
A Illustration of RCL537

We illustrate the online optimization process of RCL in Fig. 1.538

Figure 1: Robustness-constrained online optimization using RCL. The expert algorithm and ML model
run independently. At each time t = 1, · · · , T , RCL projects the ML prediction x̃t into a robustified
action set.

B Case Study: Battery Management for EV Charging Stations539

We now explore the performance of RCL using a case study focused on battery management in electric540

vehicle (EV) charging stations [48]. We first formulate the problem as an instance of SOCO, and then541

present the baseline algorithms. Finally, we discuss the performance of RCL. Our results highlight542

the advantage of RCL in terms of robustness guarantees compared to pure ML models, as well as the543

benefit of training a robustification-aware ML model in terms of the average cost.544

B.1 Problem Formulation545

Batteries are routinely used in EV charging stations to handle the rapidly fluctuating charging demands546

and protect the connected grid. Thus, properly managing battery charging/discharging decisions is547

crucial for reliability, lifespan, and safety of batteries and grids.548

We consider the management of N batteries. At each time step t, suppose that xt 2 RN
+ represents the549

State of Charge (SoC) and ut 2 RN represents the battery charging/discharging schedule, depending550

on the sign of ut (i.e., positive means charging, and vice versa). The canonical form of the battery551

dynamics can be written as xt+1 = Axt + But � wt, where A is a N ⇥N matrix which models552

the self-degradation of the N -battery system, B is a N ⇥N matrix which represents the charging553

efficiency of each battery unit, wt is a N ⇥ 1 vector which denotes the current demand in terms of554

the charging rate (kW) of all the EVs connected to the charging stations. Assuming that the initial555

SoC as x0, the goal is to control the batteries to minimize the difference between the current SoC556

of all batteries and a nominal value x̄, plus a charging/discharging cost to account for battery usage557

[49, 50], which can be expressed mathematically as minu1,u2,··· ,uT+1

P
T+1
t=1 kxt � x̄k2 + bkutk

2.558

This problem falls into SOCO based on the reduction framework described in [49]. Specifi-559

cally, at time step t + 1, we can expand xt+1 based on the battery dynamics as xt+1 = Atx1 +560 P
t

j=1 A
t�jBuj�

P
t

j=1 A
t�jwj , We define the context parameter as yt = x̄�Atx1+

P
t

i=1 A
t�iwi561

and the action as at =
P

t

i=1 A
t�iBui. Then, assuming an identity matrix B (ignoring charging562

loss), the optimization problem becomes mina1,··· ,aT kx1 � x̄k2 + bkuT k
2 +

P
T

t=1 kat � ytk2 +563

bkat�Aat�1k
2. Given an initial value of x1, this problem can be further simplified and reformulated564

as565

min
a1,a2,··· ,aT

TX

t=1

1

b
kat � ytk

2 + kat �Aat�1k
2, (7)

which is in a standard SOCO form by considering yt as the context and at as the action at time t.566

To validate the effectiveness of RCL, we use a public dataset [51] provided by ElaadNL, a Dutch EV567

charging infrastructure company. We collect a dataset containing transaction records from ElaadNL568

charging stations in the Netherlands from January to June of 2019. Each transaction record contains569

13

the energy demand, transaction start time and charging time. As the data does not specify the details570

of battery units, we consider the battery units as a single combine battery by summing up the energy571

demand within each hour to obtain the hourly energy demand.572

We use the January to February data as the training dataset, March to April data as the validation573

dataset for tuning the hyperparameters such as learning rate, and May to June as the testing dataset.574

We consider each problem instance as one day (T = 24 hours, plus an initial action). Thus, a sliding575

window of 25 is applied, moving one hour ahead each time, on the raw data to generate 1416 problem576

instances, where the first demand of each instance is used as the initial action of all the algorithms.577

We set b = 10 and A = I for the cost function in Eqn. (7).578

All the algorithms use the same ML architecture, when applicable, with the same initialized weights579

in our experiments for fair comparison. To be consistent with the literature [52, 53], all the ML580

models are trained offline. Specifically, we use a recurrent neural network (RNN) model that contains581

2 hidden layers, each with 8 neurons, and implement the model using PyTorch. We train the RNN for582

140 epochs with a batch size of 50. When the RNN model is trained as a standalone optimizer in a583

robustification-oblivious manner, the training process takes around 1 minute on a 2020 MacBook584

Air with 8GB memory and a M1 chipset. When RNN is trained in a robustification-aware manner, it585

takes around 2 minutes. The testing process is almost instant and takes less than 1 second.586

B.2 Baseline Algorithms587

By default, RCL uses a robustification-aware ML model due to the advantage of average cost perfor-588

mance compared to a robustification-oblivious model. We compare RCL with several representative589

baseline algorithms as summarized below.590

• Offline Optimal Oracle (OPT): This is the optimal offline algorithm that has all the contextual591

information and optimally solves the problem.592

• Regularized Online Balanced Descent (ROBD): ROBD is the state-of-the-art order-optimal online593

algorithm with the best-known competitive ratio for our SOCO setting [54, 49]. The parameters of594

ROBD are all optimally set according to [49]. By default, RCL uses ROBD as its expert for robustness.595

• Hitting Cost Minimizer (HitMin): HitMin is a special instance of ROBD by setting the parameters596

such that it greedily minimizing the hitting cost at each time. This minimizer can be empirically597

effective and hence also used in ROBD as a regularizer.598

• Machine Learning Only (ML): ML is trained as a standalone optimizer in a robustification-oblivious599

manner. It does not use robustification during online optimization.600

• Expert-Calibrated Learning (EC-L2O): It is an ML-augmented algorithm that applies to our SOCO601

setting by using an ML model to regularize online actions without robustness guarantees [55]. We602

set its parameters based on the validation dataset to have the optimal average performance with an603

empirical competitive ratio less than (1 + �)CR⇡ .604

• RCL with a robustification-oblivious ML model (RCL-O): To differentiate the two forms of RCL, we605

use RCL to refer to RCL with a robustification-aware ML model and RCL-O for the robustification-606

oblivious ML model, where “-O” represents robustification-obliviousness.607

To highlight our key contribution to the SOCO literature, the baseline algorithms we choose are608

representative of the state-of-the-art expert algorithms, effective heuristics, and ML-augmented609

algorithms for the SOCO setting we consider. While there are a few other ML-augmented algorithms610

for SOCO [56, 57, 58], they do not apply to our problem as they consider unsquared switching costs611

in a metric space and exploit the natural triangular inequality. Adapting them to the squared switching612

costs is non-trivial.613

B.3 Results614

We now present the results of our case study and begin with the case in which the hitting cost function615

(parameterized by yt) is immediately known without feedback delay. The results for the case with616

feedback delay are presented in Section B.4. Throughout the discussion, the reported values are617

normalized with respect to those of the respective OPT. The average cost (AVG) and competitive618

ratio (CR) are all empirical results reported on the testing dataset.619

14

RCL RCL-O ML EC-L2O ROBD HitMin
�=0.6 �=1 �=3 �=5 �=0.6 �=1 �=3 �=5

AVG 1.4704 1.1144 1.0531 1.0441 1.4780 1.2432 1.0855 1.0738 1.0668 1.1727 1.6048 1.2003
CR 1.7672 1.2905 1.4405 1.3014 2.2103 2.4209 2.4200 3.0322 3.2566 2.0614 1.7291 2.0865

Table 1: Competitive ratio and average cost comparison of different algorithms.

By Theorem 4.1, there is a trade-off (governed by � > 0) between exploiting ML predictions for good620

average performance and following the expert for robustness. Here, we begin with the default setting621

of � = 1 and investigate the impact of different choices of � on both RCL and RCL-O in Section B.3.3.622

B.3.1 The performance of RCL623

As shown in Table 1, with � = 1, both RCL and RCL-O have a good average cost, but RCL has a624

lower average cost than RCL-O and is outperformed only by ML in terms of the average cost. RCL625

and RCL-O have the same competitive ratio (i.e., (1 + �) times the competitive ratio of ROBD).626

Empirically, RCL has the lowest competitive ratio than all the other algorithms, demonstrating the627

practical power of RCL for robustifying, potentially untrusted, ML predictions. In this experiment,628

RCL outperforms ROBD in terms of the empirical competitive ratio because it exploits the good629

ML predictions for those problem instances that are adversarial to ROBD. This result complements630

Theorem 4.1, where we show theoretically that RCL can outperform ROBD in terms of the cost by631

properly setting �.632

By comparison, ML performs well on average by exploiting the historical data, but has the highest633

competitive ratio due to its expected lack of robustness. The two alternative baselines, EC-L2O and634

HitMin, are empirically good on average and also in the worst case, but they do not have guaranteed635

robustness. On the other hand, ROBD is very robust, but its average cost is also the worst among all636

the algorithms under consideration.637

We further show in Fig. 2(a) the box plots for cost ratios with � = 1, providing a detailed view of638

the algorithms’ performance. The key message is that RCL obtains the best of both worlds — a good639

average cost and a good competitive ratio (empirically even better than the expert ROBD).640

(a) ROBD as the expert (b) HitMin as the expert (c) RCL-O w/ different � (d) RCL w/ different �
Figure 2: Cost ratio distributions (� = 1 by default).

B.3.2 Utilizing HitMin as the expert641

RCL is flexible and can work with any expert online algorithm, even an expert that does not have good642

or bounded competitive ratios. Thus, it is interesting to see how RCL performs given an alternative643

expert. For example, in Table 1, HitMin empirically outperforms ROBD in terms of the average,644

although it is not as robust as ROBD. Thus, using � = 1, we leverage HitMin as the expert for RCL645

and RCL-O, and show the cost ratio distributions in Fig. 2(b). Comparing Fig. 2(b) with Fig. 2(a),646

we see that RCL and RCL-O both have many low cost ratios by using HitMin as the expert, but the647

worst case for RCL is not as good as when using ROBD as the expert. For example, the average cost648

and competitive ratio are 1.0515 and 1.6035, respectively, for RCL. This result is not surprising, as649

the new expert HitMin has a better average performance but worse competitive ratio than the default650

expert ROBD.651

15

(a) � = 0.6 (b) � = 1.0 (c) � = 5.0 (d) � = 1 (i.e., ML)
Figure 3: Histogram of bi-competitive cost ratios of RCL-O (against ROBD and ML) under different
�. For better visualization, the color map represents logarithmic values of the cost ratio histogram
with a base of 10.

B.3.3 Impact of �652

Theorem 4.1 shows the point that we need to set a large enough � in order to provide enough flexibility653

for RCL to exploit good ML predictions. With a small � > 0, despite the stronger competitiveness654

against the expert, it is possible that RCL may even empirically perform worse than both the ML655

model and the expert. Thus, we now investigate the impact of �.656

We see from Table 1 that the empirical average cost and competitive ratio of RCL are both worse with657

� = 0.6 than with the default � = 1. More interestingly, by setting � = 5, the average cost of RCL is658

even lower than that of ML. This is because ML in our experiment performs fairly well on average.659

Thus, by setting a large � = 5, RCL is able to exploit the benefits of good ML predictions for many660

typical cases, while using the expert ROBD as a safeguard to handle a few bad problem instances for661

which ML cannot perform well. Also, the empirical competitive ratio of RCL is better with � = 5662

than with � = 3, supporting Theorem 4.1 that a larger � may not necessarily increase the competitive663

ratio as RCL can exploit good ML predictions. In addition, given each �, RCL outperforms RCL-O,664

which highlights the importance of training the ML model in a robustification-aware manner to avoid665

the mismatch between training and testing objectives.666

We also show in Fig. 2(c) an Fig. 2(d) the cost ratio distributions for RCL-O and RCL, respectively,667

under different �. The results reaffirm our main Theorem 4.1 as well as the importance of training668

the ML model in a robustification-aware manner.669

Next, we show the bi-competitive cost ratios of RCL-O against both the expert ROBD and the ML pre-670

dictions. We focus on RCL-O as its ML model is trained as a standalone optimizer, whereas RCL uses671

a robustification-aware ML model that is not specifically trained to produce good pre-robustification672

predictions. According to Theorem 4.1, RCL-O obtains a potentially better competitiveness against673

ML but a worse competitive against the expert ROBD when � increases, and vice versa. To further674

validate the theoretical analysis, we test RCL-O with different � and obtain the 2D histogram of its675

bi-competitive cost ratios against ROBD and ML, respectively. The results are shown in Fig. 3. In676

agreement with our analysis, the cost ratio of RCL-O against ROBD never exceeds (1 + �) for any677

� > 0. Also, with a small � = 0.6, the cost ratio of RCL-O against ROBD concentrates around 1,678

while it does not exploit the benefits of ML predictions very well. On the other hand, with a large679

� = 5, the cost ratio of RCL-O against ROBD can be quite high, although it follows (good) ML680

predictions more closely for better average performance. Most importantly, by increasing � > 0, we681

can see the general trend that RCL-O follows the ML predictions more closely while still being able682

to guarantee competitiveness against ROBD. Again, this confirms the key point of our main insights683

in Theorem 4.1.684

B.3.4 Larger distributional shifts685

In our dataset, ML performs very well on average as the testing distribution matches well with its686

training distribution. To consider more challenging cases as a stress test, we manually increase the687

testing distributional shifts by adding random noise following N (0,�) to a certain faction pc of the688

testing samples. Note that, as we intentionally stress test RCL and RCL-O under a larger distributional689

shift, their ML models remain unchanged as in the default setting and are not re-trained by adding690

noisy data to the training dataset.691

16

pc=0.05 pc=0.1 pc=0.2
� =0.06 � =0.08 � =0.1 � =0.06 � =0.08 � =0.1 � =0.06 � =0.08 � =0.1

AVG

RCL 1.1331 1.1444 1.1556 1.1487 1.1693 1.1904 1.1827 1.2254 1.2697
RCL-O 1.2425 1.2436 1.2462 1.2416 1.2434 1.2478 1.2370 1.2394 1.2469

ML 1.0722 1.0778 1.0855 1.0770 1.0874 1.1018 1.0858 1.1053 1.1325
EC-L2O 1.1728 1.1737 1.1754 1.1731 1.1750 1.1784 1.1727 1.1757 1.1815
ROBD 1.6048 1.6048 1.6048 1.6048 1.6049 1.6049 1.6048 1.6048 1.6049
HitMin 1.2112 1.2195 1.2302 1.2202 1.2357 1.2557 1.2410 1.2724 1.3127

CR

RCL 2.5028 2.9697 3.2247 2.6553 3.0283 3.2711 2.5714 3.0123 3.1653
RCL-O 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209

ML 6.5159 8.9245 11.6627 4.4025 6.5090 9.4168 5.5798 7.3956 9.3903
EC-L2O 3.4639 4.6034 5.9666 2.6545 3.6740 5.1129 2.9766 3.7713 4.6983
ROBD 1.7291 1.7291 1.7291 1.7291 1.7291 1.7291 1.7291 1.7296 1.7298
HitMin 4.8573 6.7746 8.8383 3.1492 4.8253 7.0405 5.0632 6.9699 8.9246

Table 2: Average cost and competitive ratio comparison of different algorithms. We study the effect
of introducing out-of-distribution (OOD) samples. Within the testing dataset, we randomly select a
fraction of pc of samples and add some random noise following N (0,�) to contaminate these data
samples (whose input values are all normalized within [0, 1]).

With the default � = 1, we show the average cost and competitive ratio results in Table 2. We see692

that ROBD is very robust and little affected by the distributional shifts. In terms of the competitive693

ratio, ML, HitMin and EC-L2O are not robust, resulting in a large competitive ratio when we add694

more noisy samples. The average cost performance of RCL is empirically better than that of RCL-O695

in almost all cases, except for a slight increase in the practically very rare case where 20% samples696

are contaminated with large noise. On the other hand, as expected, the competitive ratios of RCL and697

RCL-O both increase as we add more noise. While RCL has a higher competitive ratio than RCL-O698

empirically in the experiment, they both have the same guaranteed (1 + �) competitiveness against699

ROBD regardless of how their ML models are trained. Also, their competitive ratios are both better700

than other algorithms, showing the effectiveness of our novel robustification process.701

B.4 Results with Feedback Delay702

We now turn to the case when there is a one-step feedback delay, i.e., the context parameter yt is not703

known to the agent until time t+ 1. For this setting, we consider the best-known online algorithm704

iROBD [49] as the expert that handles the feedback delay with a guaranteed competitive ratio with705

respect to OPT. The other baseline online algorithms — ROBD, EC-L2O, and HitMin— presented in706

Section B.2 require the immediate revelation of yt without feedback delay and hence do not directly707

apply to this case. Thus, for comparison, we use the predicted context, denoted by ŷt, with up to 15%708

prediction errors in the baseline online algorithms, and reuse the algorithm names (e.g., EC-L2O709

uses predicted ŷt as if it were the true context for decision making). We train ML using the same710

architecture as in Section B.3, with the exception that only delayed context is provided as input for711

both training and testing. The reported values are normalized with respect to those of the respective712

offline optimal algorithm OPT. The average cost (AVG) and competitive ratio (CR) are all empirical713

results reported on the testing dataset.714

We show the results in Table 3 and Fig. 4. We see that with the default � = 1, both RCL and RCL-O715

have a good average cost, but RCL has a lower average cost than RCL-O and is outperformed only716

by ML in terms of the average cost. RCL and RCL-O have the same competitive ratio guarantee (i.e.,717

(1 + �) times the competitive ratio of iROBD). Nonetheless, RCL has the lowest competitive ratio718

than all the other algorithms, demonstrating the power of RCL to leverage both ML prediction and the719

robust expert. In this experiment, both RCL and RCL-O outperform iROBD in terms of the empirical720

competitive ratio because they are able to exploit the good ML predictions for those problem instances721

that are difficult for iROBD.722

By comparison, ML performs well on average by exploiting the historical data, but has a high723

competitive ratio. The alternative baselines — ROBD, EC-L2O and HitMin— use predicted context724

ŷt as the true context. Except for the good empirical competitive ratio of ROBD, they do not have725

good average performance or guaranteed robustness due to their naively trusting the predicted context726

(that can potentially have large prediction errors). Note that the empirical competitive ratio of ROBD727

with predicted context is still much higher than that with the true context in Table 1. These results728

reinforce the point that blindly using ML predictions (i.e., predicted context in this example) without729

17

RCL RCL-O ML EC-L2O iROBD HitMin ROBD
�=0.6 �=1 �=3 �=5 �=0.6 �=1 �=3 �=5

AVG 1.5011 1.3594 1.2874 1.2899 1.5134 1.3690 1.2949 1.3026 1.2792 1.4112 2.3076 2.6095 2.5974
CR 2.9797 2.4832 3.2049 3.9847 2.9797 2.4832 3.3367 4.3040 8.4200 15.1928 4.7632 26.0264 2.8478

Table 3: Competitive ratio and average cost comparison of different algorithms with feedback delay.

(a) iROBD as the expert (b) RCL w/ different � (c) RCL-O w/ different �
Figure 4: Cost ratio distributions with feedback delay (� = 1 by default)

additional robustification can lead to poor performance in terms of both average cost and worst-case730

cost ratio.731

We further show in Fig. 4 the box plots for cost ratios of different algorithms, providing a detailed732

view of the algorithms’ performance. The key message is that RCL obtains the best of both worlds —733

a good average cost and a good competitive ratio. Moreover, we see that by setting � = 1, we provide734

enough freedom to RCL to exploit the benefits of ML predictions while also ensuring worst-case735

robustness. Thus, like in the no-delay case in Table 1 and Fig. 2, the empirical competitive ratio of736

RCL with � = 1 is even lower than that with � = 0.6.737

C Proof of Theorems and Corollaries in Section 4738

C.1 Proof of Theorem 4.1 (Cost Ratio)739

To prove Theorem 4.1, we first give some technical lemmas about the smoothness of cost functions740

from Lemma C.1 to Lemma C.3.741

Lemma C.1 (Lemma 4 in [59]). Assume f(x) is � smooth, for any � > 0, we have

f(x) (1 + �)f(y) + (1 +
1

�
)
�

2
kx� yk2 8x, y 2 X

Lemma C.2. Assume f(x) is �1 smooth and d(x) is �2 smooth, then f(x)+ d(x) is �1 +�2 smooth.742

Lemma C.3. Suppose that the hitting cost f(x, yt) is �h-smooth with respect to x, The switching743

cost is d(xt, xt�1) =
1
2kxt � �(xt�p:t�1)k2, where �(·) is Li-Lipschitz with respect to xt�i. Then744

for any two action sequences x1:T and x0
1:T , we must have745

cost(x1:T)� (1 + �)cost(x0
1:T)

� + (1 +
P

p

k=1 Lk)2

2
(1 +

1

�
)kx1:T � x0

1:T k
2, 8� > 0 (8)

Proof. The objective to be bounded can be decomposed as746

cost(x1:T)� (1 + �)cost(x0
1:T)

=

✓ TX

t=1

f(xt, yt)� (1 + �)f(x0
t
, yt)

◆
+

1

2

✓ TX

t=1

kxt � �(xt�p:t�1)k
2
� (1 + �)kx0

t
� �(x0

t�p:t�1)k
2

◆

(9)

Since hitting cost is �h-smooth, then747

TX

t=1

f(xt, yt)� (1 + �)f(x0
t
, yt)

�h

2
(1 +

1

�
)

TX

t=1

kxt � x0
t
k
2 (10)

18

Besides, based on the Lipschitz assumption of function �(·), we have748

kxt � �(xt�p:t�1)k
2
� (1 + �)kx0

t
� �(x0

t�p:t�1)k
2

(1 +
1

�
)k(xt � x0

t
) + (�(xt�p:t�1)� �(x0

t�p:t�1))k
2

(1 +
1

�
)
�
kxt � x0

t
k+ k�(xt�p:t�1)� �(x0

t�p:t�1)k
�2

(1 +
1

�
)

kxt � x0

t
k+

pX

k=1

Lkkxt�k � x0
t�k

k

!2

(1 +
1

�
)(1 +

pX

k=1

Lk)

kxt � x0

t
k
2 +

pX

k=1

Lkkxt�k � x0
t�k

k
2

!

(11)

Summing up the switching costs of all time steps together, we have749

TX

t=1

kxt � �(xt�p:t�1)k
2
� (1 + �)kx0

t
� �(x0

t�p:t�1)k
2

(1 +
1

�
)(1 +

pX

k=1

Lk)
TX

t=1

kxt � x0

t
k
2 +

pX

k=1

Lkkxt�k � x0
t�k

k
2

!

(1 +
1

�
)(1 +

pX

k=1

Lk)
TX

t=1

(1 +
pX

k=1

Lk)kxt � x0
t
k
2

=(1 +
1

�
)(1 +

pX

k=1

Lk)
2

TX

t=1

kxt � x0
t
k
2

(12)

Substituting Eqn. (12) and Eqn. (10) into Eqn. (9), we finish the proof.750

Now we propose Lemma C.4 based on these above lemmas, which ensures the feasibility of robustness751

constraint in Eqn. (1)752

Lemma C.4. Let ⇡ be any expert algorithm for the SOCO problem with multi-step feedback delays753

and multi-step switching costs, for any � � 0 and � � �0 � 0, the total cost by the projected actions754

xt must satisfy cost(x1:T) (1 + �)cost(x⇡

1:T)755

Proof. We prove by induction that the constraints in Eqn. (1) are satisfied for each t. For t = 1, since756

we assume the initial actions are the same (x�p+1:0 = x⇡
�p+1:0), it is obvious that x = x⇡

1 satisfies757

the robustness constraints Eqn. (1).758

Then for any time step t � 2, suppose it holds at t� 1 that759

X

⌧2At�1

f(x⌧ , y⌧) +
X

⌧2At�1[Bt�1

d(x⌧ , x⌧�p:⌧�1) +
X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
) +G(x, xt�p:t�1, x

⇡

t�p:t)

(1 + �)

✓ X

⌧2At�1

f(x⇡

⌧
, y⌧) +

X

⌧2At�1[Bt�1

d(x⇡

⌧
, x⇡

⌧�p:⌧�1)

◆

(13)
Now the robustness constraints Eqn. (1) is satisfied if we prove xt = x⇡

t
satisfies the constraints in760

Eqn. (1) at time step t. Since for the sets A and B, we have761

(At [Bt)\(At�1 [Bt�1) = {t}, At�1 ✓ At, (14)

so it holds that762

X

⌧2At[Bt

d(x⌧ , x⌧�p:⌧�1)�
X

⌧2At�1[Bt�1

d(x⌧ , x⌧�p:⌧�1) = d(xt, xt�p:t�1) (15)

19

By Lemma C.1, we have763

d(x⇡

t
, xt�p:t�1)� (1 + �)d(x⇡

t
, x⇡

t�p:t�1)

1

2
(1 +

1

�
)k�(xt�p:t�1)� �(x⇡

t�p:t�1)k
2

1

2
(1 +

1

�
)

pX

i=1

Likxt�i � x⇡

t�i
k

!2
(16)

Denote ↵ = 1 +
P

p

k=1 Lk. For the reservation cost, we have764

G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1)�G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t)

=
↵(1 + 1

�0
)

2

pX

k=1

p�kX

i=0

Lk+ikxt�i�1 � x⇡

t�i�1k
2
�

pX

k=1

p�kX

i=1

Lk+ikxt�i � x⇡

t�i
k
2

!

=
↵(1 + 1

�0
)

2

p�1X

k=0

p�kX

i=1

Lk+ikxt�i � x⇡

t�i
k
2
�

pX

k=1

p�kX

i=1

Lk+ikxt�i � x⇡

t�i
k
2

!

=
↵(1 + 1

�0
)

2

p�1X

k=0

p�kX

i=1

Lk+ikxt�i � x⇡

t�i
k
2
�

p�1X

k=1

p�kX

i=1

Lk+ikxt�i � x⇡

t�i
k
2

!

=
↵(1 + 1

�0
)

2

pX

i=1

Likxt�i � x⇡

t�i
k
2

(17)

Continuing with Eqn. (17), we have765

G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1)�G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t) =
↵(1 + 1

�0
)

2

pX

i=1

Likxt�i � x⇡

t�i
k
2

�
(1 + 1

�0
)(
P

p

i=1 Li)2

2

pX

i=1

LiP
p

i=1 Li

kxt�i � x⇡

t�i
k
2

�
(1 + 1

�0
)(
P

p

i=1 Li)2

2

pX

i=1

LiP
p

i=1 Li

kxt�i � x⇡

t�i
k

!2

=
1

2
(1 +

1

�0
)

pX

i=1

Likxt�i � x⇡

t�i
k

!2

�
1

2
(1 +

1

�
)

pX

i=1

Likxt�i � x⇡

t�i
k

!2

(18)

where the second inequality holds by Jensen’s inequality. Therefore, combining with (16), we have766

d(x⇡

t
, xt�p:t�1)+G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t) G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1)+(1+�)d(x⇡

t
, x⇡

t�p:t�1)
(19)

By Eqn. (19), we have767

G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t) +
X

⌧2At[Bt

d(x⌧ , x⌧�p:⌧�1)�
X

⌧2At�1[Bt�1

d(x⌧ , x⌧�p:⌧�1)

G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1) + (1 + �)

0

@
X

⌧2At[Bt

d(x⇡

⌧
, x⇡

⌧�p:⌧�1)�
X

⌧2At�1[Bt�1

d(x⇡

⌧
, x⇡

⌧�p:⌧�1)

1

A

(20)
Now we define a new set Dt = At\At�1, which denotes the timestep set for the newly received768

context parameters at t.769

20

Case 1: If t 2 Dt, then Bt�1\Bt = Dt\{t}, then we have770

X

⌧2At

f(x⌧ , y⌧) +
X

⌧2Bt

H(x⌧ , x
⇡

⌧
)

!
�

0

@
X

⌧2At�1

f(x⌧ , y⌧) +
X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
)

1

A

=
X

⌧2Dt

f(x⌧ , y⌧)�
X

⌧2Dt\{t}

H(x⌧ , x
⇡

⌧
) = f(x⇡

t
, yt) +

X

⌧2Dt\{t}

f(x⌧ , y⌧)�
X

⌧2Dt\{t}

H(x⌧ , x
⇡

⌧
)

(21)
Since hitting cost f(·, yt) is �h-smooth, we have771

X

⌧2Dt\{t}

f(x⌧ , y⌧)�
X

⌧2Dt\{t}

(1 + �)f(x⇡

⌧
, y⌧)

�h(1 +

1
�
)

2

X

⌧2Dt\{t}

kx⇡

⌧
� x⌧k

2

X

⌧2Dt\{t}

H(x⌧ , x
⇡

⌧
)

(22)

Substituting Eqn. (22) back to Eqn. (21), we have772

X

⌧2At

f(x⌧ , y⌧) +
X

⌧2Bt

H(x⌧ , x
⇡

⌧
)

!
�

0

@
X

⌧2At�1

f(x⌧ , y⌧) +
X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
)

1

A

(1 + �)

0

@
X

⌧2At

f(x⌧ , y⌧)�
X

⌧2At�1

f(x⌧ , y⌧)

1

A

(23)

Case 2: If t /2 Dt, then (Bt�1 [{t})\Bt = Dt and we have773

X

⌧2At

f(x⌧ , y⌧) +
X

⌧2Bt

H(x⌧ , x
⇡

⌧
)

!
�

0

@
X

⌧2At�1

f(x⌧ , y⌧) +
X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
)

1

A

=
X

⌧2Dt

f(x⌧ , y⌧)�
X

⌧2Dt

H(x⌧ , x
⇡

⌧
) +H(x⇡

t
, x⇡

t
)

=
X

⌧2Dt

f(x⌧ , y⌧)�
X

⌧2Dt

H(x⌧ , x
⇡

⌧
)

(24)

Since hitting cost f(·, yt) is �h-smooth, we have774

X

⌧2Dt

f(x⌧ , y⌧)�
X

⌧2Dt

(1 + �)f(x⇡

⌧
, y⌧)

�h(1 +
1
�
)

2

X

⌧2Dt

kx⇡

⌧
� x⌧k

2

X

⌧2Dt

H(x⌧ , x
⇡

⌧
)

(25)
Since � � 0, we substitute Eqn. (25) back to Eqn. (24), we have the same conclusion as Eqn (23).775

Adding Eqn. (13), Eqn. (20) and Eqn. (23) together, we can prove x = x⇡
t

satisfies the constraints in776

Eqn. (1). At time step T , we have777
X

⌧2AT

f(x⌧ , y⌧) +
X

⌧2AT[BT

d(x⌧ , x⌧�p:⌧�1) +
X

⌧2BT

(f(x⌧ , y⌧)� (1 + �)f(x⇡

⌧
, y⌧))

X

⌧2AT

f(x⌧ , y⌧) +
X

⌧2AT[BT

d(x⌧ , x⌧�p:⌧�1) +
X

⌧2BT

H(x⌧ , x
⇡

⌧
)

(1 + �)

X

⌧2AT

f(x⇡

⌧
, y⌧) +

X

⌧2AT[BT

d(x⇡

⌧
, x⇡

⌧�p:⌧�1)

!
(26)

In other words778 X

⌧2AT[BT

(f(x⌧ , y⌧) + d(x⌧ , x⌧�p:⌧�1)) (1 + �)
X

⌧2AT[BT

(f(x⇡

⌧
, y⌧) + d(x⌧ , x⌧�p:⌧�1))

(27)

779

21

In the next lemma, we bound the difference between the projected action and the ML predictions.780

Lemma C.5. Suppose hitting cost is �h-smooth, given the expert policy ⇡, ML predictions x̃1:T , for781

any � > 0 and �1 > 0, the total distance between actual actions x1:T and ML predictions x̃1:T are782

bounded,783

TX

i=1

kxt � x̃tk
2

TX

i=1

0

B@

2

4kx̃t � x⇡

t
k �

vuutK

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡
⌧
, y⌧)

!3

5
+
1

CA

2

(28)

where [·]+ is the ReLU function and K = 2(���0)
�h(1+

1
�0

)+↵2(1+ 1
�0

)
, ↵ = 1 +

P
p

i=1 Li784

Proof. Suppose we at t� 1 have the following inequality:785

X

⌧2At�1

f(x⌧ , y⌧) +
X

⌧2At�1[Bt�1

d(x⌧ , x⌧�p:⌧�1) +
X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
) +G(x, xt�p:t�1, x

⇡

t�p:t)

(1 + �)

0

@
X

⌧2At�1

f(x⇡

⌧
, y⌧) +

X

⌧2At�1[Bt�1

d(x⇡

⌧
, x⇡

⌧�p:⌧�1)

1

A

(29)
Remember that Dt = At\At�1 is the set of the time steps for the newly received context parameters786

at t. The robustness constraint in Eqn. (1) is satisfied if xt satisfies the following inequality.787

0

@
X

⌧2Dt

f(x⌧ , y⌧) +
X

⌧2Bt

H(x⌧ , x
⇡

⌧
)�

X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
)

1

A+ d(xt, xt�p:t�1) +G(xt, xt�p:t�1, x
⇡

t�p:t)

�G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1) (1 + �)

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

!

(30)

For the switching cost, we have788

d(x, xt�p:t�1)� (1 + �0)d(x
⇡

t
, x⇡

t�p:t�1)

1

2
(1 +

1

�0
)
�
kx� x⇡

t
k+ k�(xt�p:t�1)� �(x⇡

t�p:t�1)k
�2

1

2
(1 +

1

�0
)

kx� x⇡

t
k+

pX

i=1

Likxt�i � x⇡

t�i
k

!2

↵(1 + 1

�0
)

2

kx� x⇡

t
k
2 +

pX

i=1

Likxt�i � x⇡

t�i
k
2

!

(31)

The first inequality comes from Lemma C.1, the second inequality comes from the Li-Lipschitz789

assumption, and the third inequality is because ↵ � 1. Besides, from Eqn (17), we have790

G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1)�G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t) =
↵(1 + 1

�0
)

2

pX

i=1

Likxt�i � x⇡

t�i
k
2

(32)

Thus we have791

G(x, xt�p:t�1, x
⇡

t�p:t)�G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1)

=G(x, xt�p:t�1, x
⇡

t�p:t)�G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t) +G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t)�G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1)

=G(x, xt�p:t�1, x
⇡

t�p:t)�G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t)�
↵(1 + 1

�0
)

2

pX

i=1

Likxt�i � x⇡

t�i
k
2.

(33)

22

Combining with inequality (31), we have792

G(xt, xt�p:t�1, x
⇡

t�p:t)�G(xt�1, xt�p�1:t�2, x
⇡

t�p�1:t�1) + d(xt, xt�p:t�1)� (1 + �0)d(x
⇡

t
, x⇡

t�p:t�1)

G(xt, xt�p:t�1, x
⇡

t�p:t)�G(x⇡

t
, xt�p:t�1, x

⇡

t�p:t) +
↵(1 + 1

�0
)

2
kxt � x⇡

t
k
2

=
↵(1 + 1

�0
)
P

p

k=1 Lk

2
kxt � x⇡

t
k
2 +

↵(1 + 1
�0
)

2

pX

k=1

kxt � x⇡

t
k
2

=
↵2(1 + 1

�0
)

2
kxt � x⇡

t
k
2

(34)

Substituting Eqn. (34) back to Eqn. (30), we have793

X

⌧2Dt

(f(x⌧ , y⌧)� (1 + �0)f(x
⇡

⌧
, y⌧)) +

X

⌧2Bt

H(x⌧ , x
⇡

⌧
)�

X

⌧2Bt�1

H(x⌧ , x
⇡

⌧
)

+
↵2(1 + 1

�0
)

2
kx� x⇡

t
k
2
 (�� �0)

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

! (35)

Case 1: If t 2 Dt, then Bt�1\Bt = Dt\{t}, then Eqn.(35) becomes794

f(xt, yt)� (1 + �0)f(x
⇡

t
, yt) +

↵2(1 + 1
�0
)

2
kx� x⇡

t
k
2

+
X

⌧2Dt\{t}

f(x⌧ , y⌧)�(1 + �0)f(x
⇡

⌧
, y⌧)�H(x⌧ , x

⇡

⌧
) (�� �0)

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

!

(36)

Since hitting cost is �h-smooth, the sufficient condition for Eqn. (35) becomes795

(�h + ↵2)(1 + 1
�0
)

2
kx� x⇡

t
k
2
 (�� �0)

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

!
(37)

Since the hitting cost is non-negative, the sufficient condition can be further simplified, which is796

(�h + ↵2)(1 + 1
�0
)

2
kx� x⇡

t
k
2
 (�� �0)

�
f(x⇡

t
, yt) + d(x⇡

t
, x⇡

t�p:t�1)
�

(38)

Case 2: If t /2 Dt, then (Bt�1 [{t})\Bt = Dt, then Eqn.(35) becomes797

↵2(1 + 1
�0
)

2
kx� x⇡

t
k
2 +H(x, x⇡

t
) +

X

⌧2Dt

(f(x⌧ , y⌧)� (1 + �0)f(x
⇡

⌧
, y⌧)�H(x⌧ , x

⇡

⌧
))

 (�� �0)

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

! (39)

Since hitting cost is �h-smooth, the sufficient condition for Eqn. (39) becomes798

(�h + ↵2)(1 + 1
�0
)

2
kx� x⇡

t
k
2
 (�� �0)

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

!
(40)

Now we define

K =
2(�� �0)

(�h + ↵2)(1 + 1
�0
)

23

At time step t, if x0
t

is the solution to this alternative optimization problem799

x0
t
= argmin

x

1

2
kx� x̃tk

2

s.t. kx� x⇡

t
k
2
 K

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

! (41)

The solution to this problem can be calculated asd800

x0
t
= ✓x⇡

t
+ (1� ✓)x̃t

✓ =

2

41�

q
K
�
d(x⇡

t
, x⇡

t�p:t�1) +
P

⌧2Dt
f(x⇡

⌧
, y⌧)

�

kx̃t � x⇡
t
k

3

5

+

.
(42)

Then kx0
t
� x̃tk =

h
kx̃t � x⇡

t
k �

q
K
�
d(x⇡

t
, x⇡

t�p:t�1) +
P

⌧2Dt
f(x⇡

⌧
, y⌧)

�i+
. Since x0

t
also801

satisfies the original robustness constraint, we have kxt � x̃tk kx0
t
� x̃tk and we finish the proof.802

803

Proof of Theorem 4.1804

Now summing up the distance through 1 to T, we have805

TX

i=1

kxt � x̃tk
2

TX

i=1

0

B@

2

4kx̃t � x⇡

t
k �

vuutK

d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡
⌧
, y⌧)

!3

5
+
1

CA

2

(43)

Based on Lemma C.3 we have 8�2 > 0,806

cost(x1:T)� (1 + �2)cost(x̃1:T)
� + ↵2

2
(1 +

1

�2
)

TX

i=1

kxt � x̃tk
2. (44)

Suppose the offline optimal action sequence is x⇤
1:T , the optimal cost is cost(x⇤

1:T). Then we divide807

both sides of Eqn. (44) by cost(x⇤
1:T), and get 8�2 > 0,808

cost(x1:T) (1 + �2)cost(x̃1:T) +
� + ↵2

2
(1 +

1

�2
)·

TX

i=1

✓
kx̃t � x⇡

t
k �

s
K
⇣
d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡
⌧
, y⌧)

⌘�+◆2 (45)

By substituting K = 2(���0)
(�h+↵2)(1+ 1

�0
)

back to Eqn (46), we have809

cost(x1:T) (1 + �2)cost(x̃1:T) + (1 +
1

�2
)

TX

i=1

� + ↵2

2
kx̃t � x⇡

t
k
2

�
�� �0

1 + 1
�0

⇣
d(x⇡

t
, x⇡

t�p:t�1) +
X

⌧2Dt

f(x⇡

⌧
, y⌧)

⌘�+ (46)

By defining single step cost of the expert ⇡ as cost⇡
t
= d(x⇡

t
, x⇡

t�p:t�1) +
P

⌧2Dt
f(x⇡

⌧
, y⌧) and the810

auxiliary cost as �(�) =
P

T

i=1

h
kx̃t � x⇡

t
k
2
�

2(���0)
(�h+↵2)(1+ 1

�0
)
cost⇡

t

i+
811

cost(x1:T)

p

cost(x̃1:T) +

r
� + ↵2

2
�(�)

!2

(47)

Combined with Lemma C.4, we obtain the following bound, which finished this proof.812

cost(x1:T) min

(1 + �)cost(x⇡

1:T),

✓p
cost(x̃1:T) +

r
� + ↵2

2
�(�)

◆2
!

(48)

24

C.2 Proof of Theorem 4.2813

Proof. We first give the formal definition of Rademacher complexity of the ML model space with814

robustification.815

Definition 5 (Rademacher Complexity). Let Rob�(W) = {Rob�(hW),W 2 W} be the ML model816

space with robustification constrained by (2). Given the dataset S , the Rademacher complexity with817

respect to Rob�(W) is818

RadS(Rob�(W)) =
1

|S|
E⌫

"
sup

W2W

X

i2S
⌫iRob�

�
hW (yi)

�
!#

,

where yi is the i-th sample in S , and ⌫1, · · · , ⌫n are independently drawn from Rademacher distribu-819

tion.820

Since the cost functions are smooth, they are locally Lipschitz continuous for the bounded action821

space, and we can apply the generalization bound based on Rademacher complexity [60] for the822

space of robustified ML model Rob�(hW). Given any ML model hW trained on dataset S, with823

probability at least 1� �, � 2 (0, 1),824

EP0
y
[cost1:T] costS(Rob�(hW)) + 2�xRadS(Rob�(W)) + 3c̄

s
log(2/�)

|S|
, (49)

where �x =
p
T |X |

⇥
�h + 1

2 (1 +
P

p

i=1 Li)(1 +
P

p

i=1 Li)
⇤

with |X | being the size of the action825

space X and �h, Li, and p as the smoothness constant, Lipschitz constant of the nonlinear term in the826

switching cost, and the memory length as defined in Assumptions 1 and 2, and c̄ is the upper bound827

of the total cost for an episode. We can get the average cost bound in Proposition 4.2.828

Next, we prove that the Rademacher complexity of the ML model space with robustification is no829

larger than the Rademacher complexity of the ML model space without robustification expressed as830

{hW ,W 2 W}, i.e. we need to prove RadS(Rob�(W)) RadS (W). The Rademacher complexity831

can be expressed by Dudley’s entropy integral [61] as832

RadS(Rob�(W)) = O

1p
|S|

Z 1

0

p
logN(✏,Rob�(W), L2(S))d✏

!
, (50)

where N(✏,Rob�(W), L2(S)) is the covering number [61] with respect to radius ✏ and the function833

distance metric kh1 � h2kL2(S) =
1
|S|
P

i2S kh1(xi)� h2(xi)k2 where h1 and h2 are two functions834

defined on the space including dataset S . We can find that for any two different weights W1 and W2,835

their corresponding post-robustification distance kRob�(hW1)� Rob�(hW2)kL2(S) is no larger than836

their pre-robustification distance khW1 � hW2kL2(S). To see this, we discuss three cases given any837

input sample y. If both hW1(y) and hW2(y) lie in the projection set, then Rob�(hW1)(y) = hW1(y)838

and Rob�(hW2)(y) = hW2(y). If hW1(y) lies in the projection set while hW2(y) is out of839

the projection set, the projection operation based on the closed convex projection set will make840

kRob�(hW1)(y)�Rob�(hW2)(y)k to be less than khW1(y)�hW2(y)k. If both hW1(y) and hW2(y)841

lie out of the projection set, we still have kRob�(hW1)(y)�Rob�(hW2)(y)k khW1(y)�hW2(y)k842

since the projection set at each round is a closed convex set [62]. Therefore, after robusti-843

fication, the distance between two models with different weights will not become larger, i.e.844

kRob�(hW1)� Rob�(hW2)kL2(S) khW1 � hW2kL2(S), which means RCL has a covering number845

N(✏,Rob�(W), L2(S)) no larger than that of the individual ML model N(✏,W, L2(S)) for any ✏.846

Thus the Rademacher complexity with the robustification procedure does not increase.847

By [63], the upper bound of Rademacher complexity with respect to the space of ML model848

RadS(Rob�(W)) is in the order of O(1p
|S|

). Since the Rademacher complexity with the robustifica-849

tion procedure satisfies RadS(Rob�(W)) RadS (W), it also decreases with the dataset size in the850

order of O(1p
|S|

).851

25

D Robustification-aware Training852

Theorem 4.2 also shows the benefits of training the ML model in a robustification-aware manner.853

Specifically, by comparing the losses in (5) and (6), we see that using (6) as the robustification-aware854

loss for training W can reduce the term costS(ROB(hW)) in the average cost bound, which matches855

exactly with the training objective in (6). The robustification-aware approach is only beginning to be856

explored in the ML-augmented algorithm literature and non-trivial (e.g., unconstrained downstream857

optimization in [55]), especially considering that (1) is a constrained optimization problem with no858

explicit gradients.859

Gradient-based optimizers such as Adam [64] are the de facto state-of-the-art algorithms for training860

ML models, offering better optimization results, convergence, and stability compared to those non-861

gradient-based alternatives [65]. Thus, it is crucial to derive the gradients of the loss function with862

respect to the ML model weight W given the added robustification step.863

Next, we derive the gradients of xt with respect to x̃t. For the convenience of presentation, we use864

the basic SOCO setting with a single-step switching cost and no hitting cost delay as an example,865

while noting that the same technique can be extended to derive gradients in more general settings.866

Specifically, for this setting, the pre-robustification prediction is given by x̃t = hW (x̃t�1, yt), where867

W denotes the ML model weight. Then, the actual post-robustification action xt is obtained by868

projection in (1) by setting q = 0 and p = 1, given the ML prediction x̃t, the expert’s action x⇡
t

and869

cumulative cost(x⇡
1:t) up to t, and the actual cumulative cost(x1:t�1) up to t� 1.870

The gradient of the loss function cost(x1:T) =
P

T

t=1 (f(xt, yt) + d(xt, xt�1)) with respect to the871

ML model weight W is given by
P

T

t=1 rW

�
f(xt, yt) + d(xt, xt�1)

�
. Next, we write the gradient872

of per-step cost with with respect to W as follows:873

rW

�
f(xt, yt) + d(xt, xt�1)

�

=rxt

�
f(xt, yt) + d(xt, xt�1)

�
rWxt +rxt�1

�
f(xt, yt) + d(xt, xt�1)

�
rWxt�1

=rxt

�
f(xt, yt) + d(xt, xt�1)

�
rWxt +rxt�1d(xt, xt�1)rWxt�1,

(51)

where the gradients rxt

�
f(xt, yt) + d(xt, xt�1)

�
and rxt�1d(xt, xt�1) are trivial given the hitting874

and switching cost functions, and the gradient rWxt�1 is obtained at time t� 1 in the same way as875

rWxt. To derive rWxt, by the chain rule, we have:876

rWxt = rx̃txtrW x̃t +rcost(x1:t�1)xtrW cost(x1:t�1), (52)
where rW x̃t is the gradient of the ML output (following a recurrent architecture illustrated in Fig. 1877

in the appendix) with respect to the weight W and can be obtained recursively by using off-the-shelf878

BPTT optimizers [64], and rW cost(x1:t�1) =
P

t�1
⌧=1 rW

�
f(x⌧ , y⌧) + d(x⌧ , x⌧�1)

�
can also be879

recursively calculated once we have the gradient in Eqn. (51). Nonetheless, it is non-trivial to880

calculate the two gradient terms in Eqn. (52), i.e., rx̃txt and rcost(x1:t�1)xt, where xt itself is the881

solution to the constrained optimization problem (1) unlike in the simpler unconstrained case [55].882

As we cannot explicitly write xt in a closed form in terms of x̃t and cost(x1:t�1), we leverage the883

KKT conditions [66, 67, 68] to implicitly derive rx̃txt and rcost(x1:t�1)xt in the next proposition.884

Proposition D.1 (Gradients by KKT conditions). Let xt 2 X and µ � 0 be the primal and dual

solutions to the problem (1), respectively. The gradients of xt with respect to x̃t and cost(x1:t�1) are

rx̃txt = ��1
11 [I +�12Sc(�,�11)

�1�21�
�1
11],

rcost(x1:t�1)xt = ��1
11 �12Sc(�,�11)

�1µ,

where �11 = I + µ
⇣
rxt,xtf(xt, yt) +

⇣
1 + (1 + 1

�0
)(L2

1 + L1)
⌘
I
⌘

, �12 = rxtf(xt, yt) +885

(xt � �(xt�1)) +
⇣
1 + (1 + 1

�0
)(L2

1 + L1)
⌘
(xt � x⇡

t
), �21 = µ�>

12, �22 = f(xt, yt) +886

d(xt, xt�1)+G(xt, x⇡
t
)+cost(x1:t�1)� (1+�)cost(x⇡

1:t), and Sc(�,�11) = �22��21�
�1
11 �12887

is the Schur-complement of �11 in the blocked matrix � =
⇥
[�11,�12], [�21,�22]

⇤
.888

If the ML prediction x̃t happens to lie on the boundary such that the inequality in (1) becomes an889

equality for x = x̃t, then the gradient does not exist in this case and Sc(�,�11) may not be full-890

rank. Nonetheless, we can still calculate the pseudo-inverse of Sc(�,�11) and use Proposition D.1891

to calculate the subgradient. Such approximation is actually a common practice to address non-892

differentiable points for training ML models, e.g., using 0 as the subgradient of ReLu(·) at the zero893

point [64].894

26

Reference895

[48] W. Tang, S. Bi, and Y. Zhang. Online coordinated charging decision algorithm for electric896

vehicles without future information. IEEE Trans. Smart Grid, 5:2810–2824, May 2014.897

[49] Weici Pan, Guanya Shi, Yiheng Lin, and Adam Wierman. Online optimization with feedback898

delay and nonlinear switching cost. Proc. ACM Meas. Anal. Comput. Syst., 6(1), feb 2022.899

[50] Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam Wierman.900

Equipping black-box policies with model-based advice for stable nonlinear control. In901

https: // arxiv. org/ abs/ 2206. 01341 , 2022.902

[51] Chris Develder, Nasrin Sadeghianpourhamami, Matthias Strobbe, and Nazir Refa. Quantifying903

flexibility in ev charging as dr potential: Analysis of two real-world data sets. In 2016 IEEE904

International Conference on Smart Grid Communications (SmartGridComm), pages 600–605.905

IEEE, 2016.906

[52] Mohammad Ali Alomrani, Reza Moravej, and Elias B. Khalil. Deep policies for online bipartite907

matching: A reinforcement learning approach. CoRR, abs/2109.10380, 2021.908

[53] Bingqian Du, Zhiyi Huang, and Chuan Wu. Adversarial deep learning for online resource909

allocation. ACM Trans. Model. Perform. Eval. Comput. Syst., 6(4), feb 2022.910

[54] Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent:911

An optimal algorithm for smoothed online optimization. In NeurIPS, volume 32, 2019.912

[55] Pengfei Li, Jianyi Yang, and Shaolei Ren. Expert-calibrated learning for online optimization913

with switching costs. Proc. ACM Meas. Anal. Comput. Syst., 6(2), Jun 2022.914

[56] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. Online915

metric algorithms with untrusted predictions. In ICML, 2020.916

[57] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and917

functions with black-box advice. In COLT, 2022.918

[58] Daan Rutten, Nico Christianson, Debankur Mukherjee, and Adam Wierman. Online optimiza-919

tion with untrusted predictions. CoRR, abs/2202.03519, 2022.920

[59] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online optimization921

with memory and competitive control. In NeurIPS, volume 33. Curran Associates, Inc., 2020.922

[60] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds923

and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.924

[61] Martin Wainwright. Rademacher and empirical covering. https://people.eecs.berkeley.925

edu/~wainwrig/stat241b/lec20.pdf, 2009.926

[62] Constantine Caramanis and Sujay Sanghavi. Projection onto a convex set. https://users.927

ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_3_Scribe_Notes.final.pdf,928

2012.929

[63] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds930

for neural networks. Advances in neural information processing systems, 30, 2017.931

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.932

[65] Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators933

give better policy gradients? In Proceedings of the 39th International Conference on Machine934

Learning, volume 162 of Proceedings of Machine Learning Research, pages 20668–20696.935

PMLR, 17–23 Jul 2022.936

[66] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.937

[67] Brandon Amos. Tutorial on amortized optimization for learning to optimize over continuous938

domains. CoRR, abs/2202.00665, 2022.939

27

https://arxiv.org/abs/2206.01341
https://people.eecs.berkeley.edu/~wainwrig/stat241b/lec20.pdf
https://people.eecs.berkeley.edu/~wainwrig/stat241b/lec20.pdf
https://people.eecs.berkeley.edu/~wainwrig/stat241b/lec20.pdf
https://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_3_Scribe_Notes.final.pdf
https://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_3_Scribe_Notes.final.pdf
https://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_3_Scribe_Notes.final.pdf

[68] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico940

Kolter. Differentiable convex optimization layers. In H. Wallach, H. Larochelle, A. Beygelzimer,941

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing942

Systems, volume 32. Curran Associates, Inc., 2019.943

28

	Introduction
	Related Work
	Model and Preliminaries
	Feedback Delay
	Performance Metrics

	RCL: The Design and Analysis
	Robustness-Constrained Online Algorithm
	Analysis
	ML Model Training in RCL
	Architecture, loss, and dataset
	Average cost
	Robustification-aware training and experimental verification

	Conclusion
	Illustration of RCL
	Case Study: Battery Management for EV Charging Stations
	Problem Formulation
	Baseline Algorithms
	Results
	The performance of RCL
	Utilizing HitMin as the expert
	Impact of
	Larger distributional shifts

	Results with Feedback Delay

	Proof of Theorems and Corollaries in Section 4
	Proof of Theorem 4.1 (Cost Ratio)
	Proof of thm:averagenontrain

	Robustification-aware Training

