then we report the accuracy
difference between the corresponding MDL/MTL model and the associated SD baseline.

Impact of model capacity. We first observe that MDL/MTL performance greatly varies across model
capacities, and tends to increase with model size (C1): In some cases, the trend even inverts from
MDL/MTL underperforming to outperforming SD (e.g. DomainNet’s real + sketch pairing).

Selecting optimal importance weights p. Secondly, the best-performing p at inference are rarely
the uniform p1 = p2 = 0.5, even in the Taskonomy scenario where the uniform training objective is
identical to the average of task metrics which we aim to maximize at inference. We further discuss
the effects of tuning scalarization weights for the accuracy/efficiency trade-off (C2) in Section 4.1.

MTL/MDL primarily improves generalization. As we show in Appendix 2), even when MTL/MDL
outperforms the SD baseline at inference, it is generally not the case at training time. In other words,
tuning the respective tasks/domains weights in MTL/MDL can be seen as a regularization technique
that improves generalization over the SD baselines by balancing the two datasets’ training objectives.
In particular, in the MDL setting, this insight is also closely connected to data augmentations: Each
new domain can be seen as a non-parametric and non-trivial augmentation function, while the
associated resampling weight pt is the probability of applying the augmentation on each sample.

Interestingly, recent work [30] suggests that many MTO methods which aim to avoid gradient
conflicts can also be interpreted as regularization techniques, and that simpler tricks such as early
stopping are often competitive. To better understand the link between these two insights, we analyze
the natural emergence of conflicting gradients during MDL/MTL training, and how they are impacted
by model capacity (C3) in Section 4.2.

5

0.25 0.5 1.0

r26

r50

r101

 d
ep

th

real domain + clipart
|X|=33525

0.25 0.5 1.0

+ infograph
|X|=36023

0.25 0.5 1.0

+ painting
|X|=50416

0.25 0.5 1.0

+ quickdraw
|X|=120750

0.25 0.5 1.0

+ sketch
|X|=48212

0.25 0.5 1.0

r26

r50

r101

 d
ep

th

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0

0.25 0.5 1.0
 width

r26

r50

r101

 d
ep

th

0.25 0.5 1.0
 width

0.25 0.5 1.0
 width

0.25 0.5 1.0
 width

0.25 0.5 1.0
 width

0.0
0.2
0.4
0.6
0.8
1.0

p r
ea

l

3.503
2.335
1.168
0.000

0.678

1.357

ac
c,

re
al

1.67
1.12
0.56
0.00

4.50

8.99

ac
c,

do
m

ai
n

0.25 0.5 0.75 1.0

3

6

9

 d
ep

th

STL10
+CIFAR10

0.25 0.5 0.75 1.0

3

6

9

 d
ep

th

0.25 0.5 0.75 1.0
 width

3

6

9

 d
ep

th

0.00

0.25

0.50

0.75

1.00

p S
TL

10

0.02
0.01
0.01
0.00

5.29

10.58

ac
c,

ST
L1

0

1.325
0.883
0.442
0.000

0.110

0.220

ac
c,

CI
FA

R1
0

(a) Analysis of MDL when pairing natural images (real domain) with each of the five remaining DomainNet
domains (left), and on the CIFAR-10 + STL-10 toy example (right)

0.25 0.5 0.75 1.0

3

6

9

 d
ep

th

gender
+age

0.25 0.5 0.75 1.0

gender
+clothes

0.25 0.5 0.75 1.0

haircolor
+hairstyle

0.25 0.5 0.75 1.0

hairstyle
+clothes

0.25 0.5 0.75 1.0

hairstyle
+mouth

0.25 0.5 0.75 1.0

3

6

9

 d
ep

th

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

0.25 0.5 0.75 1.0
 width

3

6

9

 d
ep

th

0.25 0.5 0.75 1.0
 width

0.25 0.5 0.75 1.0
 width

0.25 0.5 0.75 1.0
 width

0.25 0.5 0.75 1.0
 width

0.0
0.2
0.4
0.6
0.8
1.0

p 1

0.004308
0.002872
0.001436
0.000000

0.001209

0.002417

ac
c,

ta
sk

1

0.00673
0.00448
0.00224
0.00000

0.00423

0.00847

ac
c,

ta
sk

2

0.5 1.0

4

2

0

sh

ar
ed

de
co

de
r l

ay
er

s

normal
+depth

0.5 1.0

segm2d
+depth

0.5 1.0

segm2d
+segm3d

0.5 1.0

4

2

0

sh

ar
ed

de
co

de
r l

ay
er

s

0.5 1.0 0.5 1.0

0.5 1.0
width

4

2

0

sh

ar
ed

de
co

de
r l

ay
er

s

0.5 1.0
width

0.5 1.0
width

0.0
0.2
0.4
0.6
0.8
1.0

p 1

0.04

0.02

0.00

0.02

ac
c,

ta
sk

1

0.15

0.10

0.05

0.00

ac
c,

ta
sk

2

(b) Analysis of MTL on CelebA (left) and Taskonomy-tiny (right) for different task pairs and model sizes.

Figure 2: Performance of scalarization for MDL/MTL relative to SD under different model capacities;
Each column corresponds to a different task/domain pair (T = 2). The first row of each plot contains
a heatmap of the best performing scalarization weights p∗ wrt. to the average test accuracy on both
tasks. Each of the following rows contains the difference in metrics between the MTL/MDL model
and its counterpart SD baseline, where green indicates positive changes and purple, a negative one.
Note that the colormaps’ ranges are defined per row, and visualized as color bars at the beginning of
each row. We observe the general trend that the performance improvement of MDL, relative to the
corresponding SD baseline, tends to increase with model capacity.

4.1 Selecting optimal scalarization weights p∗

So far, we have discussed MDL/MTL improvement over the SD baseline when selecting the weights
p∗ that maximize average accuracy. However, in real-world settings, many criteria come into play
when evaluating MTL/MDL models: For instance, one task may be more critical than others hence
the model should be evaluated via weighted accuracy. Second, even if the MTL/MDL model
underperforms the corresponding SD baseline at the same model capacity, it may still improve
the efficiency-to-accuracy trade-off when both tasks need to be solved at once. To give a clearer
overview of how these considerations affect the choice of weights p, we report results for all
scalarization weights in Figure 3; We also highlight points where MTL/MDL outperforms SD on
both domains/tasks, and represent each model’s number of parameters as the marker size.

First, we observe a clear asymmetry in terms of performance across the T = 2 datasets, even
when using uniform weighing p1 = 0.5: For instance on Taskonomy (Figure 3), several MTL
models outperform SD on the depth prediction task, but none on the semantic segmentation task.
Nevertheless, MTL models are very appealing when taking model efficiency into account, as they
contain roughly half as many parameters. Secondly, tuning the scalarization weights is crucial in
some settings: For instance in DomainNet, training with p1 ∈ [0.65, 0.75] is more advantageous
than uniform scalarization. Furthermore, the relative ranking of the weight p1, with respect to model
performance, does not change significantly across model capacities, for both the Taskonomy and

6

DomainNet examples. This suggests that optimal weights p∗ for a given model may be a good search
starting point for another architecture of the same family (see Appendix 4).

Nevertheless, the search space for p grows exponentially with T , making the search computationally
prohibitive, even for one architecture. In Section 5, we propose a scalable approach to optimize
scalarization weights and investigate its performance on DomainNet and CelebA.

54 56 58 60 62 64 66 68
`real` domain accuracy

34

36

38

40

42

44

46

48

`p
ai

nt
in

g`
 d

om
ai

n
ac

cu
ra

cy r26
r50
r101
SD
p1=0.25
p1=0.35
p1=0.5
p1=0.65
p1=0.75

(a) DomainNet - real + painting (higher is better)

0.47 0.48 0.49 0.50 0.51 0.52

segm2d - L1 distance

0.28

0.29

0.30

0.31

0.32

de
pt

h
- L

1
di

st
an

ce

SD
MTL shr = 0
MTL shr = 4
p1=0.25
p1=0.35
p1=0.5
p1=0.65
p1=0.75

(b) Taskonomy - normals + depth (lower is better).
"shr" refers to the number of shared decoder layers.

Figure 3: MDL/MTL performance when varying tasks weight p1 for different model capacities.
High opacity markers represent models that outperform their respective SDL baseline (black markers)
on both tasks/domains. Dashed lines connect models with the same architecture. The marker size is
proportional to the number of parameters in each model.

4.2 Conflicting gradients in practice

A widely spread explanation for task interference in the literature is that individual task gradients
may point in conflicting directions, hampering training. To investigate this behavior, we measure
the percentage of conflicting gradients pair encountered in each epoch, when training with uniform
scalarization. Following [64], we define gradients as conflicting if and only if the cosine of their
angle is negative. Finally, we provide further details and figures for this section in Appendix 3.

In Figure 4, we first illustrate an asymmetric characteristic of gradient conflicts: A high number of
gradient conflicts typically translates to poorly performing models (e.g. early training), but the lower
conflicts regime does not correlate well with MDL/MTL performance. In particular, it is common
to encounter more gradient conflicts towards the end of training, while the loss steadily decreases.
This suggests that, in practice, identifying and removing conflicts at every training iteration may be
superfluous, with respect to the compute and memory cost occurred. We can also put this observation
in perspective with Theorem 3 of [64], which states that in the case of two tasks, a parameter update
of PCGrad leads to a lower loss than the uniform scalarization update if the tasks are conflicting
enough; however, this assumption may not hold true across every training iteration.

0 10 20 30 40 50
Training epoch

0.30

0.35

0.40

0.45

0.50

%
 o

f g
ra

di
en

t c
on

fli
ct

project=True project=False

0.20 0.25 0.30 0.35 0.40
Training loss

0.35

0.40

0.45

0.50

linear fit (r=-0.24)

0.80 0.82 0.84 0.86 0.88 0.90
Validation metric

0.35

0.40

0.45

0.50

linear fit (r=0.06)

(a) Per-epoch proportion of
gradient conflicts during training

(b) Correlation plot with
per-epoch average training loss

(c) Correlation plot with
per-epoch test metric

Figure 4: Proportion of conflicting gradients during uniform scalarization training with and without
PCGrad on the 40 attribute classification tasks of CelebA while varying learning rate ([5e-4, 5e-3,
1e-2]), model depth ([3, 6, 9]) and width ([0.5, 0.75, 1]). While the overall number of encountered
conflicts differs, the trend is consistent across both settings in that the higher number of conflicts
encountered towards the end of training does not harm training or final model performance.

7

% conflicting gradients DomainNet Taskonomyvariance (×10−4)
Batch size 2.40 n/a

Learning rate 2.25 47.6
Model width 0.40 1.73

Encoder depth 1.09 2.63
Decoder depth n/a 5.06

cli
pa

rt
in

fo
gr

ap
h

pa
in

tin
g

qu
ick

dr
aw re
al

sk
et

ch

clipart
infograph

painting
quickdraw

real
sketch

0.350

0.375

0.400

0.425

0.450

0.475

no
rm

al
de

pt
h

ke
yp

oi
nt

s_
2d

se
gm

_2
d

se
gm

_3
d

ed
ge

s_
2d

normal
depth

keypoints_2d
segm_2d
segm_3d
edges_2d

0.0

0.1

0.2

0.3

0.4

(a) We measure the variance across learning rates while
keeping other parameters fixed (model capacity, batch
size, etc.), then report the median variance across all set-
tings. We repeat this process for each axis of variation.

(b) Proportion of pairwise task conflicts (for
a fixed model size and learning rate) across
training epochs (median), for DomainNet (6
domains) and Taskonomy (subset of 6 tasks)

Figure 5: (left) Variance of observed gradient conflicts when sweeping over different training
hyperparameters (high impact) as well as model capacity (low impact), and (right) illustrating the
median proportion of pairwise gradient conflicts as a measure of task affinity

Secondly, we analyze the effect of different factors of training variations on the observed proportion
of gradient conflicts in Figure 5(a). On the one hand, hyperparameters directly related to weights
updates, such as the learning rate of batch size, have a clear impact. In particular, since memory
consumption is often a bottleneck of gradient-based MTO methods, this means that naively decreasing
batch size to reduce memory usage may severely impact such methods in practice. On the other
hand, model capacity has a lesser effect on the pattern of gradient conflicts, despite influencing task
interference as highlighted in Figure 2. Nevertheless, we also observe that the overall magnitude of
conflicts encountered for different pairs of tasks reveal interesting task affinity patterns, as illustrated
in Figure 5(b): For instance, the quickdraw domain of DomainNet appears as a clear outlier (across
all model capacities), which is also the case in terms of MDL performance in Figure 2.

In summary, we observe intriguing properties of gradient conflicts in practice, in particular suggesting
that the extra cost of measuring, storing and correcting conflicting gradients at every training iteration
can be superfluous. As an alternative, [30] shows that less costly regularization methods (e.g., early
stopping) can be competitive with MTO. In this work, we consider an orthogonal direction, by tuning
the scalarization/resampling weights hyperparameters to regulate the training speed of the different
tasks/domains. However, the computational cost of browsing this large search space becomes a
practical caveat as T grows. In the next section, we leverage a scalable hyperparameter tuning
algorithm to tackle this problem and apply it on the DomainNet and CelebA datasets.

5 Population-based training for scalarization weights selection

Tuning the weights p with classical parameter search methods, such as grid search or random search,
becomes extremely costly when T increases. To address this high computational demand, we propose
to leverage the population-based training (PBT) [24] framework which has been used for efficient
hyperparameter search in reinforcement learning [24] and for data augmentation pipelines [23].

Population-based training (PBT). PBT is an evolutionary algorithm for hyperparameter search:
N models are trained in parallel with different starting hyperparameters. Every Eready epochs, the
models synchronize: The Q% worst models in the population are stopped, and their model weights
and hyperparameters are replaced by the ones of the Q% best models (exploit step); Then, the
newly copied hyperparameters are randomly perturbed to reach a new part of the hyperparameter
search space (explore step). Finally, training resumes until E epochs are reached. In other words,
PBT enables dynamic exploration of the hyperparameter search space with a fixed computational
cost (cost of training N models + potential overhead from synchronization). A follow-up work,
Population-based Bandits (PB2) [46] proposes to leverage Bayesian optimisation [17] to better guide
the explore step. In contrast to PBT, PB2 also offers theoretical guarantees on the convergence rate.

Using PBT to tune scalarization weights. PBT tuning relies on three important characteristics
that may conflict with the standard scalarization MDL/MTL training pipeline:

• Models are trained with a dynamic schedule of hyperparameters. While this contrasts with standard
scalarization in which p is fixed, we do not expect this to be an issue as recent work has shown that
scalarization with dynamic random weights performs well in practice [35].

8

• Secondly, models are compared against one another after a few epochs of training (Eready epochs)
in contrast to e.g. random search where models are usually trained until convergence, or reaching
a certain stopping criterion. Consequently, tuning Eready can significantly impact the search’s
stability and outcome, which we further discuss in Appendix 5.

• Finally, models in the population are compared using a single objective (e.g. average task/domain
metric) during training. This may be an issue if the task metrics’ have widely different ranges and
the PBT scheduler may simply learn to favor short term improvement by giving higher weight to
tasks with high metrics; While we do not observe this issue in our settings, recent work [15] also
proposes a multi-objective variant of PBT which may be better fitted for MDL/MTL applications.

Nevertheless, the key advantage of PBT is its computational efficiency with regard to search space
exploration: For a constant cost of training N models, and some minor overhead related to check-
pointing, PBT explores up to N(1 +Q× Etotal/Eready) possible hyperparameter configurations
throughout training of the population.

Table 1: Results of MDL when jointly training all 6 domains of DomainNet for scalarization (uniform
and PBT-found weights) and MTO methods. PBT is run with a population size of N = 12 models,
such that every Eready = 5 epochs, Q = 25% of the population triggers an exploit/explore step.

DomainNet (ResNet26 with 0.25 width)
average clipart infograph painting quickdraw real sketch

Scalarization
Uniform 46.78 ± 0.10 56.31 ± 0.04 20.46 ± 0.15 40.95 ± 0.45 60.69 ± 0.07 55.64 ± 0.01 46.64 ± 0.32
PBT 48.01 ± 0.08 58.31 ± 0.15 19.45 ± 0.08 41.32 ± 0.11 63.58 ± 0.31 60.43 ± 0.05 45.00 ± 0.26

MTO - Loss-based
Uncertainty [26] 45.12 ± 0.07 59.24 ± 0.09 17.14 ± 0.25 37.75 ± 0.16 59.85 ± 0.16 52.35 ± 0.20 44.42 ± 0.10
IMTL-L [38] 44.22 ± 0.10 58.05 ± 0.22 16.41 ± 0.16 37.53 ± 0.21 59.22 ± 0.29 51.27 ± 0.19 42.83 ± 0.38

MTO - Gradient-based
CAGrad [37] 42.82 ± 0.06 54.08 ± 0.03 18.26 ± 0.04 36.79 ± 0.14 56.46 ± 0.28 49.52 ± 0.15 41.78 ± 0.01
GradDrop [8] 42.52 ± 0.05 53.34 ± 0.03 18.16 ± 0.07 37.25 ± 0.02 55.09 ± 0.13 49.94 ± 0.26 41.35 ± 0.09
PCGrad [64] 42.78 ± 0.14 53.55 ± 0.04 18.29 ± 0.34 37.31 ± 0.38 55.60 ± 0.08 50.41 ± 0.13 41.52 ± 0.67

DomainNet (ResNet26 with original width)
average clipart infograph painting quickdraw real sketch

Scalarization
Uniform 48.83 ± 0.08 58.69 ± 0.05 21.58 ± 0.39 42.83 ± 0.03 62.51 ± 0.21 58.31 ± 0.06 49.05 ± 0.15
PBT 49.27 ± 0.12 58.41 ± 0.50 19.30 ± 0.19 44.53 ± 0.16 63.08 ± 0.42 60.08 ± 0.16 50.23 ± 0.01

MTO - Loss-based
Uncertainty [26] 46.96 ± 0.10 60.71 ± 0.36 18.74 ± 0.03 40.22 ± 0.40 60.92 ± 0.04 54.37 ± 0.12 46.79 ± 0.23
IMTL-L [38] 46.04 ± 0.21 59.76 ± 0.78 18.21 ± 0.15 39.12 ± 0.76 60.24 ± 0.39 53.06 ± 0.38 45.87 ± 0.29

MTO - Gradient-based
CAGrad [37] 44.91 ± 0.18 56.56 ± 0.38 19.63 ± 0.32 38.84 ± 0.47 58.06 ± 0.41 51.80 ± 0.58 44.58 ± 0.45
GradDrop [8] 45.15 ± 0.08 56.22 ± 0.43 19.89 ± 0.16 39.70 ± 0.03 57.55 ± 0.12 52.81 ± 0.04 44.76 ± 0.18
PCGrad [64] 44.96 ± 0.14 55.79 ± 0.24 19.82 ± 0.20 39.65 ± 0.29 57.30 ± 0.30 52.57 ± 0.11 44.65 ± 0.65

In Table 1 and Table 2, we report results for searching optimal scalarization weights p∗ when training
for all 6 domains of DomainNet and for 8 tasks (attribute subsets) of CelebA. For PBT results, we first
run the search algorithm using the implementation from Raytune [33]. We use 70% of the training
set for training, and use the remaining 30% to rank models in the population by measuring their
average accuracy on this set. Once the search is done, we retrain a model on the full training set
using the scalarization weights found by PBT. For comparison, we also report results for uniform
scalarization and MTO methods, using the implementation from [31]. All final models are trained
for three different learning rates and the best metric is reported, averaged across 2 random seeds.

On the DomainNet example, we observe that the scalarization weights found by PBT outperforms all
methods, confirming our insights that tuning weights p can further enhance scalarization. Note that
MTO methods were not designed or employed for multi-domain settings such as DomainNet, which
may explain why gradient-based MTO methods all underperform their loss-based counterparts in
the results of Table 1, while they do exhibit good performance on CelebA MTL. In fact, on CelebA,
while PB2 search reaches the highest overall average metric, we find that results across tasks exhibit
more variance, with PB2 and CAGrad yielding the best, comparable, performance. Overall, the very
narrow differences in accuracy makes it difficult to highlight one specific method, which also raises
the issue on whether CelebA is a robust enough MTL benchmark. Nevertheless, both experiments

9

show that scalarization can outperform more complex optimization methods when its weights are
tuned properly, which can be done efficiently using scalable hyperparameter search methods like PBT
or PB2. We discuss further insights and compute details in Appendix 5.

Table 2: Results of MTL when training on all 8 tasks (subset of attributes) of CelebA defined in
Appendix 1. For PBT and PB2 we use slightly different parameters than DomainNet to account for
the fact that CelebA contains more tasks, and hence has a larger search space: All PBT runs use a
population size of N = 12 models, such that every Eready = 3 epochs, Q = 40% of the population
triggers an exploit/explore step. For PB2 runs we use a population size of N = 8 and otherwise the
same Q and Eready hyperparameters. For the sake of space, we omit standard deviations in CelebA in
the main text (in the range 1e−4), and only report results for the four best performing MTO baselines.

ViT-S/4, 6 layers, full width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.23 86.70 92.79 85.16 95.45 98.10 92.99 91.68 86.95
PBT 91.21 86.79 92.77 85.18 95.42 98.02 92.92 91.66 86.95
PB2 91.28 86.96 92.87 85.17 95.47 98.10 92.90 91.81 86.94

MTO
IMTL-L [38] 91.19 86.60 92.80 85.18 95.46 97.97 92.93 91.66 86.94
CAGrad [37] 91.27 86.92 92.89 85.11 95.49 98.17 92.93 91.74 86.89
GradDrop [8] 91.27 87.05 92.73 85.27 95.48 98.11 92.93 91.64 86.94
PCGrad [64] 91.18 86.71 92.74 85.09 95.37 98.12 92.90 91.66 86.84

ViT-S/4, 9 layers, full width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.17 87.33 92.50 85.10 95.45 97.93 92.85 91.39 86.80
PBT 91.15 87.43 92.51 85.18 95.46 97.78 92.51 91.36 87.00
PB2 91.25 86.83 92.85 85.12 95.49 98.19 92.90 91.78 86.81

MTO
IMTL-L [38] 91.16 87.40 92.44 85.09 95.44 97.92 92.87 91.39 86.75
CAGrad [37] 91.22 87.37 92.66 85.13 95.40 97.92 92.92 91.61 86.74
GradDrop [8] 91.07 87.41 92.36 85.01 95.41 97.73 92.75 91.21 86.70
PCGrad [64] 91.14 87.53 92.42 85.00 95.38 97.87 92.84 91.37 86.68

6 Limitations

Since we are building off linear scalarization, our study suffers from the same issue: It has been
shown, for instance in [5], that scalarization only finds solutions on the convex parts of the Pareto
front. Same as previous studies [63, 52], we do not observe this to be an issue in practice, but there
may be some cases where scalarization can simply not perform as well as more advanced MTO
methods. In addition, our results and observations relies on an experimental study. While we do
attempt to experiment over a diverse set of benchmarks and model capacities to get as many data
points as possible, we can not guarantee the generality of our claims across all MDL/MTL settings.

7 Conclusions

This work presents a comprehensive evaluation of scalarization’s effectiveness in multi-domain and
multi-task learning, spanning diverse model capacities and dataset sizes. Our analysis reveals that
larger-capacity models often benefit more from joint learning across diverse settings. In addition,
tuning scalarization weights is key to reach optimal performance at inference and improve the
MTL/MDL model generalization. Nevertheless„ given a specific set of specific tasks/domains, the
optimal weights are rather robust to changes in model capacities within the same architecture family.
We then investigate the impact of model capacity on gradient conflicts observed during training and
observe low correlation with MTL/MDL performance. Finally, to tackle the large search space of
tuning scalarization weights, we propose to leverage population-based training as a scalable, efficient
method for tuning scalarization weights as the number of tasks/domains increases.

10

References
[1] Jing An, Lexing Ying, and Yuhua Zhu. Why resampling outperforms reweighting for correcting

sampling bias. In International Conference on Learning Representations (ICLR), 2021. 3

[2] Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task learning. In
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th
Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings,
pages 567–580. Springer, 2003. 3

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando C Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine Learning, 79:
151–175, 2010. 1

[4] John Blitzer, Koby Crammer, Alex Kulesza, Fernando C Pereira, and Jennifer Wortman Vaughan.
Learning bounds for domain adaptation. In Conference on Neural Information Processing
Systems (NeurIPS), 2007. 3

[5] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. IEEE Transactions on
Automatic Control, 51:1859–1859, 2004. 10

[6] Felix JS Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C Alexander, and Jorge Cardoso.
Stochastic filter groups for multi-task cnns: Learning specialist and generalist convolution kernels.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages 1385–1394, 2019. 2

[7] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. ArXiv, abs/1711.02257,
2017. 1, 2, 4

[8] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai,
and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. In Conference on Neural Information Processing Systems (NeurIPS), 2020. 2, 4

[9] Adam Coates, A. Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2011. 4, 15

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3213–3223, 2016. 5

[11] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Au-
toAugment: Learning augmentation strategies from data. Conference on Computer Vision and
Pattern Recognition (CVPR), pages 113–123, 2019. 17

[12] Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. RandAugment: Practical
automated data augmentation with a reduced search space. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 3008–3017, 2019. 17

[13] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective opti-
mization. Comptes Rendus Mathematique, 350:313–318, 2012. 2, 3, 4

[14] Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar, Razvan
Pascanu, and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity.
arXiv preprint arXiv:1812.02224, 2018. 2

[15] Arkadiy Dushatskiy, Alexander Chebykin, Tanja Alderliesten, and Peter A.N. Bosman. Multi-
objective population based training. In International Conference on Machine Learning, pages
8969–8989. PMLR, 2023. 9

[16] Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Effi-
ciently identifying task groupings for multi-task learning. In Conference on Neural Information
Processing Systems (NeurIPS), 2021. 1, 3, 16

11

[17] P. Frazier. A tutorial on Bayesian optimization. ArXiv, abs/1807.02811, 2018. 8, 19

[18] Hanan Gani, Muzammal Naseer, and Mohammad Yaqub. How to train vision transformer on
small-scale datasets? In British Machine Vision Conference (BMVC), 2022. 4, 15

[19] Yaroslav Ganin, E. Ustinova, Hana Ajakan, Pascal Germain, H. Larochelle, François Laviolette,
Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural networks.
ArXiv, abs/1505.07818, 2015. 3

[20] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. NDDR-CNN: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3205–3214, 2019. 2

[21] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task
prioritization for multitask learning. In European Conference on Computer Vision (ECCV), pages
270–287, 2018. 2

[22] Lei Han and Yu Zhang. Learning multi-level task groups in multi-task learning. In Conference
on Artificial Intelligence (AAAI), 2015. 3

[23] Daniel Ho, Eric Liang, Ion Stoica, P. Abbeel, and Xi Chen. Population based augmentation:
Efficient learning of augmentation policy schedules. In International Conference on Machine
Learing (ICML), 2019. 8, 17, 20

[24] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue,
Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017. 2, 8, 19

[25] Adrián Javaloy and Isabel Valera. RotoGrad: Gradient homogenization in multitask learning.
In International Conference on Learning Representations (ICLR), 2021. 1, 2, 4

[26] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7482–7491, 2017. 2, 4

[27] Iasonas Kokkinos. UberNet: Training a universal convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 2, 3

[28] B. Krawczyk. Learning from imbalanced data: open challenges and future directions. Progress
in Artificial Intelligence, 5:221 – 232, 2016. 3

[29] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. 4, 15

[30] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar.
In defense of the unitary scalarization for deep multi-task learning. In Conference on Neural
Information Processing Systems (NeurIPS), 2022. 1, 2, 4, 5, 8, 18

[31] Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representations: A unified look at multiple
task and domain learning. arXiv preprint arXiv:2204.02744, 2022. 9, 21

[32] Yunsheng Li, Lu Yuan, Yinpeng Chen, Pei Wang, and Nuno Vasconcelos. Dynamic transfer for
multi-source domain adaptation. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10998–11007, 2021. 5, 16

[33] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion Stoica.
Tune: A research platform for distributed model selection and training. ArXiv, abs/1807.05118,
2018. 9, 20

[34] Baijiong Lin, Feiyang Ye, and Yu Zhang. A closer look at loss weighting in multi-task learning.
arXiv preprint arXiv:2111.10603, 2021. 2

12

[35] Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor Wai-Hung Tsang. Reasonable effectiveness of
random weighting: A Litmus test for multi-task learning. In IEEE Transactions on Machine
Learning Research (T-MLR), 2022. 8

[36] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and Sam Tak Wu Kwong. Pareto multi-task
learning. In Conference on Neural Information Processing Systems (NeurIPS), 2019. 4

[37] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Conference on Neural Information Processing Systems (NeurIPS), 34:
18878–18890, 2021. 1, 2, 4

[38] Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin
Liao, and Wayne Zhang. Towards impartial multi-task learning. In International Conference on
Learning Representations (ICLR), 2021. 2, 4, 18

[39] Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with
attention. Conference on Computer Vision and Pattern Recognition (CVPR), pages 1871–1880,
2018. 2

[40] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision (ICCV), 2015. 4, 5

[41] Raphael Gontijo Lopes, Sylvia J. Smullin, Ekin Dogus Cubuk, and Ethan Dyer. Tradeoffs in
data augmentation: An empirical study. In International Conference on Learning Representations
(ICLR), 2021. 17

[42] Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient
descent with controlled ascent in Pareto optimization. In International Conference on Machine
Learing (ICML), 2020. 3, 4

[43] Lincy Mathews and Seetha Hari. Learning from imbalanced data. Advances in Computer and
Electrical Engineering, 2019. 3

[44] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. Journal of Machine Learning Research (JMLR), abs/1505.06279, 2015.
1

[45] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks
for multi-task learning. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3994–4003, 2016. 2

[46] Jack Parker-Holder, Vu Nguyen, and Stephen J. Roberts. Provably efficient online hyperparam-
eter optimization with population-based bandits. arXiv: Learning, 2020. 8, 20

[47] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In International Conference on Computer Vision
(ICCV), pages 1406–1415, 2018. 4, 5, 15, 16

[48] Anastasia Pentina and Christoph H. Lampert. Multi-task learning with labeled and unlabeled
tasks. In International Conference on Machine Learing (ICML), 2016. 1

[49] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. Conference on Neural Information Processing Systems (NeurIPS), 30,
2017. 3

[50] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8119–8127, 2018. 3

[51] Amir Rosenfeld and John K Tsotsos. Incremental learning through deep adaptation. IEEE
Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 42(3):651–663, 2018. 3

[52] Michael Ruchte and Josif Grabocka. Multi-task problems are not multi-objective. ArXiv,
abs/2110.07301, 2021. 4, 10

13

[53] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Latent multi-task
architecture learning. In Conference on Artificial Intelligence (AAAI), 2019. 2

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015. 15

[55] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In
Conference on Neural Information Processing Systems (NeurIPS), 2018. 2, 4

[56] Changjian Shui, Mahdieh Abbasi, Louis-Émile Robitaille, Boyu Wang, and Christian Gagné.
A principled approach for learning task similarity in multitask learning. In International Joint
Conferences on Artificial Intelligence (IJCAI), volume abs/1903.09109, 2019. 1

[57] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and
support inference from rgbd images. European Conference on Computer Vision (ECCV), 7576:
746–760, 2012. 5

[58] Trevor Scott Standley, Amir Roshan Zamir, Dawn Chen, Leonidas J. Guibas, Jitendra Malik,
and Silvio Savarese. Which tasks should be learned together in multi-task learning? ArXiv,
abs/1905.07553, 2019. 1, 3, 4, 5, 16, 17

[59] Gjorgji Strezoski, Nanne van Noord, and Marcel Worring. Many task learning with task routing.
In International Conference on Computer Vision (ICCV), pages 1375–1384, 2019. 2

[60] Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal gradients.
arXiv preprint arXiv:1912.06844, 2019. 2

[61] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin
Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE
transactions on pattern analysis and machine intelligence, 44(7):3614–3633, 2021. 2

[62] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In International Conference
on Learning Representations (ICLR), 2021. 2, 18

[63] Derrick Xin, B. Ghorbani, Ankush Garg, Orhan Firat, and Justin Gilmer. Do current multi-
task optimization methods in deep learning even help? In Conference on Neural Information
Processing Systems (NeurIPS), 2022. 1, 2, 4, 10, 18

[64] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. In Conference on Neural Information Processing
Systems (NeurIPS), 2020. 1, 2, 4, 7, 18

[65] Amir Roshan Zamir, Alexander Sax, Bokui (William) Shen, Leonidas J. Guibas, Jitendra
Malik, and Silvio Savarese. Taskonomy: Disentangling task transfer learning. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 1, 4, 5, 16

[66] Youshan Zhang. A survey of unsupervised domain adaptation for visual recognition. ArXiv,
abs/2112.06745, 2021. 3

14

Supplemental Material to “Scalarization for Multi-Task and
Multi-Domain Learning at Scale”

1 Experimental settings and training hyperparameters

1.1 Multi-Domain

We refer to benchmarks as "multi-domain" when they contain multiple input visual domains with a
shared set of output classes (i.e., ∀i ̸= j,Xi ̸= Xj and Yi = Yj).

CIFAR-10 and STL-10. CIFAR-10 [29] is a classical benchmark for image classification containing
50k training samples uniformly distributed across 10 classes. STL-10 [9] is a semi-supervised dataset
which was designed to resemble CIFAR-10. Specifically, we only use the 5000 annotated images
in STL-10, which are also uniformly distributed across the same 10 classes as CIFAR. In STL-10,
the images themselves are from the ImageNet [54] dataset, and cropped/resized to 96 pixels. We
further resize them to 32 pixels to align with CIFAR. In summary, the key difficulties are (i) the input
distribution shift between the two datasets and (ii) the high imbalance in data availability.

We use a vision transformer backbone (ViT-S) optimized for small-scale datasets [18] (compared to
the original ViT-S, this backbone contains smaller patch sizes, fewer transformer layers and narrower
embeddings, but a higher number of heads). To control model capacity, we vary the depth (number of
transformer layers) in {3, 6, 9} and the width (token dimension) in {48, 96, 144, 192}, Finally, we
train each model from scratch on a single NvidiaV100 GPU with a batch size of 256 images for
300 epochs (including 30 epochs of linear learning rate warmup), using a learning rate of 0.001 and
weight decay of 0.05 with the AdamW optimizer and cosine learning rate decay.

DomainNet. DomainNet [47] is a classification dataset of 6 visual domains annotated for 345
classes, for a total of roughly 410k training samples. DomainNet was initially introduced for the
problem of multi-source domain adaption, in which one or more of the domains does not have training
annotations; the key difficulty is thus to learn representations that are aligned across domains. In
contrast to the CIFAR+STL example, DomainNet exhibits distribution shifts across both the input
domains and output classes, as visualized in Figure A.

clipart
|X| = 33525

infograph
|X| = 36023

painting
|X| = 50416

quickdraw
|X| = 120750

real
|X| = 120906

sketch
|X| = 48212

Figure A: Illustrating the data imbalance in DomainNet with a contour plot of the number of samples
per class and domains in DomainNet. Each of the corners of the hexagon represents one of the six
domains in DomainNet, and the lines (levels of the contour plot) represent the number of samples,
drawn every 15 classes. For comparison, a uniformly distributed dataset would yield perfect hexagons.

15

Following previous literature [47, 32], we use a ResNet-101 as our main backbone. There is no
domain-dependent layer in the architecture: the final classifier layer is shared across all domains. We
first perform a training sweep over the largest domain (real) to select the best-performing learning
rate from {0.3, 0.03, 0.003, 0.0003} and the number of epochs from {30, 60, 90}. Following these
results, we use a learning rate of 0.03 and train for 30 epochs with a batch size of 512 in subsequent
experiments. We train with the AdamW optimizer with a weight decay of 1e − 4. We also apply
linear learning rate warm-up during the first five training epochs and use cosine schedule learning rate
decay for the rest of the training. Finally, to control model capacity, we vary the depth (backbone) in
{ResNet-26, ResNet-50, ResNet-101} and the width factor.

Multi-domain, resampling and training length In the multi-domain setting, scalarization weights
become resampling probabilities for each dataset, as shown in (2). Consequently, the notion of
"epoch" is hard to define compare to the standard mono-dataset setting. To resolve this, we always
define epochs with respect to one of the domains. For instance, in the CIFAR+STL case, we use STL
as our reference. Therefore, "one epoch" translates to seeing as many samples as in the original STL
dataset (5000) using the current batch size (256), i.e. roughly 20 training steps. In the DomainNet
case, we define epochs relatively to the real domain. This definition has the advantage of not being
impacted by the sampling weights p; In particular, this means that both the MDL models and the
single dataset (SD) baselines are trained for as many training steps, and see the same amount of
training samples, only sampled from different data distributions.

1.2 Multi-task

We define multi-task benchmarks as datasets where every image is fully annotated for multiple
output tasks (i.e., ∀i ̸= j,Xi = Xj and Yi ̸= Yj). This setting is particularly popular for scene
understanding problems where every scene is labelled with multiple dense predictions (e.g. depth,
normals, segmentation mas, edges, etc.)

Celeba. CelebA is a binary attribute classification dataset containing 40 attributes and roughly
162k training images. To turn CelebA into a multi-task problem, it is common to consider each
attribute as a binary classification task: More specifically, we use a fully shared backbone with a
final linear layer of 40 outputs, outputting logits for every task. The model is then trained using 40
binary cross-entropy losses, one for each attribute. To make our comparative analysis more scalable,
we define several tasks as subsets of attributes, grouped based on semantic similarity (e.g. all hair
colors are in the same subgroup). The 8 resulting subsets of attributes are described in Table A. In the
scalarization setting, this simply means that some of the attributes share the same importance weight.

As a backbone, we use the same ViT-S/4 based architecture as for CIFAR/STL. We train for 50
epochs with 5 epochs of learning rate warmup. We use a learning rate of 0.0005 with cosine schedule
decay anf train with the AdamW optimizer with a weight decay of 0.05. We use input images of size
32 (with tokens of size 4), a batch size of 256, and RandAugment data augmentations.

Table A: The eight tasks defined as subsets from CelebA attributes used in our main analysis.
Attributes in the same subset share a common importance weight p

Hair color Hairstyle Facial Hair Mouth Clothes Face Structure Gender Age
Black Hair Bald 5’o’Clock Shadow Big Lips Eyeglasses Big Nose Male Young
Blond Hair Bangs Mustache Mouth Slightly Open Heavy Makeup Chubby
Brown Hair Receding Hairline No Beard Smiling Wearing Earrings Double Chin
Gray Hair Sideburns Goatee Wearing Lipstick Wearing Hat High Cheekbones

Straight Hair Wearing Necklace Oval Face
Wavy Hair Wearing Necktie Pointy Noise

Taskonomy. Taskonomy [65] is a large dataset containing a variety of dense prediction tasks for
indoor scenes. We use the tiny split of Taskonomy which contains roughly 275k images. Taskonomy
was originally introduced for the problem of task clustering: The original work [65] proposes a task
affinity metric to define a taxonomy of tasks. This taxonomy structure is then used to determine
which tasks should be trained from scratch and which tasks could benefit from others via transfer
learning. Closer to our setting, follow-up works [58, 16] propose to use this taxonomy to determine
which tasks should be grouped or not in multi-task learning. Once the groupings are determined, a

16

separate backbone is trained for each group of tasks. Instead, for our analysis, we use Taskonomy-tiny
in a more standard multi-task framework, where a backbone is shared across tasks.

For training, we follow the methodology of [58]. We use a ResNet-26 backbone (with varying
bottleneck width) with a mirrored decoder; By default, only the encoder is shared across tasks and
each task receives its own decoder. To vary model capacity, we add the option to share more or fewer
layers of the decoders across tasks. We use the same learning rate of 0.1 and training for 100 epochs
using a batch size of 256. We train with SGD with a momentum of 0.9 and a weight decay of 1e− 4.
Following [58], all output prediction maps are rescaled to have zero mean and unit variance on the
training set, and all dense tasks are trained with L1 loss.

2 Additional analysis results

2.1 Complete results and methodology for Figure 2

In Section 4, we perform MDL and MTL experiments on several pairs of datasets, each time
comparing to the single dataset (SD) baseline trained for the same model capacity and training length.
All results are run for three random seeds on CelebA and CIFAR+STL, and two random seeds for
DomainNet and Taskonomy. To present these results in a condensed form in Figure 2, we first
find the scalarization weights p∗ = (p∗1, 1 − p∗1) that yield the best average accuracy across both
datasets. Then we report the difference in metrics between MDL trained with weights p∗ and the
corresponding SD baseline, for each dataset. Note that for the Taskonomy case, where the tasks are
evaluated via L1 loss, we measure the negative difference instead to keep the same interpretation as
the other settings where a positive value means MDL improves over SD.

For completeness, we report all results for the CIFAR/STL case as trade-off plots (accuracy on dataset
1 versus accuracy on dataset 2) in Figure B (CIFAR/STL) and in in Figure C (segmentation 2D and
depth tasks of Taskonomy). We observe the same trends as summarized in the main paper: First,
when increasing model capacity, the MDL performance over the SD baseline increases; This is best
seen when width increases (across columns). Second, the optimal weights vary across model sizes:
At low width, the best performance is reached for a ratio in the range of [0.3, 0.4]. While larger
models prefer p∗STL ∈ [0.1, 0.3]. Finally, it is interesting to note that these weights also differ from
heuristics commonly used to set scalarization weights: such as uniform scalarization pSTL = 0.5 or
for instance setting the weights to match the number of samples in each dataset pSTL = 0.09. This
further highlights the fact that tuning scalarization weights can make scalarization into a stronger
baseline for MDL/MTL.

2.2 MDL helps generalization

When comparing the MDL/MTL and SD performance, we often observe that MDL/MTL improve-
ments over SD are visible at inference but not at training time (as illustrated for instance in Figure D).
This indicates that MDL/MTL training helps generalization of the model compared to training on a
single dataset. In particular, in the MDL setting, this draws an interesting parallel with data augmen-
tations: In fact, MDL training can be seen as adding additional input data from a new distribution,
with a probability given by the scalarization weights p, while sharing the same semantic classes. And
similarly to data augmentations, adding this extra data source makes the training distribution harder
to fit (hence the SD baseline outperforming MDL at train time) but can greatly benefit generalization
performance (hence the inverse trend at inference).

To push the analogy further, the experimental study of [41] suggests that a good data augmentation
should be one with a high affinity to the original data distribution (i.e., the distribution shift between
the original data and augmented one should not be too significant) as well as a high diversity (i.e., the
added data should be complex enough, which can be measure e.g. with magnitude of the training loss).
This hypothesis also matches our observations: For instance adding infograph data to the real
domain leads to a low affinity pairing but with high diversity and yields weaker MDL performance
on the real images compared to the SD baseline (see Figure 2).

Finally, we note that the problem of finding optimal scalarization weights mirrors the one of finding
data augmentation hyperparameters, which has been extensively explored for the task of image classi-
fication. It has led to now commonly-adopted augmentation strategies such as RandAugment [12],
AutoAugment [11], or PBA [23], which also uses Population-based training to tackle this problem.

17

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 3; width = 0.25

ST
MT

depth = 3; width = 0.5

ST
MT

depth = 3; width = 0.75

ST
MT

depth = 3; width = 1.0

ST
MT

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 6; width = 0.25

ST
MT

depth = 6; width = 0.5

ST
MT

depth = 6; width = 0.75

ST
MT

depth = 6; width = 1.0

ST
MT

60 65 70
top-1 acc

domain = stl10

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 9; width = 0.25

ST
MT

60 65 70
top-1 acc

domain = stl10

depth = 9; width = 0.5

ST
MT

60 65 70
top-1 acc

domain = stl10

depth = 9; width = 0.75

ST
MT

60 65 70
top-1 acc

domain = stl10

depth = 9; width = 1.0

ST
MT

0.0 0.2 0.4 0.6 0.8 1.0
pSTL

Figure B: Complete analysis results for the CIFAR+STL scenario. Each row corresponds to a different
model depth and each column to a model width, in increasing order. In each plot, we plot the model’s
test accuracy on CIFAR-10 versus the test accuracy on STL-10. The single dataset baseline (SD)
is drawn in black and corresponds to the accuracy obtained when training two separate networks,
one on each dataset independently. The circle markers correspond to the MDL model trained for
different scalarization weights p. The value of pSTL is represented as the color of the marker, while
the remaining weight is always set to pCIFAR = 1− pSTL.

3 Methodology for measuring gradients conflicts

In this appendix, we briefly describe our methodology for Section 4.2. We use the same definition of
gradient conflicts as in PCGrad [64]: Two task/domain specific gradients are conflicting if and only if
the cosine of the angle between them is strictly negative. We train a model using standard uniform
scalarization, measure the number of conflicting pairs of task/domain gradients over one epoch of
training, and report it as a percentage (of all pairs), for each epoch during training.

We report these results in the main text in Figure 4 and in Figure E below. Our main observation
is that the presence or absence of gradient conflicts does not correlate well with actual MDL/MTL
performance throughout trainined. This challenges the assumption underlying many multi-task
optimization (MTO) methods [64, 38, 62] that reducing gradient conflicts leads to improved MTL
performance. This also aligns well with recent results of [63, 30] showing that MTO methods that
reduce gradient conflicts do not outperform simpler scalarization approaches in practice, and with the
hypothesis of [30] that many MTO methods can be reinterpreted as regularization techniques.

4 Consistency of optimal scalarization weights

As noted in the analysis from Section 4, the optimal weights p∗ is rather consistent across model
depths and widths. For instance, on the CIFAR/STL case, p∗ always falls in the range of [0.2, 0.4].

18

0.265

0.270

0.275

0.280

0.285

to
p-

1
ac

c
do

m
ai

n
=

de
pt

h

width = 0.5;shr = 0

ST
MT

width = 0.5;shr = 2

ST
MT

width = 0.5;shr = 4

ST
MT

0.43 0.44 0.45 0.46 0.47
top-1 acc

domain = segm_2d

0.265

0.270

0.275

0.280

0.285

to
p-

1
ac

c
do

m
ai

n
=

de
pt

h

width = 1.0;shr = 0

ST
MT

0.43 0.44 0.45 0.46 0.47
top-1 acc

domain = segm_2d

width = 1.0;shr = 2

ST
MT

0.43 0.44 0.45 0.46 0.47
top-1 acc

domain = segm_2d

width = 1.0;shr = 4

ST
MT

0.0 0.2 0.4 0.6 0.8 1.0
psegm2d

Figure C: Complete analysis results for the segmentation 2D and depth prediction tasks in the
Taskonomy scenario. Each row corresponds to a different number of layers shared in the decoder
(shr) and each column to a model width. In each plot, we plot the model’s test Le loss of each task
on either axis. The single dataset baseline (SD) is drawn in black and corresponds to the accuracy
obtained when training two separate networks, one on each dataset independently. The circle markers
correspond to the MDL model trained for different scalarization weights p. The value of psegmentation2D
is represented as the color of the marker.

This can also be seen from the qualitative results of the population-based training search of scalariza-
tion weights in Section 5.2: While the history of hyperparameter changes during the search differ,
PBT tends to converge to similar distribution for the scalarization weights p across different model
depths and widths. This suggests that the theoretical search space for p may be reduced in practice
leading to a more computationally efficient search: Performing a rough initial search on a smaller
model from the same architecture family can provide a promising range for p, and can then be refined
by searching with the larger target architecture.

5 PBT results

Because the search space for scalarization weights p grows exponentially with the number of tasks,
classical hyperparameter search methods such as grid search or random search would struggle to
scale as the number of tasks increases. Bayesian optimization (BO) [17] allows for faster results
by browsing the search space in a smart way by building and following a probabilistic model of
the hyperparameters. However, BO still requires training models to convergence (or until an early
stopping criterion is met) which can be computationally expensive. Instead, we experiment with the
Population-based Training framework [24] for searching for the optimal scalarization weights. PBT
relies on the assumption that the "goodness" of a certain hyperparameter choice can be evaluated in a
few epochs during training, rather than having to finish a full run of training.

5.1 Compute resources

As mentioned in the main paper we perform all training runs on a single NVIDIA V100 machine
with 32GB of memory. However, both the PBT and MTO models require higher compute resources
than a single normal run of training, which we discuss below.

19

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 3; width = 0.25

ST
MT

depth = 3; width = 0.5

ST
MT

depth = 3; width = 0.75

ST
MT

depth = 3; width = 1.0

ST
MT

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 6; width = 0.25

ST
MT

depth = 6; width = 0.5

ST
MT

depth = 6; width = 0.75

ST
MT

depth = 6; width = 1.0

ST
MT

60 65 70
top-1 acc

domain = stl10

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 9; width = 0.25

ST
MT

60 65 70
top-1 acc

domain = stl10

depth = 9; width = 0.5

ST
MT

60 65 70
top-1 acc

domain = stl10

depth = 9; width = 0.75

ST
MT

60 65 70
top-1 acc

domain = stl10

depth = 9; width = 1.0

ST
MT

0.0 0.2 0.4 0.6 0.8 1.0
pSTL

45

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 3; width = 0.25

ST
MT

depth = 3; width = 0.5

ST
MT

depth = 3; width = 0.75

ST
MT

depth = 3; width = 1.0

ST
MT

45

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 6; width = 0.25

ST
MT

depth = 6; width = 0.5

ST
MT

depth = 6; width = 0.75

ST
MT

depth = 6; width = 1.0

ST
MT

60 70 80 90 100
top-1 acc

domain = stl10

45

50

55

60

65

70

75

80

to
p-

1
ac

c
do

m
ai

n
=

cif
ar

10

depth = 9; width = 0.25

ST
MT

60 70 80 90 100
top-1 acc

domain = stl10

depth = 9; width = 0.5

ST
MT

60 70 80 90 100
top-1 acc

domain = stl10

depth = 9; width = 0.75

ST
MT

60 70 80 90 100
top-1 acc

domain = stl10

depth = 9; width = 1.0

ST
MT

0.0 0.2 0.4 0.6 0.8 1.0
pSTL

Figure D: Train-test Discrepancy when comparing MDL/MTL improvement over the SD baseline
visualized on the CIFAR+STL example. In particular, in the MDL setting, this matches the classical
interpretation of data augmentations: Adding additional semantically relevant data from an input
distribution may be harder to fit at training time but leads to improved generalization performance at
inference.

0 5 10 15 20 25 30
Training epoch

0.30

0.35

0.40

0.45

0.50

%
 o

f g
ra

di
en

t c
on

fli
ct

bs=128 bs=256 bs=512

1 2 3 4 5
Training loss

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

linear fit (r=-0.48)

10 20 30 40 50
Validation metric

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

linear fit (r=0.47)

(a) DomainNet. Individual curves are colored by batch size.

Figure E: Additional result on measuring conflicting gradients when training with standard uniform
scalarization for DomainNet (6 domains).

• PBT requires training a population of N models that are regularly synchronized; then fol-
lowed by a final training run with the found optimal weights. Following previous works [23],
we perform the hyperparameter search on a smaller subset of the data (in our experiments
r = 0.7 fraction of the training set). In summary, the expected computational cost is roughly
Nr + 1 times higher than standard training. On the CelebA example, we also observe that
using PB2 [46], which combines the benefits of Bayesian Optimisation and PBT, yields
better hyperparameters using a smaller population size. In terms of memory usage, PBT is
the same as a standard training run: Synchronization is handled via checkpoints saving and
loading, such that only one model lives in memory. Finally, we use the publicly available
PBT implementation from Raytune[33] which handles all synchronization operations across
the population. The implementation would also scale well to more compute resources, as
the Ray API allows for easy parallelization.

• MTO. As shown in Figure 1, the bottleneck in most gradient-based methods is memory
usage. Consequently, this requires us to decrease the batch size to meet memory requirements
and compensate with gradient accumulation (or parallelism if multiple devices are available).

20

For instance, on the DomainNet experiments with all 6 domains, we need to decrease from
a batch size of 512 to a batch size of 128 with 4 steps of accumulation to still fit in memory
requirements. This also raises the question of how to handle synchronization across batches:
For instance, in PCGrad, the gradient conflicts (and projections) can be computed either
(i) per local batch, before accumulation: this may lead to noisier updates; or (ii) after
gradients are accumulated: However this is more memory-intensive as this requires to store
the previously accumulated per-task gradient as well as the one being currently computed.
In practice we use the implementation of [31] for all MTO methods.

When comparing different hyperparameter searches for scalarization, PBT allows for much faster
exploration of the search space than classical techniques such as grid search. However, comparing
PBT+scalarization with MTO is less straightforward as the computational cost depends on many
factors (e.g. population size, number of tasks, and impact on memory usage, etc.), but generally,
the "scalarization + hyperparameter search" approach is more favorable in case of low memory
requirements as it does not change memory costs compared to standard training. However, soTA
gradient-based methods are not very costly for a low number of tasks (e.g. 2-3) as shown in Table 1
which makes them appealing in settings with a few tasks. Nevertheless, one of our key takeaways is
that allocating extra resources for tuning scalarization weights, to mirror the extra resources needed
for MTO training, makes scalarization into a much stronger baseline, on-par or even outperforming
MTO methods as shown in Section 5. Finally, another important difference is that hyperparameter
search methods directly optimize for the target objective: the optimal hyperparameters are found by
maximizing the average task/domain accuracy on a hold-out validation dataset. In contrast, MTO
methods optimize for a proxy metric (such as reducing gradients conflicts) that may not always
correlate with final performance as shown in Section 4.2.

5.2 Qualitative results

In this section, we report some qualitative results of the hyperparameter scheduled found by PBT
and PB2. At the end of PBT search, we select the model with the highest validation performance
and backtrack its history to backtrack its choices of hyperparameter values during training: This
yields the policy of optimal weights found by PBT which is then used to retrain a model on the full
training set. We also experimented with retraining a model using the last weights of the policy, but
this usually slightly underperform using the whole history of weights in the majority of cases.

In Figure F, we report examples of the policy of weights found by PBT and PB2 search for the
parameters Eready = 3, Q = 40% and N = 12 for PBT (respectively N = 8 for PB2).

5.3 Quantitative results

Here we report additional results for the CelebA and DomainNet experiments of Section 5, in the
style of Table 1 and Table 2 in the main text: We include results using a ResNet-50 on DomainNet in
Table B, and results for additional widths in CelebA in Table C and Table D.

21

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00003 - metric = 0.904034286737442

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00002 - metric = 0.9039765894412994

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00007 - metric = 0.9039056226611136

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00006 - metric = 0.9038240313529968

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

width = 1
0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

d43bc_00010 - metric = 0.8804219141602516

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

d43bc_00011 - metric = 0.8803605660796165

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

d43bc_00002 - metric = 0.880155511200428

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

d43bc_00008 - metric = 0.880154199898243

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

width = 0.25
(a) Comparing Population-based training results for a depth of 9 layers with full width (left) and a

smaller model with a quarter of the width (right). While both policy are quite different across training
epochs, they converge towards similar distribution: For instance the weights for tasks "hair style",
"gender" and "age" are significantly smaller than the one for the "mouth" and "hair style" tasks.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00003 - metric = 0.904034286737442

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00002 - metric = 0.9039765894412994

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00007 - metric = 0.9039056226611136

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00006 - metric = 0.9038240313529968

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

depth = 9
0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

31a98_00002 - metric = 0.9041688814759254

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

31a98_00010 - metric = 0.9041622802615166

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

31a98_00011 - metric = 0.904149517416954

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

31a98_00003 - metric = 0.9038906097412108

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

depth = 6

(b) Comparing Population-based training results for a depth of 9 layers with full width (left) and a
smaller model with a depth of 6 layers (right). Similarly to the results on varying width in (a), both

search converge to similar distribution in task weights

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00003 - metric = 0.904034286737442

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00002 - metric = 0.9039765894412994

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00007 - metric = 0.9039056226611136

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

319e3_00006 - metric = 0.9038240313529968

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

Population-based Training (PBT)
0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

a1dfc_00000 - metric = 0.906149946153164

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

a1dfc_00004 - metric = 0.9061087220907212

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

a1dfc_00006 - metric = 0.90595131367445

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 w
ei

gh
ts

a1dfc_00001 - metric = 0.9059465304017068

gender
age
hair_color
hair_style
facial_hair
mouth
clothes
face_structure

Population-based Bandit (PB2)

(c) Comparing Population-based training results for a depth of 9 layers with full width (left) and the
same search with Population-based bandit (right). The two search algorithms converge to

significantly different results in particular regarding weights for the "mouth" and "facial hair" tasks.
This suggests that (i) there may be multiple good local minima in the search space of p and (ii) the

heuristic used in the explore step has a significant impact on how the resulting policy.

Figure F: Qualitative results for Population-based training search on CelebA. The x-axis represents
training epochs. The y-axis represents the policy scalarization weights for each task as a cumulative
histogram for the run of the population with highest validation accuracy

22

Table B: Results of MDL when jointly training on all 6 domains of DomainNet for scalarization
(uniform and PBT-found weights) and MTO methods with a ResNet50 backbone. PBT is run with a
population size of N = 12 models, such that every Eready = 5 epochs, Q = 25% of the population
triggers an exploit/explore.

DomainNet (ResNet50 with 0.25 width)
average clipart infograph painting quickdraw real sketch

Scalarization
Uniform 49.69 ± 0.05 59.90 ± 0.15 22.45 ± 0.01 43.90 ± 0.14 63.13 ± 0.15 58.95 ± 0.09 49.79 ± 0.10
PBT 50.69 ± 0.10 61.69 ± 0.45 21.27 ± 0.10 44.72 ± 0.27 63.96 ± 0.13 62.43 ± 0.13 50.06 ± 0.17

MTO - Loss-based
Uncertainty [26] 40.51 ± 0.19 53.33 ± 0.67 15.70 ± 0.02 34.44 ± 0.41 54.27 ± 0.61 47.86 ± 0.39 37.45 ± 0.37
IMTL-L [38] 37.04 ± 0.17 48.85 ± 0.59 13.93 ± 0.42 30.64 ± 0.36 51.60 ± 0.34 44.12 ± 0.21 33.12 ± 0.50

MTO - Gradient-based
CAGrad [37] 39.82 ± 0.10 50.68 ± 0.05 16.94 ± 0.04 34.37 ± 0.35 52.16 ± 0.47 46.59 ± 0.00 38.20 ± 0.07
GradDrop [8] 39.18 ± 0.15 49.80 ± 0.04 16.77 ± 0.65 33.95 ± 0.52 51.18 ± 0.06 46.04 ± 0.28 37.36 ± 0.20
PCGrad [64] 39.48 ± 0.31 50.42 ± 0.97 16.83 ± 0.31 34.63 ± 0.92 51.14 ± 0.53 46.37 ± 0.51 37.49 ± 0.98

DomainNet (ResNet50 with original width)
average clipart infograph painting quickdraw real sketch

Scalarization
Uniform 51.53 ± 0.06 61.89 ± 0.12 23.63 ± 0.01 45.87 ± 0.01 64.50 ± 0.08 61.46 ± 0.09 51.83 ± 0.33
PBT 51.83 ± 0.06 62.22 ± 0.06 22.61 ± 0.20 46.61 ± 0.29 64.71 ± 0.05 61.91 ± 0.05 52.93 ± 0.10

MTO - Loss-based
Uncertainty [26] 42.90 ± 0.20 56.24 ± 0.44 17.36 ± 0.12 36.91 ± 0.82 56.11 ± 0.08 50.33 ± 0.48 40.49 ± 0.51
IMTL-L [38] 39.69 ± 0.13 52.51 ± 0.59 15.51 ± 0.14 33.45 ± 0.14 53.54 ± 0.05 46.37 ± 0.48 36.75 ± 0.17

MTO - Gradient-based
CAGrad [37] 41.90 ± 0.13 53.32 ± 0.41 17.94 ± 0.42 36.72 ± 0.39 54.15 ± 0.03 48.31 ± 0.25 40.94 ± 0.14
GradDrop [8] 42.15 ± 0.14 53.38 ± 0.54 18.68 ± 0.33 37.00 ± 0.45 53.85 ± 0.11 49.04 ± 0.27 40.95 ± 0.04
PCGrad [64] 41.94 ± 0.20 53.46 ± 0.69 18.20 ± 0.28 36.95 ± 0.66 53.29 ± 0.13 48.88 ± 0.48 40.87 ± 0.49

23

Table C: (Table best seen zoomed in PDF) Results of MTL when training on all 8 tasks (subset of
attributes) of CelebA for a depth of 6 layers For PBT and PB2 we use slightly different parameters
than DomainNet to account for the fact that CelebA contains more tasks, and hence has a larger search
space: All PBT runs use a population size of N = 12 models, such that every Eready = 3 epochs,
Q = 40% of the population triggers an exploit/explore step. For PB2 runs we use a population size
of N = 8 and otherwise the same Q and Eready hyperparameters.

ViT-S/4, 6 layers, 0.25 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 90.82 ± 2.1e-04 86.96 ± 8.5e-04 92.23 ± 6.8e-04 84.64 ± 6.6e-04 95.30 ± 1.8e-04 97.61 ± 7.1e-04 92.58 ± 3.4e-04 91.03 ± 5.8e-04 86.23 ± 4.4e-04
PBT 90.93 ± 1.8e-04 86.94 ± 7.6e-04 92.37 ± 3.3e-04 84.78 ± 4.5e-04 95.18 ± 2.1e-04 97.58 ± 5.3e-04 92.82 ± 4.3e-04 91.48 ± 3.5e-04 86.25 ± 7.0e-04
PB2 90.90 ± 2.0e-04 87.10 ± 1.2e-03 92.13 ± 3.2e-04 84.82 ± 5.6e-04 95.32 ± 2.8e-04 97.41 ± 4.8e-04 92.67 ± 5.6e-04 91.23 ± 2.3e-04 86.50 ± 2.1e-04

MTO - Loss-based
Uncertainty [26] 90.82 ± 1.9e-04 86.94 ± 1.1e-03 92.22 ± 7.2e-04 84.63 ± 3.0e-04 95.32 ± 2.7e-05 97.62 ± 2.8e-04 92.57 ± 3.9e-04 91.02 ± 4.1e-04 86.22 ± 1.9e-04
IMTL-L [38] 90.82 ± 2.0e-04 86.94 ± 1.2e-03 92.22 ± 7.3e-04 84.63 ± 3.1e-04 95.32 ± 2.7e-05 97.62 ± 3.2e-04 92.57 ± 3.8e-04 91.02 ± 4.1e-04 86.22 ± 1.6e-04

MTO - Gradient-based
CAGrad [37] 90.92 ± 2.7e-04 86.96 ± 2.1e-03 92.35 ± 3.0e-05 84.92 ± 1.2e-04 95.38 ± 3.9e-04 97.56 ± 1.4e-04 92.73 ± 3.8e-04 91.30 ± 2.2e-04 86.14 ± 8.9e-05
GradDrop [8] 90.65 ± 2.9e-04 86.76 ± 1.7e-03 92.03 ± 8.1e-05 84.48 ± 1.2e-04 95.23 ± 3.9e-04 97.41 ± 5.7e-04 92.46 ± 2.1e-04 90.83 ± 1.4e-03 85.98 ± 3.5e-05
PCGrad [64] 90.86 ± 1.5e-04 87.04 ± 1.1e-04 92.32 ± 7.3e-04 84.65 ± 4.0e-04 95.27 ± 1.9e-04 97.62 ± 3.2e-04 92.64 ± 3.7e-04 91.16 ± 2.8e-04 86.22 ± 5.9e-04

ViT-S/4, 6 layers, 0.5 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.28 ± 2.8e-04 87.33 ± 1.9e-03 92.71 ± 8.6e-05 85.15 ± 2.8e-04 95.49 ± 2.2e-04 98.03 ± 6.0e-04 92.99 ± 3.2e-04 91.63 ± 5.8e-04 86.87 ± 3.8e-04
PBT 91.29 ± 1.7e-04 87.56 ± 3.3e-04 92.77 ± 1.6e-04 85.34 ± 2.5e-04 95.40 ± 2.9e-04 97.81 ± 6.4e-04 92.99 ± 2.1e-04 91.56 ± 7.2e-04 86.89 ± 7.6e-04
PB2 91.38 ± 2.3e-04 87.71 ± 1.1e-03 92.84 ± 3.3e-04 85.20 ± 6.0e-04 95.54 ± 4.5e-04 98.00 ± 7.3e-04 92.95 ± 6.2e-04 91.73 ± 2.2e-04 87.05 ± 7.0e-04

MTO - Loss-based
Uncertainty [26] 91.30 ± 3.1e-04 87.52 ± 2.2e-03 92.72 ± 1.4e-04 85.14 ± 4.6e-04 95.48 ± 4.7e-04 98.08 ± 5.3e-04 92.97 ± 3.5e-04 91.65 ± 1.9e-04 86.86 ± 6.4e-04
IMTL-L [38] 91.30 ± 2.6e-04 87.49 ± 1.4e-03 92.74 ± 6.6e-05 85.14 ± 1.0e-04 95.51 ± 1.3e-04 98.06 ± 7.8e-04 92.98 ± 5.8e-04 91.66 ± 6.7e-04 86.85 ± 1.0e-03

MTO - Gradient-based
CAGrad [37] 91.32 ± 3.2e-04 87.47 ± 2.3e-03 92.86 ± 4.9e-04 85.26 ± 3.1e-04 95.51 ± 4.3e-04 98.03 ± 0.0e+00 93.00 ± 5.9e-04 91.73 ± 1.5e-04 86.72 ± 2.3e-04
GradDrop [8] 91.19 ± 2.3e-04 87.42 ± 8.5e-04 92.65 ± 5.2e-04 85.03 ± 9.5e-04 95.43 ± 2.9e-04 97.96 ± 6.7e-04 92.80 ± 1.8e-04 91.54 ± 8.5e-04 86.70 ± 3.0e-04
PCGrad [64] 91.30 ± 4.6e-04 87.45 ± 2.8e-03 92.72 ± 6.0e-04 85.16 ± 8.9e-04 95.54 ± 5.0e-04 98.08 ± 2.1e-03 92.97 ± 1.6e-04 91.63 ± 1.2e-04 86.82 ± 3.8e-04

ViT-S/4, 6 layers, full width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.23 ± 3.6e-04 86.70 ± 2.7e-03 92.79 ± 4.5e-04 85.16 ± 4.8e-04 95.45 ± 4.8e-04 98.10 ± 2.1e-04 92.99 ± 3.6e-04 91.68 ± 4.7e-05 86.95 ± 4.8e-04
PBT 91.21 ± 2.7e-04 86.79 ± 1.1e-03 92.77 ± 5.8e-04 85.18 ± 3.6e-04 95.42 ± 8.9e-04 98.02 ± 4.5e-04 92.92 ± 6.4e-04 91.66 ± 1.0e-03 86.95 ± 6.7e-04
PB2 91.28 ± 2.5e-04 86.96 ± 1.5e-03 92.87 ± 2.7e-04 85.17 ± 2.4e-04 95.47 ± 6.5e-05 98.10 ± 3.9e-04 92.90 ± 5.8e-04 91.81 ± 2.6e-04 86.94 ± 1.1e-03

MTO - Loss-based
Uncertainty [26] 91.22 ± 2.1e-04 86.60 ± 1.3e-03 92.85 ± 6.4e-04 85.24 ± 1.7e-04 95.43 ± 8.0e-05 98.07 ± 3.5e-04 92.91 ± 7.7e-04 91.72 ± 2.1e-04 86.93 ± 4.4e-05
IMTL-L [38] 91.21 ± 2.0e-04 86.65 ± 7.1e-04 92.83 ± 5.2e-04 85.17 ± 1.8e-04 95.42 ± 5.5e-04 98.01 ± 6.0e-04 92.99 ± 8.9e-04 91.70 ± 6.4e-04 86.93 ± 1.1e-04

MTO - Gradient-based
CAGrad [37] 91.25 ± 2.2e-04 86.79 ± 1.7e-03 92.88 ± 7.1e-05 85.12 ± 1.4e-04 95.46 ± 4.6e-04 98.17 ± 1.1e-04 92.91 ± 2.1e-04 91.74 ± 3.6e-05 86.88 ± 1.5e-04
GradDrop [8] 91.29 ± 2.3e-04 87.01 ± 5.0e-04 92.80 ± 1.0e-03 85.22 ± 8.0e-04 95.50 ± 2.7e-04 98.15 ± 6.0e-04 93.00 ± 9.1e-04 91.65 ± 1.5e-04 86.97 ± 4.0e-04
PCGrad [64] 91.21 ± 3.9e-04 86.55 ± 2.3e-03 92.81 ± 9.3e-04 85.15 ± 8.4e-04 95.44 ± 9.3e-04 98.16 ± 5.0e-04 92.92 ± 2.8e-04 91.75 ± 1.3e-03 86.87 ± 4.8e-04

24

Table D: (Table best seen zoomed in PDF) Results of MTL when training on all 8 tasks (subset of
attributes) of CelebA for a depth of 9 layers. For PBT and PB2 we use slightly different parameters
than DomainNet to account for the fact that CelebA contains more tasks, and hence has a larger search
space: All PBT runs use a population size of N = 12 models, such that every Eready = 3 epochs,
Q = 40% of the population triggers an exploit/explore step. For PB2 runs we use a population size
of N = 8 and otherwise the same Q and Eready hyperparameters.

ViT-S/4, 9 layers, 0.25 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.00 ± 2.5e-04 87.24 ± 1.6e-03 92.40 ± 7.6e-05 84.85 ± 4.5e-04 95.34 ± 5.7e-04 97.77 ± 5.0e-04 92.68 ± 3.5e-04 91.31 ± 5.8e-04 86.40 ± 8.0e-05
PBT 90.97 ± 1.7e-04 86.96 ± 1.1e-03 92.34 ± 2.5e-04 84.91 ± 8.4e-04 95.30 ± 8.1e-05 97.76 ± 2.9e-05 92.55 ± 1.1e-04 91.35 ± 6.3e-05 86.59 ± 2.1e-04
PB2 91.04 ± 2.7e-04 87.22 ± 1.9e-03 92.40 ± 2.5e-04 84.96 ± 4.2e-04 95.35 ± 3.5e-04 97.70 ± 4.0e-04 92.67 ± 1.4e-04 91.36 ± 3.1e-04 86.67 ± 4.8e-04

MTO - Loss-based
Uncertainty [26] 91.01 ± 2.3e-04 87.18 ± 1.4e-03 92.40 ± 4.5e-04 84.87 ± 3.5e-04 95.34 ± 6.6e-04 97.81 ± 5.7e-04 92.70 ± 3.9e-04 91.30 ± 4.5e-04 86.44 ± 1.1e-04
IMTL-L [38] 91.00 ± 2.4e-04 87.18 ± 1.5e-03 92.40 ± 4.6e-04 84.87 ± 4.0e-04 95.34 ± 6.6e-04 97.81 ± 5.0e-04 92.70 ± 3.3e-04 91.30 ± 4.7e-04 86.44 ± 6.2e-05

MTO - Gradient-based
CAGrad [37] 91.07 ± 1.3e-04 87.19 ± 4.3e-04 92.55 ± 3.5e-04 85.03 ± 4.8e-04 95.41 ± 2.7e-05 97.79 ± 6.0e-04 92.82 ± 1.8e-04 91.52 ± 3.5e-04 86.23 ± 2.3e-04
GradDrop [8] 90.83 ± 1.8e-04 86.91 ± 4.6e-04 92.23 ± 1.4e-04 84.66 ± 1.0e-03 95.26 ± 6.1e-04 97.66 ± 3.2e-04 92.58 ± 3.9e-04 91.14 ± 2.8e-04 86.18 ± 4.6e-04
PCGrad [64] 90.95 ± 2.4e-04 87.13 ± 1.2e-03 92.29 ± 4.2e-04 84.77 ± 4.7e-04 95.32 ± 3.6e-04 97.72 ± 3.5e-04 92.70 ± 8.0e-05 91.21 ± 1.6e-04 86.44 ± 1.3e-03

ViT-S/4, 9 layers, 0.5 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.32 ± 3.2e-04 87.26 ± 2.3e-03 92.81 ± 2.4e-04 85.19 ± 9.4e-05 95.51 ± 3.4e-04 98.15 ± 7.1e-04 93.03 ± 8.9e-06 91.66 ± 4.0e-04 86.93 ± 7.3e-04
PBT 91.36 ± 2.3e-04 87.45 ± 1.5e-03 92.86 ± 6.5e-05 85.31 ± 5.2e-04 95.50 ± 2.8e-04 97.98 ± 2.2e-04 93.03 ± 2.4e-04 91.70 ± 5.4e-04 87.06 ± 5.4e-04
PB2 91.36 ± 1.4e-04 87.45 ± 7.8e-04 92.82 ± 2.7e-04 85.17 ± 3.1e-04 95.55 ± 4.4e-04 98.14 ± 3.4e-04 93.06 ± 1.2e-04 91.76 ± 4.3e-04 86.89 ± 1.7e-04

MTO - Loss-based
Uncertainty [26] 91.33 ± 1.4e-04 87.32 ± 4.3e-04 92.84 ± 2.0e-05 85.19 ± 2.1e-04 95.52 ± 4.9e-04 98.15 ± 7.8e-04 92.96 ± 2.0e-04 91.69 ± 6.5e-05 86.93 ± 2.5e-04
IMTL-L [38] 91.29 ± 1.5e-04 87.25 ± 5.0e-04 92.79 ± 2.0e-04 85.17 ± 7.1e-05 95.50 ± 4.9e-04 98.10 ± 8.5e-04 92.97 ± 1.4e-04 91.66 ± 4.8e-04 86.92 ± 9.7e-05

MTO - Gradient-based
CAGrad [37] 91.37 ± 1.8e-04 87.42 ± 2.1e-04 92.90 ± 4.1e-05 85.24 ± 1.3e-03 95.53 ± 2.3e-04 98.20 ± 1.1e-04 92.98 ± 2.6e-04 91.78 ± 2.7e-04 86.88 ± 3.4e-04
GradDrop [8] 91.27 ± 1.8e-04 87.50 ± 7.1e-05 92.71 ± 3.5e-05 85.10 ± 1.1e-04 95.46 ± 6.2e-05 98.04 ± 1.3e-03 92.94 ± 4.3e-04 91.57 ± 3.2e-04 86.85 ± 1.9e-04
PCGrad [64] 91.29 ± 1.6e-04 87.10 ± 3.2e-04 92.83 ± 4.3e-04 85.18 ± 6.1e-04 95.47 ± 1.1e-04 98.11 ± 6.4e-04 93.01 ± 8.9e-05 91.67 ± 6.3e-04 86.96 ± 2.6e-04

ViT-S/4, 9 layers, full width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.17 ± 1.7e-04 87.33 ± 5.7e-04 92.50 ± 8.1e-04 85.10 ± 4.2e-04 95.45 ± 1.9e-04 97.93 ± 1.1e-04 92.85 ± 2.9e-04 91.39 ± 1.2e-04 86.80 ± 6.9e-04
PBT 91.15 ± 2.7e-04 87.43 ± 3.1e-04 92.51 ± 3.6e-04 85.18 ± 1.1e-03 95.46 ± 3.1e-04 97.78 ± 1.5e-03 92.51 ± 1.4e-04 91.36 ± 8.0e-04 87.00 ± 5.8e-04
PB2 91.25 ± 2.3e-04 86.83 ± 1.2e-03 92.85 ± 4.8e-04 85.12 ± 7.3e-04 95.49 ± 5.6e-04 98.19 ± 6.0e-04 92.90 ± 5.6e-04 91.78 ± 4.5e-04 86.81 ± 3.7e-04

MTO - Loss-based
Uncertainty [26] 91.17 ± 1.8e-04 87.36 ± 6.4e-04 92.50 ± 8.0e-04 85.11 ± 3.0e-04 95.45 ± 1.6e-04 97.93 ± 1.4e-04 92.84 ± 3.8e-04 91.39 ± 5.3e-05 86.81 ± 8.3e-04
IMTL-L [38] 91.18 ± 1.6e-04 87.37 ± 4.3e-04 92.50 ± 8.0e-04 85.11 ± 2.8e-04 95.45 ± 1.7e-04 97.94 ± 2.1e-04 92.84 ± 3.7e-04 91.39 ± 6.5e-05 86.81 ± 7.8e-04

MTO - Gradient-based
CAGrad [37] 91.21 ± 1.4e-04 87.34 ± 4.3e-04 92.64 ± 3.7e-04 85.16 ± 4.0e-04 95.43 ± 4.3e-04 97.91 ± 1.1e-04 92.89 ± 4.3e-04 91.58 ± 3.6e-04 86.70 ± 5.5e-04
GradDrop [8] 91.20 ± 1.4e-04 86.55 ± 2.1e-04 92.81 ± 2.6e-04 85.19 ± 4.3e-04 95.40 ± 8.1e-04 98.09 ± 4.6e-04 92.91 ± 2.6e-04 91.71 ± 3.4e-04 86.90 ± 8.9e-06
PCGrad [64] 91.13 ± 3.5e-04 87.35 ± 2.4e-03 92.50 ± 1.1e-03 85.04 ± 5.3e-04 95.40 ± 3.5e-04 97.87 ± 0.0e+00 92.82 ± 2.8e-04 91.37 ± 1.2e-04 86.71 ± 5.0e-04

25

