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Abstract

We study a challenging form of Smoothed Online Convex Optimization, a.k.a.
SOCO, including multi-step nonlinear switching costs and feedback delay. We
propose a novel machine learning (ML) augmented online algorithm, Robustness-
Constrained Learning (RCL), which combines untrusted ML predictions with a
trusted expert online algorithm via constrained projection to robustify the ML pre-
diction. Specifically, we prove that RCL is able to guarantee (1+λ)-competitiveness
against any given expert for any λ > 0, while also explicitly training the ML model
in a robustification-aware manner to improve the average-case performance. Im-
portantly, RCL is the first ML-augmented algorithm with a provable robustness
guarantee in the case of multi-step switching cost and feedback delay. We demon-
strate the improvement of RCL in both robustness and average performance using
battery management for electrifying transportation as a case study.

1 Introduction

This paper studies Smoothed Online Convex Optimization (SOCO), a model that has seen application
in a wide variety of settings. The goal of SOCO is to minimize the sum of a per-round hitting cost and
a switching cost that penalizes temporal changes in actions. The added (even single-step) switching
cost creates substantial algorithmic challenges, and has received more than a decade of attention
(see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references therein). While there have been various
competitive online algorithms, e.g., ROBD, to guarantee the worst-case performance robustness
for SOCO [13, 5, 2, 6, 8, 13], their average performance is typically far from optimal due to the
conservativeness needed to address potentially adversarial instances. In contrast, machine learning
(ML) based optimizers can improve the average performance by exploiting rich historical data and
statistical information [14, 1, 12, 7, 15], but they sacrifice the strong robustness in terms of provable
competitive bounds needed by safety-critical applications, especially when there is a distributional
shift [16, 17], the ML model capacity is limited, and/or inputs are adversarial [18, 19].

More recently, ML-augmented online algorithms have emerged as potential game changers in classic
online problems such as ski rental and caching systems [20, 21, 22, 23, 24]. The goal is to obtain
the best of both worlds by utilizing good ML predictions to improve the average performance while
ensuring bounded competitive ratios even when ML predictions are arbitrarily bad. In the context of
SOCO, there has been initial progress on ML-augmented algorithms in the past year [1, 14, 7, 25].
However, these studies target the simplest case of SOCO where there is no feedback delay and the
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switching costs are linear. Crucially, their specific designs make it difficult, if not impossible, to
apply to more general and practical settings where there is hitting cost feedback delay and multi-step
nonlinear memory in the switching cost. In addition, with a few exceptions [12, 25], a common
assumption in the existing SOCO studies is that the ML model is pre-trained as a black box without
awareness of the downstream operation, which creates a mismatch between training and testing and
degrades the average performance.

Even without ML predictions, addressing the hitting cost feedback delay and multi-step nonlinear
memory is already challenging, as the agent must make decisions semi-blindly without receiving the
immediate hitting cost feedback and the decision at each step can affect multiple future decisions in a
complex manner due to multi-step nonlinear switching costs [6, 26]. Incorporating ML predictions
into the decision process adds substantial challenges, requiring novel algorithmic techniques beyond
those used in the simple SOCO setting with single-step memory and no feedback delay [1, 14, 7].

Contributions. We propose a novel ML-augmented algorithm, called Robustness-Constrained Learn-
ing (RCL) that, for the first time, provides both robustness guarantees and good average performance
for SOCO in general settings with hitting cost feedback delay and multi-step nonlinear memory in
the switching cost. The foundation of RCL is to utilize an existing online algorithm (referred to as
expert) as well as a novel reservation cost to hedge against future risks while closely following the
ML predictions. Without having the immediate hitting cost feedback, RCL robustifies untrusted ML
predictions at each step by judiciously accounting for the hitting cost uncertainties and the non-linear
impact of the current decision on future switching costs. Importantly, by design, the resulting cost of
RCL is no greater than (1 + λ) times the expert’s cost for any λ > 0 and any problem instance, while
a larger λ allows RCL to better explore the potential of good ML predictions.

Our main technical results provide bounds on both the worst-case and average-case performance
of RCL. In particular, we prove a novel worst-case cost bound on RCL in Theorem 4.1 and a bound
on the average-case performance in Theorem 4.2. Our cost bound is proven by utilizing a new
reservation cost as the core of RCL. The form of the reservation cost allows us to develop a new proof
approach (potentially of independent interest) that decouples the dependency of the online action on
the history and constructs a new sufficient robustness constraint to bound the distance between the
actions and ML predictions. Importantly, this approach enables us to account for multi-step non-linear
memory in the switching cost and arbitrarily delayed hitting cost feedback in SOCO, which cannot be
addressed by the existing algorithms [1, 14, 7, 12, 25]. We also provide a first-of-its-kind condition
for simultaneously achieving both finite robustness and 1-consistency, which has been shown to be
impossible in general [14]. Finally, we evaluate the performance of RCL using a case study focused
on battery management in electric vehicle (EV) charging stations. Our results highlight the advantage
of RCL in terms of robustness guarantees compared to pure ML-based methods, as well as the benefit
of training a robustification-aware ML model.

In summary, our work makes significant contributions to the growing SOCO literature. First, we
propose a novel ML-augmented algorithm that provides the first worst-case cost bounds in a general
SOCO setting with hitting cost feedback delay and multi-step non-linear switching costs. Our
algorithm design and analysis (Theorem 4.1) are new and significantly differ from those used in
simple SOCO settings [1, 14, 7, 12, 25]. Second, we provide a first sufficient condition under
which finite robustness and 1-consistency are simultaneously achieved (Corollary 4.1.1). Finally, we
introduce and analyze the first algorithm that allows robustification-aware training, highlighting its
advantage over the commonly-assumed robustification-oblivious training in terms of the average cost.

2 Related Work

SOCO has been actively studied for over a decade under a wide variety of settings [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]. For example, designed based on classic algorithmic frameworks, expert online algorithms
include online gradient descent (OGD) [27], online balanced descent (OBD) [9], regularized OBD
(ROBD) [13, 5], among many others. These algorithms are judiciously designed to have bounded
competitive ratios and/or regrets, but they may not perform well on typical instances due to the
conservative choices necessary to optimize the worst-case performance. Assuming the knowledge
of (possibly imperfect) future inputs, algorithms include standard receding horizon control (RHC)
[10] committed horizon control (CHC) [28], and receding horizon gradient descent (RHGD) [29, 4].
Nonetheless, the worst-case performance is still unbounded when the inputs have large errors.
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By tapping into historical data, pure ML-based online optimizers, e.g., recurrent neural networks,
have been studied for online problems [30, 31, 32]. Nonetheless, even with (heuristic) techniques
such as distributionally robust training and/or addition of hard training instances (e.g., adversarial
samples) [17, 16], they cannot provide formal worst-case guarantees as their expert counterparts.

By combining potentially untrusted ML predictions with robust experts, ML-augmented algorithms
have emerged as a promising approach [22, 24, 33, 20]. The existing ML-augmented algorithms for
SOCO [25, 1, 14, 7, 15, 12] only focus on simple SOCO settings where the hitting cost is known
without delays and the switching cost is linear. Extending these algorithms [25, 1, 14, 7, 15, 12] to
the general SOCO setting requires substantially new designs and analysis. For example, [25] utilizes
the simple triangle inequality for linear switching costs in the metric space to achieve robustness,
whereas this inequality does not hold given (multi-step) non-linear memory in terms of squared
switching costs [14] even when there is no feedback delay. In fact, even without considering ML
predictions, the general SOCO setting with feedback delays and multi-step non-linear switching
costs presents significant challenges that need new techniques [26, 6] beyond those for the simple
SOCO setting. Thus, RCL makes novel contributions to the growing ML-augmented SOCO literature.
Customizing ML to better suit the downstream operation to achieve a lower cost has been considered
for a few online problems [34, 35, 25]. In RCL, however, we need implicit differentiation through
time to customize ML by considering our novel algorithm designs in our general SOCO setting.

In online learning with expert predictions [36, 37, 38], experts are dynamically chosen with time-
varying probabilities to achieve a low regret compared to the best expert in hindsight. By contrast,
RCL considers a different problem setting with feedback delay and multi-step non-linear memory,
and focuses on constrained learning by bounding the total cost below (1 + λ) times of the expert’s
cost for any instance and any λ > 0. Finally, RCL is also broadly relevant to conservative bandits
and reinforcement learning [39]. Specifically, conservative exploration focuses on unknown cost
functions (and, when applicable, transition models) and uses a baseline policy to guide the exploration
process. But, its design is fundamentally different in that it does not hedge against future uncertainties
when choosing an action for each step. Additionally, constrained policy optimization [40, 41] focuses
on constraining the average cost, whereas RCL focuses on the worst-case cost constraint.

3 Model and Preliminaries

In a SOCO problem, an agent, a.k.a., decision maker, must select an irrevocable action xt from an
action space X ⊆ Rn with size |X | at each of time t = 1, . . . , T . Given the selected action, the
agent incurs the sum of (i) a non-negative hitting cost f(xt, yt) ≥ 0 parameterized by the context
yt ∈ Y ⊆ Rm, where f(·) : Rn → R≥0, and (ii) a non-negative switching cost d(xt, xt−p:t−1) =
1
2∥xt − δ(xt−p:t−1)∥2, where the constant 1

2 is added for the convenience of derivation, ∥ · ∥ is
the l2 norm by default, and δ(·) : Rp×n → Rn is a (possibly non-linear) function of xt−p:t−1 =
(xt−p, · · · , xt−1). We make the following standard assumptions.

Assumption 1. At each t, the hitting cost f(xt, yt) is non-negative, αh-strongly convex, and βh-
smooth in xt ∈ X . It is also Lipschitz continuous with respect to yt ∈ Y .

Assumption 2. In the switching cost d(xt, xt−p:t−1) = 1
2∥xt − δ(xt−p:t−1)∥2, the function

δ(xt−p:t−1) is Li-Lipschitz continuous in xt−i for i = 1 · · · p, i.e., for any xt−i, x
′
t−i ∈ X , we

have ∥δ(xt−p, · · · , xt−i, · · ·xt−1)− δ(xt−p, · · · , x′
t−i, · · ·xt−1)∥ ≤ Li∥xt−i − x′

t−i∥.

The convexity of the hitting cost is standard in the literature and needed for competitive analysis,
while smoothness (i.e., Lipschitz-continuous gradients) guarantees that bounded action differences
also result in bounded cost differences [26]. A common example of the hitting cost is f(xt, yt) =
∥xt − yt∥2 as motivated by object tracking applications, where yt is the online moving target [6, 26].
In the switching cost term, the previous p-step actions xt−p:t−1 are essentially encoded by δ(xt−p:t−1)
[6]. Let us take drone tracking as an example. The switching cost can be written as d(xt, xt−1) =
1
2∥xt − xt−1 + C1 + C2 · |xt−1| · xt−1∥2 and hence δ(xt−1) = xt−1 − C1 − C2 · |xt−1| · xt−1 is
nonlinear, where xt is the drone’s speed at time t and the constants of C1 and C2 account for gravity
and the aerodynamic drag [42]. For additional examples of switching costs in other applications,
readers are further referred to [26].

For the convenience of presentation, we use y = (y1, · · · , yT ) ∈ YT to denote a problem instance,
while noting that the initial actions x−p+1:0 = (x−p+1, · · · , x0) are also provided as an additional
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input. Further, for 1 ≤ t1 ≤ t2 ≤ T , we also rewrite
∑t2

τ=t1
f(xτ , yτ ) + d(xτ , xτ−p:τ−1) as

cost(xt1:t2), where we suppress the context yt without ambiguity.

For online optimization, the key challenge is that the switching cost couples online actions and the
hitting costs are revealed online. As in the recent literature on SOCO [26], we assume that the agent
knows the switching cost, because it is determined endogenously by the problem itself and the agent’s
previous actions. The agent also knows the smoothness constant βh, although the hitting cost function
itself is revealed online subject to a delay as defined below.

3.1 Feedback Delay

There may be feedback delay that prevents immediate observation of the context yt (which is
equivalent to delayed hitting cost function) [43, 6]. For example, in assisted drone landing, the
context parameter yt can represent the target velocity at time t sent to the drone by a control center,
but the communications between the drone and control center can experience delays due to wireless
channels and/or even packet losses due to adversarial jamming [26, 42].

To model the delay, we refer to q ≥ 0 as the maximum feedback delay (i.e., context yt can be delayed
for up to q ≥ 0 steps), and define q-delayed time set of arrival contexts.

Definition 1 (q-delayed time set of arrival contexts). Given the maximum feedback delay of q ≥ 0,
for each time t = 1, . . . , T , the q-delayed time set of arrival contexts contains the time indexes whose
contexts are newly revealed to the agent at time t and is defined as Dq

t ⊆ {τ ∈ N |t− q ≤ τ ≤ t}
such that {τ ∈ N |τ ≤ t− q} ⊆ (Dq

1

⋃
· · ·
⋃

Dq
t ).

Naturally, given the maximum delay of q ≥ 0, we must have {τ ∈ N |τ ≤ t−q} ⊆ (Dq
1

⋃
· · ·
⋃
Dq

t ),
i.e., at time t, the agent must have already known the contexts yτ for any τ = 1, · · · , t− q.

It is worth highlighting that our definition of Dq
t is flexible and applies to various delay models.

Specifically, the no-delay setting corresponds to q = 0 and Dq=0
t = {t}, while q = T captures the

case in which the agent may potentially have to choose actions without knowing any of the contexts
y1, · · · , yT throughout an entire problem instance. Given the maximum delay q ≥ 0, the delayed
contexts can be revealed to the agent in various orders different from their actual time steps, i.e., the
agent may receive yt1 earlier than yt2 for t1 > t2. Also, the agent can receive a batch of contexts
yt−q, · · · , yt simultaneously at time t, and receive no new contexts some other time steps.

In online optimization, handling delayed cost functions, even for a single step, is challenging
[6, 44, 26]. Adding ML predictions into online optimization creates further algorithmic difficulties.

3.2 Performance Metrics

Our goal is to minimize the sum of the total hitting costs and switching costs over T time steps:
minx1,···xT

∑T
t=1 f(xt, yt) + d(xt, xt−p:t−1). We formally define our two measures of interest.

Definition 2 (Competitiveness). An algorithm ALG1 is said to be CR-competitive against another
baseline algorithm ALG2 if cost(ALG1, y) ≤ CR · cost(ALG2, y) is satisfied for any problem
instance y ∈ YT , where cost(ALG1, y) and cost(ALG2, y) denote the total costs of ALG1 and
ALG2, respectively.

Definition 3 (Average cost). The average cost of an algorithm ALG is cost(ALG) =
Ey∈Py

[cost(ALG, y)], where cost(ALG, y) denotes the cost of ALG for a problem instance y,
and Py is the exogenous probability distribution of y = (y1, · · · , yT ) ∈ YT .

Our definition of competitiveness against a general baseline algorithm is commonly considered in the
literature, e.g., [7]. The two metrics measure an online algorithm’s robustness in the worst case and
expected performance in the average case, which are both important in practice.

We consider an expert (online) algorithm π which chooses xπ
t at time t and an ML model hW which,

parameterized by W , produces x̃t = hW (x̃t−p:t−1, {yτ |τ ∈ Dq
t }) at time t. As in the existing ML-

augmented online algorithms [7, 14], RCL chooses an actual online action xt by using the two actions
xπ
t and x̃t as advice. In general, it is extremely challenging, if not impossible, to simultaneously

optimize for both the average cost and the competitiveness. Here, given a robustness requirement
λ > 0, we focus on minimizing the average cost while ensuring (1 + λ)-competitiveness against
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the expert π. Crucially, the optimal expert for our setting is iROBD, which has the best-known
competitiveness against the offline optimal OPT with complete information [26]. Thus, by using
iROBD as the expert π, (1+λ)-competitiveness of RCL against π immediately translates into a scaled
competitive ratio of (1 + λ) · CRiROBD against OPT , where CRiROBD is iROBD’s competitive
ratio against OPT .

4 RCL: The Design and Analysis

In this section, we present RCL, a novel ML-augmented that combines ML predictions (i.e., online
actions produced by an ML model [1, 45, 12, 15]) with a robust expert online algorithm to the
worst-case cost while leveraging the benefit of ML predictions for average performance.

4.1 Robustness-Constrained Online Algorithm

Our goal is to “robustify” ML predictions, by which we mean that we want to ensure a robustness
bound on the cost of no greater than (1 + λ) times of the expert’s cost, i.e., for any problem instance
y, we have cost(x1:T ) ≤ (1 + λ)cost(xπ

1:T ), where λ > 0 is a hyperparameter indicating the level
of robustness we would like to achieve. Meanwhile, we would like to utilize the benefits of ML
predictions to improve the average performance.

Because of the potential feedback delays, RCL needs to choose an online action xt without necessarily
knowing the hitting costs of the expert’s action xπ

t and ML prediction x̃t. Additionally, the action
xt can affect multiple future switching costs due to multi-step non-linear memory. Thus, it is very
challenging to robustify ML predictions for the SOCO settings we consider. A simple approach
one might consider is to constrain xt such that the cumulative cost up to each time t is always no
greater than (1 + λ) times of the expert’s cumulative cost, i.e., cost(x1:t) ≤ (1 + λ)cost(xπ

1:t).
However, even without feedback delays, such an approach may not even produce feasible actions for
some t = 1, · · · , T . We explain this by considering a single-step switching cost case. Suppose that
cost(x1:t) ≤ (1+λ)cost(xπ

1:t) is satisfied at a time t < T , and we choose an action xt ̸= xπ
t different

from the expert. Then, at time t+1, let us consider a case in which the expert algorithm has such a low
cost that even choosing xt+1 = xπ

t+1 will result in cost(x1:t) + f(xπ
t+1, yt+1) + d(xπ

t+1, xt) > (1 +

λ)
[
cost(xπ

1:t) + f(xπ
t+1, yt+1) + d(xπ

t+1, x
π
t )
]
. This is because the actual switching cost d(xπ

t+1, xt)
can be significantly higher than the expert’s switching cost d(xπ

t+1, x
π
t ) due to xt ̸= xπ

t . As a
result, at time t + 1, it is possible that there exist no feasible actions that satisfy cost(x1:t+1) ≤
(1 + λ)cost(xπ

1:t+1). Moreover, when choosing an online action close to the ML prediction, extra
caution must be exercised as the hitting costs can be revealed with delays of up to q steps.

To address these challenges, RCL introduces novel reservation costs to hedge against any possible
uncertainties due to hitting cost feedback delays and multi-step non-linear memory in the switching
costs. Concretely, given both the expert action xπ

t and ML prediction x̃t at time t, we choose
xt = argminx∈Xt

1
2∥x− x̃t∥2 by solving a constrained convex problem to project the ML prediction

x̃t into a robustified action set x ∈ Xt where xt satisfies:∑
τ∈At

f(xτ , yτ ) +

t∑
τ=1

d(xτ , xτ−p:τ−1) +
∑
τ∈Bt

H(xτ , x
π
τ ) +G(xt, xt−p:t−1, x

π
t−p:t)

≤(1 + λ)

(∑
τ∈At

f(xπ
τ , yτ ) +

t∑
τ=1

d(xπ
τ , x

π
τ−p:τ−1)

)
,

(1)

in which λ > 0 is the robustness hyperparameter, Aq
t = (Dq

1

⋃
· · ·
⋃
Dq

t ) and Bq
t = {1, · · · , t}\At

are the sets of time indexes for which the agent knows and does not know the context parame-
ters up to time t, respectively. Most importantly, the two novel reservation costs H(xτ , x

π
τ ) and

G(xt, xt−q:t−1, x
π
t−q:t) are defined as

H(xτ , x
π
τ ) =

βh

2
(1 +

1

λ0
)∥xτ − xπ

τ ∥2, (2)

G(xt, xt−p:t−1, x
π
t−p:t) =

(1 + 1
λ0
) (1 +

∑p
k=1 Lk)

2

p∑
k=1

(
Lk∥xt − xπ

t ∥2 +
p−k∑
i=1

Lk+i∥xt−i − xπ
t−i∥2

)
,

(3)
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Algorithm 1 Online Optimization with RCL
Require: λ > 0, λ0 ∈ (0, λ), initial actions x1−p:0, expert algorithm π, and ML model hW

1: for t = 1, · · · , T
2: Receive a set of contexts {yτ |τ ∈ Dq

t }
3: Get the expert’s action xπ

t given its own history
4: Get x̃t = hW (x̃t−p:t−1, {yτ |τ ∈ Dq

t })
5: Choose xt = argminx∈Xt

1
2∥x− x̃t∥2 subject to the constraint (1) //Robustification

where βh is the smoothness constant of the hitting cost in Assumption 1, Lk is the Lipschitz constant
of δ(xt−p:t−1) in Assumption (2), and λ0 ∈ (0, λ) with the optimum being λ0 =

√
1 + λ − 1

(Theorem 4.1). The computational complexity for projection into (1) is tolerable due to convexity.

The interpretation of H(xτ , x
π
τ ) and G(x, xt−q:t−1, x

π
t−q:t) is as follows. If RCL’s action xτ deviates

from the expert’s action xπ
τ at time τ and the hitting cost is not known yet due to delayed yτ , then it

is possible that RCL actually experiences a high but unknown hitting cost. In this case, to guarantee
the worst-case robustness, we include an upper bound of the cost difference as the reservation cost
such that f(xτ , yτ ) − (1 + λ)f(xπ

τ , yτ ) ≤ H(xτ , x
π
τ ) regardless of the delayed yτ ∈ Y . If yτ has

been revealed at time t (i.e., τ ∈ At), then we use the actual costs instead of the reservation cost.
Likewise, by considering the expert’s future actions as a feasible backup plan in the worst case, the
reservation cost G(x, xt−p:t−1, x

π
t−p:t) upper bounds the maximum possible difference in the future

switching costs (up to future p steps) due to deviating from the expert’s action at time t.

With H(xτ , x
π
τ ) and G(x, xt−q:t−1, x

π
t−q:t) as reservation costs in (1), RCL achieves robustness by

ensuring that following the expert’s actions in the future is always feasible, regardless of the delayed
yt. The online algorithm is described in Algorithm 1, where both the expert and ML model have the
same online information {yτ |τ ∈ Dq

t } at time t and produce their own actions as advice to RCL.

4.2 Analysis

We now present our main results on the cost bound of RCL, showing that RCL can indeed maintain the
desired (1+λ)-competitiveness against the expert π while exploiting the potential of ML predictions.
Theorem 4.1 (Cost bound). Consider a memory length p ≥ 1 and the maximum feedback delay of
q ≥ 0. Given a context sequence y = (y1, · · · , yT ), let cost(x̃1:T ) and cost(xπ

1:T ) be the costs of
pure ML predictions x̃1:T and expert actions xπ

1:T , respectively. For any λ > 0, by optimally setting
λ0 =

√
1 + λ− 1, the cost of RCL is upper bounded by

cost(x1:T ) ≤ min

(
(1 + λ)cost(xπ

1:T ),

(√
cost(x̃1:T ) +

√
βh + α2

2
∆(λ)

)2
)
, (4)

where ∆(λ) =
∑T

i=1

[
∥x̃t − xπ

t ∥2 −
2(

√
1+λ−1)2

(βh+α2) costπt
]+

in which costπt =
(∑

τ∈Dq
t
f(xπ

τ , yτ )
)
+

d(xπ
t , x

π
t−p:t−1) is the total of revealed hitting costs and switching cost for the expert at time t, βh

is the smoothness constant of the hitting cost (Assumption 1), and α = 1 +
∑p

i=1 Li with L1 . . . Lp

being the Lipschitz constants in the switching cost (Assumption 2). □

Theorem 4.1 is the first worst-case cost analysis for ML-augmented algorithms in a general SOCO
setting with delayed hitting costs and multi-step switching costs. Its proof is available in the
appendix and outlined here. We prove the competitiveness against the expert π based on our novel
reservation cost H(xτ , x

π
τ ) and G(xt, xt−q:t−1, x

π
t−q:t) by induction. It is more challenging to prove

the competitiveness against the ML prediction, because xt implicitly depends on all the previous
actions of ML predictions and expert actions up to time t. To address this challenge, we utilize a
novel technique by first removing the dependency of xt on the history. Then, we construct a new
sufficient robustness constraint that allows an explicit expression of another robustified action, whose
distance to the ML prediction x̃t is an upper bound by the distance between xt and x̃t due to the
projection of x̃t into (1). Finally, due to the smoothness of the hitting cost function and the switching
cost, the distance bound translates into the competitiveness of RCL against ML predictions.

The two terms inside the min operator in Theorem 4.1 show the tradeoff between achieving better
competitiveness and more closely following ML predictions. To interpret this, we note that the first
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term inside min operator shows (1+λ)-competitiveness of RCL against the expert π, while the second
term inside min operator shows RCL can also exploit the potential of good ML predictions. A smaller
λ > 0 means that we want to be closer to the expert for better competitiveness, while a larger λ > 0

decreases the term ∆(λ) =
∑T

i=1

[
∥x̃t − xπ

t ∥2 −
2(

√
1+λ−1)2

(βh+α2) costπt
]+

and hence makes RCL follow
the ML predictions more closely.

The term ∆(λ) in (4) essentially bounds the total squared distance between the actual online action
and ML predictions. Intuitively, RCL should follow the ML predictions more aggressively when the
expert does not perform well. This insight is also reflected in ∆(λ) in Theorem 4.1. Concretely,
when the expert π’s total revealed costπt is higher, ∆(λ) also becomes smaller, pushing RCL closer to
ML. On the other hand, when the expert’s cost is lower, RCL stays closer to the better-performing
expert for guaranteed competitiveness.

When ∥x̃t − xπ
t ∥2 is larger (i.e., greater discrepancy between the expert’s action and ML prediction),

it is naturally more difficult to follow both the expert and ML prediction simultaneously. Thus,
given a robustness requirement of λ > 0, we see from ∆(λ) that a larger ∥x̃t − xπ

t ∥2 also increases
the second term in the min operator in Theorem 4.1, making it more difficult for RCL to exploit
the potential of ML predictions. Moreover, deviating from the expert’s action at one step can have
impacts on the switching costs in future p steps. Thus, the memory length p creates some additional
friction for RCL to achieve a low cost bound with respect to ML predictions: the greater p, the greater
α = 1 +

∑p
i=1 Li, and hence the greater the second term in (4).

Robustness and consistency. It remains to show the worst-case competitiveness against the offline
optimal algorithm OPT , which is typically performed for two extreme cases — when ML predictions
are extremely bad and perfect — which are respectively referred to as robustness and consistency in
the literature [1, 20, 22] and formally defined below.

Definition 4 (Robustness and consistency). The robustness of RCL is CR(∞) if RCL is CR(∞)-
competitive against OPT when the ML’s competitiveness against OPT is arbitrarily large (denoted
as C̃R → ∞) ; and the consistency of RCL is CR(1) if RCL is CR(1)-competitive against OPT

when the ML’s competitiveness against OPT is C̃R = 1.

Robustness indicates the worst-case performance of RCL for any possible ML predictions, whereas
consistency measures the capability of RCL to retain the performance of perfect ML predictions.
In general, the tradeoff between robustness and consistency is unavoidable for online algorithms
[20, 14, 46]. The state-of-the-art expert algorithm iROBD recently proposed in [26] has the best-
known competitive ratio under the assumption of identical delays for each context (i.e., Dq

t = {t− q}
— each context is delayed by q steps). The identical-delay model essentially ignores any other
contexts yτ for τ ∈ {τ ∈ N |t− q + 1 ≤ τ ≤ t}. Thus, it is the worst case of a general q-step delay
setting, whose competitive ratio is upper bounded by that of iROBD. Consequently, due to (1 + λ)-
competitiveness against any expert π in Theorem 4.1, we immediately obtain a finite robustness
bound for RCL by considering iROBD as the expert.

Nonetheless, even for the simplest SOCO setting with no feedback delay and a switching cost of
d(xt, xt−1) =

1
2∥xt − xt−1∥2, a recent study [14] has shown that it is impossible to simultaneously

achieve 1-consistency and finite robustness. Consequently, in general SOCO settings, the finite
robustness of RCL given any λ > 0 means the impossibility of achieving 1-consistency by following
perfect ML predictions without further assumptions.

Despite this pessimistic result due to the fundamental challenge of SOCO, we find a sufficient
condition that can overcome the impossibility, which is formalized as follows.

Corollary 4.1.1 (1-consistency and finite robustness). Consider iROBD as the exert π, whose
competitive ratio against OPT is denoted as CRiROBD [26]. If the expert’s switching cost always
satisfies d(xπ

t , x
π
t−p:t−1) ≥ ϵ > 0 for any time t = 1, · · · , T , then by setting λ ≥ |X |2(α2+βh)

2ϵ +√
2|X |2(α2+βh)

ϵ ∼ O( 1ϵ ) and optimally using λ0 =
√
1 + λ− 1, RCL achieves (1 + λ) · CRiROBD-

robustness and 1-consistency simultaneously. □

Corollary 4.1.1 complements the impossibility result for SOCO [14] by providing the first condition
under which finite robustness and 1-consistency are simultaneously achievable. The intuition is that
if the expert has a strictly positive switching cost no less than ϵ > 0 at each time, then its per-step
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cost is also no less than ϵ, which provides RCL with the flexibility to choose a different action than the
expert’s action xπ

t due to the (1 + λ) cost slackness in the competitiveness requirement. Therefore,
by choosing a sufficiently large but still finite λ ∼ O( 1ϵ ), we can show that ∆(λ) = 0 in (4) in
Theorem 4.1, which means RCL can completely follow the ML predictions. Without this condition, it
is possible that the expert’s cost is zero in the first few steps, and hence RCL must follow the expert’s
actions at the beginning to guarantee (1 + λ)-competitiveness in case the expert continues to have a
zero cost in the future — even though ML predictions are perfect and offline optimal, RCL cannot
follow them at the beginning because of the online process and (1 + λ)-competitiveness requirement.

Importantly, our sufficient condition is not unrealistic in practice. For example, in moving object-
tracking applications, the condition d(xπ

τ , x
π
τ−p:τ−1) ≥ ϵ > 0 is satisfied if the expert’s action x̃t

keeps changing to follow the moving object over time or alternatively, we ignore the dummy time
steps with no movement.

4.3 ML Model Training in RCL

We present the training details and highlight the advantage of training the ML model in a
robustification-aware manner to reduce the average cost.

4.3.1 Architecture, loss, and dataset

Because of the recursive nature of SOCO and the strong representation power of neural networks,
we use a recurrent neural network with each base model parameterized by W ∈ W (illustrated in
Fig. 1 in the appendix). Such architectures are also common in ML-based optimizers for other online
problems [17, 31]. With historical data available, we can construct a training dataset S that contains
a finite number of problem instances. The dataset can also be enlarged using data augmentation
techniques (e.g., adding adversarial samples) [16, 17].

Robustification-oblivious. The existing literature on ML-augmented algorithms [22, 1, 45, 7] has
commonly assumed that the ML model hW is separately trained in a robustification-oblivious manner
without being aware of the downstream algorithm used online. Concretely, the parameter W of a
robustification-oblivious ML model is optimized for the following loss

W ∗ = arg min
W∈W

1

|S|
∑
S

cost(x̃1:T ), (5)

where x̃t = hW (x̃t−p:t−1, {yτ |τ ∈ Dq
t }) is the ML prediction at time t.

Robustification-aware. There is a mismatch between the actual objective cost(x1:T ) and the training
objective cost(x̃1:T ) of a robustification-oblivious ML model. To reconcile this, we propose to train
the ML model in a robustification-aware manner by explicitly considering the robustification step
in Algorithm 1. For notational convenience, we denote the actual action as xt = Robλ(hW ) =
Robλ(x̃t), which emphasizes the projection of x̃t into the robust action set (2). Thus, the parameter
W of a robustification-aware ML model is optimized to minimize the following loss

Ŵ ∗ = arg min
W∈W

1

|S|
∑
S

cost(Robλ(x̃1:T )), (6)

which is different from (5) that only minimizes the cost of pre-robustification ML predictions.

4.3.2 Average cost

We bound the average cost of RCL given an ML model hW .
Theorem 4.2 (Average cost). Assume that the ML model is trained over a dataset S drawn from the
training distribution P′

y . With probability at least 1− δ, δ ∈ (0, 1), the average cost Ey [cost(x1:T )]
of RCL over the testing distribution y ∼ Py is upper bounded by

cost(RCL) ≤ min

(1 + λ)cost(π), costS(Robλ(hW )) +O

RadS(Robλ(W)) +

√
log( 2δ )

|S|

 ,

where costS(Robλ(hW )) = 1
|S|
∑

S cost(x1:T ) is the empirical average cost of robustified ML
predictions in S, RadS(Robλ(W)) defined in Definition 5 in the appendix is the Rademacher
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complexity with respect to the ML model space parameterized by W with robustification
on the training dataset S, the scaling coefficient inside O for RadS(Robλ(W)) is Γx =√
T |X |

[
βh + 1

2 (1 +
∑p

i=1 Li)(1 +
∑p

i=1 Li)
]

with |X | being the size of the action space X and
βh, Li, and p as the smoothness constant, Lipschitz constant of the nonlinear term in the switching

cost, and the memory length as defined in Assumptions 1 and 2, and the coefficient for
√

log( 2
δ )

|S| is 3c̄
with c̄ being the upper bound of the total cost for an episode.

Theorem 4.2 bounds the average cost of RCL by the minimum of two bounds. The first bound
(1 + λ)cost(π) further highlights the guaranteed (1 + λ)-competitiveness of RCL with respect
to the expert’s average cost AV G(π). The second bound includes a term costS(Robλ(hW )) =
1
|S|
∑

S cost(x1:T ), which is the empirical average cost of RCL given an ML model hW and decreases
when λ > 0 increases. The reason is that with a larger λ > 0, the robust action set (1) is enlarged and
RCL has more freedom to follow ML predictions due to the less stringent competitiveness constraint.
Given an ML model hW , Theorem 4.1 shows how the upper bound on costS(Robλ(hW )) varies with
λ. Note that hW∗ in (5) and hŴ∗ in (6) minimize costS(hW∗) and costS(Robλ(hŴ∗)), respectively,
while the post-robustication cost (i.e., costS(Robλ(hŴ∗))) is the actual cost of RCL. Thus, we can
further reduce the average cost by using the optimal robustification-aware ML model hŴ∗ , compared
to a robustification-oblivious model hW∗ .

The other terms inside the second bound in (7) are related to the training dataset: the larger dataset,

the smaller Rademacher complexity RadS(Rob(W)) and
√

log(1/δ)
|S| . Note that the Rademacher

complexity RadS(Rob(W)) of RCL is no greater than that of using the ML model alone (i.e.
RadS(Rob(W)) ≤ RadS (W), shown in the appendix). The intuition is that RCL limits the ac-
tion space for robustness. Thus, Theorem 4.1 provides the insight that, given λ > 0, robustification
in RCL is more valuable in terms of bounding the average cost when the ML model hW is not well
trained (e.g., due to inadequate training data). In practice, the hyperparameter λ > 0 can be set to
improve the empirical average performance subject to the robustness constraint based on a held-out
validation dataset along with the tuning of other hyperparameters (e.g., learning rates).

4.3.3 Robustification-aware training and experimental verification

Despite the advantage in terms of the average cost, it is non-trivial to train a robustification-aware ML
model using standard back-propagation. This is because the operator of projecting ML predictions
into a robust set (1) is a recursive implicit layer that cannot be easily differentiated as typical neural
network layers. Due to space limitations, we defer to the appendix the the differentiation of the loss
function with respect to ML model weights W .

We validate the theoretical analysis by exploring the empirical performance of RCL using a case study
of battery management in electric vehicle (EV) charging stations [47]. Our results are presented in
the appendix. The results highlight the advantage of RCL in terms of robustness compared to pure ML
models, as well as the benefit of using a robustification-aware ML model in terms of the average cost.

5 Experiments

We now explore the performance of RCL using a case study focused on battery management in electric
vehicle (EV) charging stations [48]. We first formulate the problem as an instance of SOCO. More
details can be found at Appendix B.1. Then, we test RCL on a public dataset provided by ElaadNL,
compared with several baseline algorithms including ROBD [26], EC-L2O [12], and HitMin (details
in Appendix B.2). Our results highlight the advantage of RCL in terms of robustness guarantees
compared to pure ML models, as well as the benefit of training a robustification-aware ML model in
terms of the average cost.

5.1 Results

We now present some results for the case in which the hitting cost function (parameterized by yt)
is immediately known without feedback delay. The results for the case with feedback delay are
presented in Appendix B.4. Throughout the discussion, the reported values are normalized with
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RCL RCL-O ML EC-L2O ROBD HitMin
λ=0.6 λ=1 λ=3 λ=5 λ=0.6 λ=1 λ=3 λ=5

AVG 1.4704 1.1144 1.0531 1.0441 1.4780 1.2432 1.0855 1.0738 1.0668 1.1727 1.6048 1.2003
CR 1.7672 1.2905 1.4405 1.3014 2.2103 2.4209 2.4200 3.0322 3.2566 2.0614 1.7291 2.0865

Table 1: Competitive ratio and average cost comparison of different algorithms.

respect to those of the respective OPT. The average cost (AVG) and competitive ratio (CR) are all
empirical results reported on the testing dataset.

By Theorem 4.1, there is a trade-off (governed by λ > 0) between exploiting ML predictions for good
average performance and following the expert for robustness. Here, we focus on the default setting of
λ = 1 and discuss the impact of different choices of λ on both RCL and RCL-O in Appendix B.3.2.
As shown in Table 1, with λ = 1, both RCL and RCL-O have a good average cost, but RCL has a
lower average cost than RCL-O and is outperformed only by ML in terms of the average cost. RCL
and RCL-O have the same competitive ratio (i.e., (1 + λ) times the competitive ratio of ROBD).
Empirically, RCL has the lowest competitive ratio among all the other algorithms, demonstrating the
practical power of RCL for robustifying, potentially untrusted, ML predictions. In this experiment,
RCL outperforms ROBD in terms of the empirical competitive ratio because it exploits the good
ML predictions for those problem instances that are adversarial to ROBD. This result complements
Theorem 4.1, where we show theoretically that RCL can outperform ROBD in terms of the average
cost by properly setting λ. By comparison, ML performs well on average by exploiting the historical
data, but has the highest competitive ratio due to its expected lack of robustness. The two alternative
baselines, EC-L2O and HitMin, are empirically good on average and also in the worst case, but they
do not have guaranteed robustness. On the other hand, ROBD is very robust, but its average cost is
also the worst among all the algorithms under consideration.

More results, including using HitMin as the expert and large distributional shifts, are available in
Appendix B.3.

6 Conclusion

We have considered a general SOCO setting (including multi-step switching costs and delayed
hitting costs) and proposed RCL, which ensures a worst-case performance bound by utilizing an
expert algorithm to robustify untrusted ML predictions. We prove that RCL is able to guarantee
(1 + λ)-competitive against any given expert for any λ > 0. Additionally, we provide a sufficient
condition that achieves finite robustness and 1-consistency simultaneously. To improve the average
performance, we explicitly train the ML model in a robustification-aware manner by differentiating
the robustification step, and provide an explicit average cost bound. Finally, we evaluate RCL using
a case study of battery management for EV stations, which highlights the improvement in both
robustness and average performance compared to existing algorithms.

Limitations and future work. We discuss two limitations of our work. First, we make a few
assumptions (e.g., convexity and smoothness) on the hitting costs and switching costs. While they
are common in the SOCO literature, these assumptions may not always hold in practice, and relaxing
them will be interesting and challenging. Second, for online optimization, we only consider the ML
prediction for the current step, whereas predictions for future steps can also be available in practice
and may be explored for performance improvement. There are also a number of interesting open
questions that follow from this work. For example, it is interesting to study alternative reservation
costs and the optimality in terms of the tradeoff between bi-competitiveness. Additionally, it would
also be interesting to extend RCL to other related problems such as convex body chasing and metrical
task systems.

Acknowledgement. We would like to thank the anonymous reviewers for their helpful comments.
Pengfei Li, Jianyi Yang and Shaolei Ren were supported in part by the U.S. NSF under the grant
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A Illustration of RCL

We illustrate the online optimization process of RCL in Fig. 1.

Figure 1: Robustness-constrained online optimization using RCL. The expert algorithm and ML model
run independently. At each time t = 1, · · · , T , RCL projects the ML prediction x̃t into a robustified
action set.

B Case Study: Battery Management for EV Charging Stations

B.1 Problem Formulation

Batteries are routinely used in EV charging stations to handle the rapidly fluctuating charging demands
and protect the connected grid. Thus, properly managing battery charging/discharging decisions is
crucial for reliability, lifespan, and safety of batteries and grids.

We consider the management of N batteries. At each time step t, suppose that xt ∈ RN
+ represents the

State of Charge (SoC) and ut ∈ RN represents the battery charging/discharging schedule, depending
on the sign of ut (i.e., positive means charging, and vice versa). The canonical form of the battery
dynamics can be written as xt+1 = Axt + But − wt, where A is a N ×N matrix which models
the self-degradation of the N -battery system, B is a N ×N matrix which represents the charging
efficiency of each battery unit, wt is a N × 1 vector which denotes the current demand in terms of
the charging rate (kW) of all the EVs connected to the charging stations. Assuming that the initial
SoC as x0, the goal is to control the batteries to minimize the difference between the current SoC
of all batteries and a nominal value x̄, plus a charging/discharging cost to account for battery usage
[49, 50], which can be expressed mathematically as minu1,u2,··· ,uT+1

∑T+1
t=1 ∥xt − x̄∥2 + b∥ut∥2.

This problem falls into SOCO based on the reduction framework described in [49]. Specifi-
cally, at time step t + 1, we can expand xt+1 based on the battery dynamics as xt+1 = Atx1 +∑t

j=1 A
t−jBuj−

∑t
j=1 A

t−jwj , We define the context parameter as yt = x̄−Atx1+
∑t

i=1 A
t−iwi

and the action as at =
∑t

i=1 A
t−iBui. Then, assuming an identity matrix B (ignoring charging

loss), the optimization problem becomes mina1,··· ,aT
∥x1 − x̄∥2 + b∥uT ∥2 +

∑T
t=1 ∥at − yt∥2 +

b∥at−Aat−1∥2. Given an initial value of x1, this problem can be further simplified and reformulated
as

min
a1,a2,··· ,aT

T∑
t=1

1

b
∥at − yt∥2 + ∥at −Aat−1∥2, (7)

which is in a standard SOCO form by considering yt as the context and at as the action at time t.

To validate the effectiveness of RCL, we use a public dataset [51] provided by ElaadNL, a Dutch EV
charging infrastructure company. We collect a dataset containing transaction records from ElaadNL
charging stations in the Netherlands from January to June of 2019. Each transaction record contains
the energy demand, transaction start time and charging time. As the data does not specify the details
of battery units, we consider the battery units as a single combine battery by summing up the energy
demand within each hour to obtain the hourly energy demand.

We use the January to February data as the training dataset, March to April data as the validation
dataset for tuning the hyperparameters such as learning rate, and May to June as the testing dataset.
We consider each problem instance as one day (T = 24 hours, plus an initial action). Thus, a sliding
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window of 25 is applied, moving one hour ahead each time, on the raw data to generate 1416 problem
instances, where the first demand of each instance is used as the initial action of all the algorithms.
We set b = 10 and A = I for the cost function in Eqn. (7).

All the algorithms use the same ML architecture, when applicable, with the same initialized weights
in our experiments for fair comparison. To be consistent with the literature [52, 53], all the ML
models are trained offline. Specifically, we use a recurrent neural network (RNN) model that contains
2 hidden layers, each with 8 neurons, and implement the model using PyTorch. We train the RNN for
140 epochs with a batch size of 50. When the RNN model is trained as a standalone optimizer in a
robustification-oblivious manner, the training process takes around 1 minute on a 2020 MacBook
Air with 8GB memory and a M1 chipset. When RNN is trained in a robustification-aware manner, it
takes around 2 minutes. The testing process is almost instant and takes less than 1 second.

B.2 Baseline Algorithms

By default, RCL uses a robustification-aware ML model due to the advantage of average cost perfor-
mance compared to a robustification-oblivious model. We compare RCL with several representative
baseline algorithms as summarized below.

• Offline Optimal Oracle (OPT): This is the optimal offline algorithm that has all the contextual
information and optimally solves the problem.

• Regularized Online Balanced Descent (ROBD): ROBD is the state-of-the-art order-optimal online
algorithm with the best-known competitive ratio for our SOCO setting [54, 49]. The parameters of
ROBD are all optimally set according to [49]. By default, RCL uses ROBD as its expert for robustness.

• Hitting Cost Minimizer (HitMin): HitMin is a special instance of ROBD by setting the parameters
such that it greedily minimizing the hitting cost at each time. This minimizer can be empirically
effective and hence also used in ROBD as a regularizer.

• Machine Learning Only (ML): ML is trained as a standalone optimizer in a robustification-oblivious
manner. It does not use robustification during online optimization.

• Expert-Calibrated Learning (EC-L2O): It is an ML-augmented algorithm that applies to our SOCO
setting by using an ML model to regularize online actions without robustness guarantees [55]. We
set its parameters based on the validation dataset to have the optimal average performance with an
empirical competitive ratio less than (1 + λ)CRπ .

• RCL with a robustification-oblivious ML model (RCL-O): To differentiate the two forms of RCL, we
use RCL to refer to RCL with a robustification-aware ML model and RCL-O for the robustification-
oblivious ML model, where “-O” represents robustification-obliviousness.

To highlight our key contribution to the SOCO literature, the baseline algorithms we choose are
representative of the state-of-the-art expert algorithms, effective heuristics, and ML-augmented
algorithms for the SOCO setting we consider. While there are a few other ML-augmented algorithms
for SOCO [56, 57, 58], they do not apply to our problem as they consider unsquared switching costs
in a metric space and exploit the natural triangular inequality. Adapting them to the squared switching
costs is non-trivial.

B.3 Additional Empirical Results

In Section 5, we have evaluated RCL using ROBD as the expert online algorithm with λ = 1. Here
we provide additional experiment results to further evaluate the effectiveness of RCL, and the results
are organized as follows. First, we change the expert online algorithm from ROBD to HitMin to show
the flexibility of RCL. Second, we quantitatively present the effect of parameter λ in RCL. Third, we
introduce additional out-of-distribution samples to test the robustness of RCL and baselines, in terms
of competitive ratio. Finally, we experiment under the delayed-feedback setting, which is a more
challenging problem setup.

B.3.1 Utilizing HitMin as the expert

RCL is flexible and can work with any expert online algorithm, even an expert that does not have good
or bounded competitive ratios. Thus, it is interesting to see how RCL performs given an alternative
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Figure 2: Cost ratio distributions (λ = 1 by default).

expert. For example, in Table 1, HitMin empirically outperforms ROBD in terms of the average,
although it is not as robust as ROBD. Thus, using λ = 1, we leverage HitMin as the expert for RCL
and RCL-O, and show the cost ratio distributions in Fig. 2(b). Comparing Fig. 2(b) with Fig. 2(a),
we see that RCL and RCL-O both have many low cost ratios by using HitMin as the expert, but the
worst case for RCL is not as good as when using ROBD as the expert. For example, the average cost
and competitive ratio are 1.0515 and 1.6035, respectively, for RCL. This result is not surprising, as
the new expert HitMin has a better average performance but worse competitive ratio than the default
expert ROBD.

B.3.2 Impact of λ

Theorem 4.1 shows the point that we need to set a large enough λ in order to provide enough flexibility
for RCL to exploit good ML predictions. With a small λ > 0, despite the stronger competitiveness
against the expert, it is possible that RCL may even empirically perform worse than both the ML
model and the expert. Thus, we now investigate the impact of λ.

We see from Table 1 that the empirical average cost and competitive ratio of RCL are both worse with
λ = 0.6 than with the default λ = 1. More interestingly, by setting λ = 5, the average cost of RCL is
even lower than that of ML. This is because ML in our experiment performs fairly well on average.
Thus, by setting a large λ = 5, RCL is able to exploit the benefits of good ML predictions for many
typical cases, while using the expert ROBD as a safeguard to handle a few bad problem instances for
which ML cannot perform well. Also, the empirical competitive ratio of RCL is better with λ = 5
than with λ = 3, supporting Theorem 4.1 that a larger λ may not necessarily increase the competitive
ratio as RCL can exploit good ML predictions. In addition, given each λ, RCL outperforms RCL-O,
which highlights the importance of training the ML model in a robustification-aware manner to avoid
the mismatch between training and testing objectives.

We also show in Fig. 2(c) an Fig. 2(d) the cost ratio distributions for RCL-O and RCL, respectively,
under different λ. The results reaffirm our main Theorem 4.1 as well as the importance of training
the ML model in a robustification-aware manner.

Next, we show the bi-competitive cost ratios of RCL-O against both the expert ROBD and the ML pre-
dictions. We focus on RCL-O as its ML model is trained as a standalone optimizer, whereas RCL uses
a robustification-aware ML model that is not specifically trained to produce good pre-robustification
predictions. According to Theorem 4.1, RCL-O obtains a potentially better competitiveness against
ML but a worse competitive against the expert ROBD when λ increases, and vice versa. To further
validate the theoretical analysis, we test RCL-O with different λ and obtain the 2D histogram of its
bi-competitive cost ratios against ROBD and ML, respectively. The results are shown in Fig. 3. In
agreement with our analysis, the cost ratio of RCL-O against ROBD never exceeds (1 + λ) for any
λ > 0. Also, with a small λ = 0.6, the cost ratio of RCL-O against ROBD concentrates around 1,
while it does not exploit the benefits of ML predictions very well. On the other hand, with a large
λ = 5, the cost ratio of RCL-O against ROBD can be quite high, although it follows (good) ML
predictions more closely for better average performance. Most importantly, by increasing λ > 0, we
can see the general trend that RCL-O follows the ML predictions more closely while still being able
to guarantee competitiveness against ROBD. Again, this confirms the key point of our main insights
in Theorem 4.1.

16



0.4 0.7 1.0 1.3 1.6 1.9 2.2
RCL-O / ROBD Cost Ratio

0.4

0.7

1.0

1.3

1.6

1.9

2.2

R
C

L-
O

 / 
M

L 
C

os
t R

at
io

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(a) λ = 0.6
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0.4 0.7 1.0 1.3 1.6 1.9 2.2
RCL-O / ROBD Cost Ratio

0.4

0.7

1.0

1.3

1.6

1.9

2.2

R
C

L-
O

 / 
M

L 
C

os
t R

at
io

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c) λ = 5.0

0.4 0.7 1.0 1.3 1.6 1.9 2.2
RCL-O / ROBD Cost Ratio

0.4

0.7

1.0

1.3

1.6

1.9

2.2

R
C

L-
O

 / 
M

L 
C

os
t R

at
io

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(d) λ = ∞ (i.e., ML)
Figure 3: Histogram of bi-competitive cost ratios of RCL-O (against ROBD and ML) under different
λ. For better visualization, the color map represents logarithmic values of the cost ratio histogram
with a base of 10.

pc=0.05 pc=0.1 pc=0.2
σ =0.06 σ =0.08 σ =0.1 σ =0.06 σ =0.08 σ =0.1 σ =0.06 σ =0.08 σ =0.1

AVG

RCL 1.1331 1.1444 1.1556 1.1487 1.1693 1.1904 1.1827 1.2254 1.2697
RCL-O 1.2425 1.2436 1.2462 1.2416 1.2434 1.2478 1.2370 1.2394 1.2469

ML 1.0722 1.0778 1.0855 1.0770 1.0874 1.1018 1.0858 1.1053 1.1325
EC-L2O 1.1728 1.1737 1.1754 1.1731 1.1750 1.1784 1.1727 1.1757 1.1815
ROBD 1.6048 1.6048 1.6048 1.6048 1.6049 1.6049 1.6048 1.6048 1.6049
HitMin 1.2112 1.2195 1.2302 1.2202 1.2357 1.2557 1.2410 1.2724 1.3127

CR

RCL 2.5028 2.9697 3.2247 2.6553 3.0283 3.2711 2.5714 3.0123 3.1653
RCL-O 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209 2.4209

ML 6.5159 8.9245 11.6627 4.4025 6.5090 9.4168 5.5798 7.3956 9.3903
EC-L2O 3.4639 4.6034 5.9666 2.6545 3.6740 5.1129 2.9766 3.7713 4.6983
ROBD 1.7291 1.7291 1.7291 1.7291 1.7291 1.7291 1.7291 1.7296 1.7298
HitMin 4.8573 6.7746 8.8383 3.1492 4.8253 7.0405 5.0632 6.9699 8.9246

Table 2: Average cost and competitive ratio comparison of different algorithms. We study the effect
of introducing out-of-distribution (OOD) samples. Within the testing dataset, we randomly select a
fraction of pc of samples and add some random noise following N (0, σ) to contaminate these data
samples (whose input values are all normalized within [0, 1]).

B.3.3 Larger distributional shifts

In our dataset, ML performs very well on average as the testing distribution matches well with its
training distribution. To consider more challenging cases as a stress test, we manually increase the
testing distributional shifts by adding random noise following N (0, σ) to a certain faction pc of the
testing samples. Note that, as we intentionally stress test RCL and RCL-O under a larger distributional
shift, their ML models remain unchanged as in the default setting and are not re-trained by adding
noisy data to the training dataset.

With the default λ = 1, we show the average cost and competitive ratio results in Table 2. We see
that ROBD is very robust and little affected by the distributional shifts. In terms of the competitive
ratio, ML, HitMin and EC-L2O are not robust, resulting in a large competitive ratio when we add
more noisy samples. The average cost performance of RCL is empirically better than that of RCL-O
in almost all cases, except for a slight increase in the practically very rare case where 20% samples
are contaminated with large noise. On the other hand, as expected, the competitive ratios of RCL and
RCL-O both increase as we add more noise. While RCL has a higher competitive ratio than RCL-O
empirically in the experiment, they both have the same guaranteed (1 + λ) competitiveness against
ROBD regardless of how their ML models are trained. Also, their competitive ratios are both better
than other algorithms, showing the effectiveness of our novel robustification process.

B.4 Results with Feedback Delay

We now turn to the case when there is a one-step feedback delay, i.e., the context parameter yt is not
known to the agent until time t+ 1. For this setting, we consider the best-known online algorithm
iROBD [49] as the expert that handles the feedback delay with a guaranteed competitive ratio with
respect to OPT. The other baseline online algorithms — ROBD, EC-L2O, and HitMin— presented in
Section B.2 require the immediate revelation of yt without feedback delay and hence do not directly
apply to this case. Thus, for comparison, we use the predicted context, denoted by ŷt, with up to 15%
prediction errors in the baseline online algorithms, and reuse the algorithm names (e.g., EC-L2O
uses predicted ŷt as if it were the true context for decision making). We train ML using the same
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RCL RCL-O ML EC-L2O iROBD HitMin ROBD
λ=0.6 λ=1 λ=3 λ=5 λ=0.6 λ=1 λ=3 λ=5

AVG 1.5011 1.3594 1.2874 1.2899 1.5134 1.3690 1.2949 1.3026 1.2792 1.4112 2.3076 2.6095 2.5974
CR 2.9797 2.4832 3.2049 3.9847 2.9797 2.4832 3.3367 4.3040 8.4200 15.1928 4.7632 26.0264 2.8478

Table 3: Competitive ratio and average cost comparison of different algorithms with feedback delay.
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(b) RCL w/ different λ
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(c) RCL-O w/ different λ
Figure 4: Cost ratio distributions with feedback delay (λ = 1 by default)

architecture as in Section B.3, with the exception that only delayed context is provided as input for
both training and testing. The reported values are normalized with respect to those of the respective
offline optimal algorithm OPT. The average cost (AVG) and competitive ratio (CR) are all empirical
results reported on the testing dataset.

We show the results in Table 3 and Fig. 4. We see that with the default λ = 1, both RCL and RCL-O
have a good average cost, but RCL has a lower average cost than RCL-O and is outperformed only
by ML in terms of the average cost. RCL and RCL-O have the same competitive ratio guarantee (i.e.,
(1 + λ) times the competitive ratio of iROBD). Nonetheless, RCL has the lowest competitive ratio
than all the other algorithms, demonstrating the power of RCL to leverage both ML prediction and the
robust expert. In this experiment, both RCL and RCL-O outperform iROBD in terms of the empirical
competitive ratio because they are able to exploit the good ML predictions for those problem instances
that are difficult for iROBD.

By comparison, ML performs well on average by exploiting the historical data, but has a high
competitive ratio. The alternative baselines — ROBD, EC-L2O and HitMin— use predicted context
ŷt as the true context. Except for the good empirical competitive ratio of ROBD, they do not have
good average performance or guaranteed robustness due to their naively trusting the predicted context
(that can potentially have large prediction errors). Note that the empirical competitive ratio of ROBD
with predicted context is still much higher than that with the true context in Table 1. These results
reinforce the point that blindly using ML predictions (i.e., predicted context in this example) without
additional robustification can lead to poor performance in terms of both average cost and worst-case
cost ratio.

We further show in Fig. 4 the box plots for cost ratios of different algorithms, providing a detailed
view of the algorithms’ performance. The key message is that RCL obtains the best of both worlds —
a good average cost and a good competitive ratio. Moreover, we see that by setting λ = 1, we provide
enough freedom to RCL to exploit the benefits of ML predictions while also ensuring worst-case
robustness. Thus, like in the no-delay case in Table 1 and Fig. 2, the empirical competitive ratio of
RCL with λ = 1 is even lower than that with λ = 0.6.

C Proof of Theorems and Corollaries in Section 4

C.1 Proof of Theorem 4.1 (Cost Ratio)

To prove Theorem 4.1, we first give some technical lemmas about the smoothness of cost functions
from Lemma C.1 to Lemma C.3.
Lemma C.1 (Lemma 4 in [59]). Assume f(x) is β smooth, for any λ > 0, we have

f(x) ≤ (1 + λ)f(y) + (1 +
1

λ
)
β

2
∥x− y∥2 ∀x, y ∈ X

Lemma C.2. Assume f(x) is β1 smooth and d(x) is β2 smooth, then f(x)+ d(x) is β1 +β2 smooth.
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Lemma C.3. Suppose that the hitting cost f(x, yt) is βh-smooth with respect to x, The switching
cost is d(xt, xt−1) =

1
2∥xt − δ(xt−p:t−1)∥2, where δ(·) is Li-Lipschitz with respect to xt−i. Then

for any two action sequences x1:T and x′
1:T , we must have

cost(x1:T )− (1 + λ)cost(x′
1:T ) ≤

β + (1 +
∑p

k=1 Lk)
2

2
(1 +

1

λ
)∥x1:T − x′

1:T ∥2, ∀λ > 0 (8)

Proof. The objective to be bounded can be decomposed as

cost(x1:T )− (1 + λ)cost(x′
1:T )

=

( T∑
t=1

f(xt, yt)− (1 + λ)f(x′
t, yt)

)
+

1

2

( T∑
t=1

∥xt − δ(xt−p:t−1)∥2 − (1 + λ)∥x′
t − δ(x′

t−p:t−1)∥2
)

(9)

Since hitting cost is βh-smooth, then
T∑

t=1

f(xt, yt)− (1 + λ)f(x′
t, yt) ≤

βh

2
(1 +

1

λ
)

T∑
t=1

∥xt − x′
t∥2 (10)

Besides, based on the Lipschitz assumption of function δ(·), we have

∥xt − δ(xt−p:t−1)∥2 − (1 + λ)∥x′
t − δ(x′

t−p:t−1)∥2

≤(1 +
1

λ
)∥(xt − x′

t) + (δ(xt−p:t−1)− δ(x′
t−p:t−1))∥2

≤(1 +
1

λ
)
(
∥xt − x′

t∥+ ∥δ(xt−p:t−1)− δ(x′
t−p:t−1)∥

)2
≤(1 +

1

λ
)

(
∥xt − x′

t∥+
p∑

k=1

Lk∥xt−k − x′
t−k∥

)2

≤(1 +
1

λ
)(1 +

p∑
k=1

Lk)

(
∥xt − x′

t∥2 +
p∑

k=1

Lk∥xt−k − x′
t−k∥2

)
(11)

Summing up the switching costs of all time steps together, we have
T∑

t=1

∥xt − δ(xt−p:t−1)∥2 − (1 + λ)∥x′
t − δ(x′

t−p:t−1)∥2

≤(1 +
1

λ
)(1 +

p∑
k=1

Lk)

T∑
t=1

(
∥xt − x′

t∥2 +
p∑

k=1

Lk∥xt−k − x′
t−k∥2

)

≤(1 +
1

λ
)(1 +

p∑
k=1

Lk)

T∑
t=1

(1 +

p∑
k=1

Lk)∥xt − x′
t∥2

=(1 +
1

λ
)(1 +

p∑
k=1

Lk)
2

T∑
t=1

∥xt − x′
t∥2

(12)

Substituting Eqn. (12) and Eqn. (10) into Eqn. (9), we finish the proof.

Now we propose Lemma C.4 based on these above lemmas, which ensures the feasibility of robustness
constraint in Eqn. (1)
Lemma C.4. Let π be any expert algorithm for the SOCO problem with multi-step feedback delays
and multi-step switching costs, for any λ ≥ 0 and λ ≥ λ0 ≥ 0, the total cost by the projected actions
xt must satisfy cost(x1:T ) ≤ (1 + λ)cost(xπ

1:T )

Proof. We prove by induction that the constraints in Eqn. (1) are satisfied for each t. For t = 1, since
we assume the initial actions are the same (x−p+1:0 = xπ

−p+1:0), it is obvious that x = xπ
1 satisfies

the robustness constraints Eqn. (1).
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Then for any time step t ≥ 2, suppose it holds at t− 1 that∑
τ∈At−1

f(xτ , yτ ) +
∑

τ∈At−1∪Bt−1

d(xτ , xτ−p:τ−1) +
∑

τ∈Bt−1

H(xτ , x
π
τ ) +G(x, xt−p:t−1, x

π
t−p:t)

≤(1 + λ)

( ∑
τ∈At−1

f(xπ
τ , yτ ) +

∑
τ∈At−1∪Bt−1

d(xπ
τ , x

π
τ−p:τ−1)

)
(13)

Now the robustness constraints Eqn. (1) is satisfied if we prove xt = xπ
t satisfies the constraints in

Eqn. (1) at time step t. Since for the sets A and B, we have

(At ∪ Bt)\(At−1 ∪ Bt−1) = {t}, At−1 ⊆ At, (14)

so it holds that∑
τ∈At∪Bt

d(xτ , xτ−p:τ−1)−
∑

τ∈At−1∪Bt−1

d(xτ , xτ−p:τ−1) = d(xt, xt−p:t−1) (15)

By Lemma C.1, we have
d(xπ

t , xt−p:t−1)− (1 + λ)d(xπ
t , x

π
t−p:t−1)

≤1

2
(1 +

1

λ
)∥δ(xt−p:t−1)− δ(xπ

t−p:t−1)∥2

≤1

2
(1 +

1

λ
)

(
p∑

i=1

Li∥xt−i − xπ
t−i∥

)2
(16)

Denote α = 1 +
∑p

k=1 Lk. For the reservation cost, we have

G(xt−1, xt−p−1:t−2, x
π
t−p−1:t−1)−G(xπ

t , xt−p:t−1, x
π
t−p:t)

=
α(1 + 1

λ0
)

2

(
p∑

k=1

p−k∑
i=0

Lk+i∥xt−i−1 − xπ
t−i−1∥2 −

p∑
k=1

p−k∑
i=1

Lk+i∥xt−i − xπ
t−i∥2

)

=
α(1 + 1

λ0
)

2

(
p−1∑
k=0

p−k∑
i=1

Lk+i∥xt−i − xπ
t−i∥2 −

p∑
k=1

p−k∑
i=1

Lk+i∥xt−i − xπ
t−i∥2

)

=
α(1 + 1

λ0
)

2

(
p−1∑
k=0

p−k∑
i=1

Lk+i∥xt−i − xπ
t−i∥2 −

p−1∑
k=1

p−k∑
i=1

Lk+i∥xt−i − xπ
t−i∥2

)

=
α(1 + 1

λ0
)

2

p∑
i=1

Li∥xt−i − xπ
t−i∥2

(17)

Continuing with Eqn. (17), we have

G(xt−1, xt−p−1:t−2, x
π
t−p−1:t−1)−G(xπ

t , xt−p:t−1, x
π
t−p:t) =

α(1 + 1
λ0
)

2

p∑
i=1

Li∥xt−i − xπ
t−i∥2

≥
(1 + 1

λ0
)(
∑p

i=1 Li)
2

2

p∑
i=1

Li∑p
i=1 Li

∥xt−i − xπ
t−i∥2

≥
(1 + 1

λ0
)(
∑p

i=1 Li)
2

2

(
p∑

i=1

Li∑p
i=1 Li

∥xt−i − xπ
t−i∥

)2

=
1

2
(1 +

1

λ0
)

(
p∑

i=1

Li∥xt−i − xπ
t−i∥

)2

≥ 1

2
(1 +

1

λ
)

(
p∑

i=1

Li∥xt−i − xπ
t−i∥

)2

(18)

where the second inequality holds by Jensen’s inequality. Therefore, combining with (16), we have

d(xπ
t , xt−p:t−1)+G(xπ

t , xt−p:t−1, x
π
t−p:t) ≤ G(xt−1, xt−p−1:t−2, x

π
t−p−1:t−1)+(1+λ)d(xπ

t , x
π
t−p:t−1)
(19)
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By Eqn. (19), we have

G(xπ
t , xt−p:t−1, x

π
t−p:t) +

∑
τ∈At∪Bt

d(xτ , xτ−p:τ−1)−
∑

τ∈At−1∪Bt−1

d(xτ , xτ−p:τ−1)

≤G(xt−1, xt−p−1:t−2, x
π
t−p−1:t−1) + (1 + λ)

 ∑
τ∈At∪Bt

d(xπ
τ , x

π
τ−p:τ−1)−

∑
τ∈At−1∪Bt−1

d(xπ
τ , x

π
τ−p:τ−1)


(20)

Now we define a new set Dt = At\At−1, which denotes the timestep set for the newly received
context parameters at t.

Case 1: If t ∈ Dt, then Bt−1\Bt = Dt\{t}, then we have(∑
τ∈At

f(xτ , yτ ) +
∑
τ∈Bt

H(xτ , x
π
τ )

)
−

 ∑
τ∈At−1

f(xτ , yτ ) +
∑

τ∈Bt−1

H(xτ , x
π
τ )


=
∑
τ∈Dt

f(xτ , yτ )−
∑

τ∈Dt\{t}

H(xτ , x
π
τ ) = f(xπ

t , yt) +
∑

τ∈Dt\{t}

f(xτ , yτ )−
∑

τ∈Dt\{t}

H(xτ , x
π
τ )

(21)

Since hitting cost f(·, yt) is βh-smooth, we have∑
τ∈Dt\{t}

f(xτ , yτ )−
∑

τ∈Dt\{t}

(1 + λ)f(xπ
τ , yτ )

≤
βh(1 +

1
λ )

2

∑
τ∈Dt\{t}

∥xπ
τ − xτ∥2 ≤

∑
τ∈Dt\{t}

H(xτ , x
π
τ )

(22)

Substituting Eqn. (22) back to Eqn. (21), we have(∑
τ∈At

f(xτ , yτ ) +
∑
τ∈Bt

H(xτ , x
π
τ )

)
−

 ∑
τ∈At−1

f(xτ , yτ ) +
∑

τ∈Bt−1

H(xτ , x
π
τ )


≤(1 + λ)

∑
τ∈At

f(xτ , yτ )−
∑

τ∈At−1

f(xτ , yτ )

 (23)

Case 2: If t /∈ Dt, then (Bt−1 ∪ {t})\Bt = Dt and we have(∑
τ∈At

f(xτ , yτ ) +
∑
τ∈Bt

H(xτ , x
π
τ )

)
−

 ∑
τ∈At−1

f(xτ , yτ ) +
∑

τ∈Bt−1

H(xτ , x
π
τ )


=
∑
τ∈Dt

f(xτ , yτ )−
∑
τ∈Dt

H(xτ , x
π
τ ) +H(xπ

t , x
π
t )

=
∑
τ∈Dt

f(xτ , yτ )−
∑
τ∈Dt

H(xτ , x
π
τ )

(24)

Since hitting cost f(·, yt) is βh-smooth, we have

∑
τ∈Dt

f(xτ , yτ )−
∑
τ∈Dt

(1 + λ)f(xπ
τ , yτ ) ≤

βh(1 +
1
λ )

2

∑
τ∈Dt

∥xπ
τ − xτ∥2 ≤

∑
τ∈Dt

H(xτ , x
π
τ )

(25)

Since λ ≥ 0, we substitute Eqn. (25) back to Eqn. (24), we have the same conclusion as Eqn (23).
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Adding Eqn. (13), Eqn. (20) and Eqn. (23) together, we can prove x = xπ
t satisfies the constraints in

Eqn. (1). At time step T , we have∑
τ∈AT

f(xτ , yτ ) +
∑

τ∈AT∪BT

d(xτ , xτ−p:τ−1) +
∑
τ∈BT

(f(xτ , yτ )− (1 + λ)f(xπ
τ , yτ ))

≤
∑

τ∈AT

f(xτ , yτ ) +
∑

τ∈AT∪BT

d(xτ , xτ−p:τ−1) +
∑
τ∈BT

H(xτ , x
π
τ )

≤(1 + λ)

( ∑
τ∈AT

f(xπ
τ , yτ ) +

∑
τ∈AT∪BT

d(xπ
τ , x

π
τ−p:τ−1)

) (26)

In other words∑
τ∈AT∪BT

(f(xτ , yτ ) + d(xτ , xτ−p:τ−1)) ≤ (1 + λ)
∑

τ∈AT∪BT

(f(xπ
τ , yτ ) + d(xτ , xτ−p:τ−1))

(27)

In the next lemma, we bound the difference between the projected action and the ML predictions.
Lemma C.5. Suppose hitting cost is βh-smooth, given the expert policy π, ML predictions x̃1:T , for
any λ > 0 and λ1 > 0, the total distance between actual actions x1:T and ML predictions x̃1:T are
bounded,

T∑
i=1

∥xt − x̃t∥2 ≤
T∑

i=1


∥x̃t − xπ

t ∥ −

√√√√K

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)+


2

(28)

where [·]+ is the ReLU function and K = 2(λ−λ0)

βh(1+
1
λ0

)+α2(1+ 1
λ0

)
, α = 1 +

∑p
i=1 Li

Proof. Suppose we at t− 1 have the following inequality:∑
τ∈At−1

f(xτ , yτ ) +
∑

τ∈At−1∪Bt−1

d(xτ , xτ−p:τ−1) +
∑

τ∈Bt−1

H(xτ , x
π
τ ) +G(x, xt−p:t−1, x

π
t−p:t)

≤(1 + λ)

 ∑
τ∈At−1

f(xπ
τ , yτ ) +

∑
τ∈At−1∪Bt−1

d(xπ
τ , x

π
τ−p:τ−1)


(29)

Remember that Dt = At\At−1 is the set of the time steps for the newly received context parameters
at t. The robustness constraint in Eqn. (1) is satisfied if xt satisfies the following inequality.

∑
τ∈Dt

f(xτ , yτ ) +
∑
τ∈Bt

H(xτ , x
π
τ )−

∑
τ∈Bt−1

H(xτ , x
π
τ )

+ d(xt, xt−p:t−1) +G(xt, xt−p:t−1, x
π
t−p:t)

−G(xt−1, xt−p−1:t−2, x
π
t−p−1:t−1) ≤ (1 + λ)

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)
(30)

For the switching cost, we have
d(x, xt−p:t−1)− (1 + λ0)d(x

π
t , x

π
t−p:t−1)

≤1

2
(1 +

1

λ0
)
(
∥x− xπ

t ∥+ ∥δ(xt−p:t−1)− δ(xπ
t−p:t−1)∥

)2
≤1

2
(1 +

1

λ0
)

(
∥x− xπ

t ∥+
p∑

i=1

Li∥xt−i − xπ
t−i∥

)2

≤
α(1 + 1

λ0
)

2

(
∥x− xπ

t ∥2 +
p∑

i=1

Li∥xt−i − xπ
t−i∥2

)
(31)
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The first inequality comes from Lemma C.1, the second inequality comes from the Li-Lipschitz
assumption, and the third inequality is because α ≥ 1. Besides, from Eqn (17), we have

G(xt−1, xt−p−1:t−2, x
π
t−p−1:t−1)−G(xπ

t , xt−p:t−1, x
π
t−p:t) =

α(1 + 1
λ0
)

2

p∑
i=1

Li∥xt−i − xπ
t−i∥2

(32)
Thus we have
G(x, xt−p:t−1, x

π
t−p:t)−G(xt−1, xt−p−1:t−2, x

π
t−p−1:t−1)

=G(x, xt−p:t−1, x
π
t−p:t)−G(xπ

t , xt−p:t−1, x
π
t−p:t) +G(xπ

t , xt−p:t−1, x
π
t−p:t)−G(xt−1, xt−p−1:t−2, x

π
t−p−1:t−1)

=G(x, xt−p:t−1, x
π
t−p:t)−G(xπ

t , xt−p:t−1, x
π
t−p:t)−

α(1 + 1
λ0
)

2

p∑
i=1

Li∥xt−i − xπ
t−i∥2.

(33)
Combining with inequality (31), we have
G(xt, xt−p:t−1, x

π
t−p:t)−G(xt−1, xt−p−1:t−2, x

π
t−p−1:t−1) + d(xt, xt−p:t−1)− (1 + λ0)d(x

π
t , x

π
t−p:t−1)

≤G(xt, xt−p:t−1, x
π
t−p:t)−G(xπ

t , xt−p:t−1, x
π
t−p:t) +

α(1 + 1
λ0
)

2
∥xt − xπ

t ∥2

=
α(1 + 1

λ0
)
∑p

k=1 Lk

2
∥xt − xπ

t ∥2 +
α(1 + 1

λ0
)

2

p∑
k=1

∥xt − xπ
t ∥2

=
α2(1 + 1

λ0
)

2
∥xt − xπ

t ∥2

(34)

Substituting Eqn. (34) back to Eqn. (30), we have∑
τ∈Dt

(f(xτ , yτ )− (1 + λ0)f(x
π
τ , yτ )) +

∑
τ∈Bt

H(xτ , x
π
τ )−

∑
τ∈Bt−1

H(xτ , x
π
τ )

+
α2(1 + 1

λ0
)

2
∥x− xπ

t ∥2 ≤ (λ− λ0)

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

) (35)

Case 1: If t ∈ Dt, then Bt−1\Bt = Dt\{t}, then Eqn.(35) becomes

f(xt, yt)− (1 + λ0)f(x
π
t , yt) +

α2(1 + 1
λ0
)

2
∥x− xπ

t ∥2

+
∑

τ∈Dt\{t}

f(xτ , yτ )−(1 + λ0)f(x
π
τ , yτ )−H(xτ , x

π
τ ) ≤ (λ− λ0)

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)
(36)

Since hitting cost is βh-smooth, the sufficient condition for Eqn. (35) becomes

(βh + α2)(1 + 1
λ0
)

2
∥x− xπ

t ∥2 ≤ (λ− λ0)

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)
(37)

Since the hitting cost is non-negative, the sufficient condition can be further simplified, which is

(βh + α2)(1 + 1
λ0
)

2
∥x− xπ

t ∥2 ≤ (λ− λ0)
(
f(xπ

t , yt) + d(xπ
t , x

π
t−p:t−1)

)
(38)

Case 2: If t /∈ Dt, then (Bt−1 ∪ {t})\Bt = Dt, then Eqn.(35) becomes

α2(1 + 1
λ0
)

2
∥x− xπ

t ∥2 +H(x, xπ
t ) +

∑
τ∈Dt

(f(xτ , yτ )− (1 + λ0)f(x
π
τ , yτ )−H(xτ , x

π
τ ))

≤ (λ− λ0)

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

) (39)

23



Since hitting cost is βh-smooth, the sufficient condition for Eqn. (39) becomes

(βh + α2)(1 + 1
λ0
)

2
∥x− xπ

t ∥2 ≤ (λ− λ0)

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)
(40)

Now we define

K =
2(λ− λ0)

(βh + α2)(1 + 1
λ0
)

At time step t, if x′
t is the solution to this alternative optimization problem

x′
t = argmin

x

1

2
∥x− x̃t∥2

s.t. ∥x− xπ
t ∥2 ≤ K

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

) (41)

The solution to this problem can be calculated asd

x′
t = θxπ

t + (1− θ)x̃t

θ =

1−
√
K
(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)
∥x̃t − xπ

t ∥

+

.
(42)

Then ∥x′
t − x̃t∥ =

[
∥x̃t − xπ

t ∥ −
√
K
(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)]+
. Since x′

t also
satisfies the original robustness constraint, we have ∥xt − x̃t∥ ≤ ∥x′

t − x̃t∥ and we finish the proof.

Proof of Theorem 4.1
Now summing up the distance through 1 to T, we have

T∑
i=1

∥xt − x̃t∥2 ≤
T∑

i=1


∥x̃t − xπ

t ∥ −

√√√√K

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)+


2

(43)

Based on Lemma C.3 we have ∀λ2 > 0,

cost(x1:T )− (1 + λ2)cost(x̃1:T ) ≤
β + α2

2
(1 +

1

λ2
)

T∑
i=1

∥xt − x̃t∥2. (44)

Suppose the offline optimal action sequence is x∗
1:T , the optimal cost is cost(x∗

1:T ). Then we divide
both sides of Eqn. (44) by cost(x∗

1:T ), and get ∀λ2 > 0,

cost(x1:T ) ≤(1 + λ2)cost(x̃1:T ) +
β + α2

2
(1 +

1

λ2
)·

T∑
i=1

([
∥x̃t − xπ

t ∥ −
√

K
(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)]+)2 (45)

By substituting K = 2(λ−λ0)

(βh+α2)(1+ 1
λ0

)
back to Eqn (46), we have

cost(x1:T ) ≤(1 + λ2)cost(x̃1:T ) + (1 +
1

λ2
)

T∑
i=1

[
β + α2

2
∥x̃t − xπ

t ∥2

− λ− λ0

1 + 1
λ0

(
d(xπ

t , x
π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ )

)]+ (46)
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By defining single step cost of the expert π as costπt = d(xπ
t , x

π
t−p:t−1) +

∑
τ∈Dt

f(xπ
τ , yτ ) and the

auxiliary cost as ∆(λ) =
∑T

i=1

[
∥x̃t − xπ

t ∥2 −
2(λ−λ0)

(βh+α2)(1+ 1
λ0

)
costπt

]+
cost(x1:T ) ≤

(√
cost(x̃1:T ) +

√
β + α2

2
∆(λ)

)2

(47)

Combined with Lemma C.4, we obtain the following bound, which finished this proof.

cost(x1:T ) ≤ min

(
(1 + λ)cost(xπ

1:T ),

(√
cost(x̃1:T ) +

√
β + α2

2
∆(λ)

)2
)

(48)

C.2 Proof of Theorem 4.2

Proof. We first give the formal definition of Rademacher complexity of the ML model space with
robustification.

Definition 5 (Rademacher Complexity). Let Robλ(W) = {Robλ(hW ),W ∈ W} be the ML model
space with robustification constrained by (2). Given the dataset S , the Rademacher complexity with
respect to Robλ(W) is

RadS(Robλ(W)) =
1

|S|
Eν

[
sup

W∈W

(∑
i∈S

νiRobλ
(
hW (yi)

))]
,

where yi is the i-th sample in S , and ν1, · · · , νn are independently drawn from Rademacher distribu-
tion.

Since the cost functions are smooth, they are locally Lipschitz continuous for the bounded action
space, and we can apply the generalization bound based on Rademacher complexity [60] for the
space of robustified ML model Robλ(hW ). Given any ML model hW trained on dataset S, with
probability at least 1− δ, δ ∈ (0, 1),

EP′
y
[cost1:T ] ≤ costS(Robλ(hW )) + 2ΓxRadS(Robλ(W)) + 3c̄

√
log(2/δ)

|S|
, (49)

where Γx =
√
T |X |

[
βh + 1

2 (1 +
∑p

i=1 Li)(1 +
∑p

i=1 Li)
]

with |X | being the size of the action
space X and βh, Li, and p as the smoothness constant, Lipschitz constant of the nonlinear term in the
switching cost, and the memory length as defined in Assumptions 1 and 2, and c̄ is the upper bound
of the total cost for an episode. We can get the average cost bound in Proposition 4.2.

Next, we prove that the Rademacher complexity of the ML model space with robustification is no
larger than the Rademacher complexity of the ML model space without robustification expressed as
{hW ,W ∈ W}, i.e. we need to prove RadS(Robλ(W)) ≤ RadS (W). The Rademacher complexity
can be expressed by Dudley’s entropy integral [61] as

RadS(Robλ(W)) = O

(
1√
|S|

∫ ∞

0

√
logN(ϵ,Robλ(W), L2(S))dϵ

)
, (50)

where N(ϵ,Robλ(W), L2(S)) is the covering number [61] with respect to radius ϵ and the function
distance metric ∥h1 − h2∥L2(S) =

1
|S|
∑

i∈S ∥h1(xi)− h2(xi)∥2 where h1 and h2 are two functions
defined on the space including dataset S . We can find that for any two different weights W1 and W2,
their corresponding post-robustification distance ∥Robλ(hW1)− Robλ(hW2)∥L2(S) is no larger than
their pre-robustification distance ∥hW1

− hW2
∥L2(S). To see this, we discuss three cases given any

input sample y. If both hW1(y) and hW2(y) lie in the projection set, then Robλ(hW1)(y) = hW1(y)
and Robλ(hW2)(y) = hW2(y). If hW1(y) lies in the projection set while hW2(y) is out of
the projection set, the projection operation based on the closed convex projection set will make
∥Robλ(hW1

)(y)−Robλ(hW2
)(y)∥ to be less than ∥hW1

(y)−hW2
(y)∥. If both hW1

(y) and hW2
(y)

lie out of the projection set, we still have ∥Robλ(hW1
)(y)−Robλ(hW2

)(y)∥ ≤ ∥hW1
(y)−hW2

(y)∥
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since the projection set at each round is a closed convex set [62]. Therefore, after robusti-
fication, the distance between two models with different weights will not become larger, i.e.
∥Robλ(hW1)− Robλ(hW2)∥L2(S) ≤ ∥hW1

− hW2
∥L2(S), which means RCL has a covering number

N(ϵ,Robλ(W), L2(S)) no larger than that of the individual ML model N(ϵ,W, L2(S)) for any ϵ.
Thus the Rademacher complexity with the robustification procedure does not increase.

By [63], the upper bound of Rademacher complexity with respect to the space of ML model
RadS(Robλ(W)) is in the order of O( 1√

|S|
). Since the Rademacher complexity with the robustifica-

tion procedure satisfies RadS(Robλ(W)) ≤ RadS (W), it also decreases with the dataset size in the
order of O( 1√

|S|
).

D Robustification-aware Training

Theorem 4.2 also shows the benefits of training the ML model in a robustification-aware manner.
Specifically, by comparing the losses in (5) and (6), we see that using (6) as the robustification-aware
loss for training W can reduce the term costS(ROB(hW )) in the average cost bound, which matches
exactly with the training objective in (6). The robustification-aware approach is only beginning to be
explored in the ML-augmented algorithm literature and non-trivial (e.g., unconstrained downstream
optimization in [55]), especially considering that (1) is a constrained optimization problem with no
explicit gradients.

Gradient-based optimizers such as Adam [64] are the de facto state-of-the-art algorithms for training
ML models, offering better optimization results, convergence, and stability compared to those non-
gradient-based alternatives [65]. Thus, it is crucial to derive the gradients of the loss function with
respect to the ML model weight W given the added robustification step.

Next, we derive the gradients of xt with respect to x̃t. For the convenience of presentation, we use
the basic SOCO setting with a single-step switching cost and no hitting cost delay as an example,
while noting that the same technique can be extended to derive gradients in more general settings.
Specifically, for this setting, the pre-robustification prediction is given by x̃t = hW (x̃t−1, yt), where
W denotes the ML model weight. Then, the actual post-robustification action xt is obtained by
projection in (1) by setting q = 0 and p = 1, given the ML prediction x̃t, the expert’s action xπ

t and
cumulative cost(xπ

1:t) up to t, and the actual cumulative cost(x1:t−1) up to t− 1.

The gradient of the loss function cost(x1:T ) =
∑T

t=1 (f(xt, yt) + d(xt, xt−1)) with respect to the
ML model weight W is given by

∑T
t=1 ∇W

(
f(xt, yt) + d(xt, xt−1)

)
. Next, we write the gradient

of per-step cost with with respect to W as follows:

∇W

(
f(xt, yt) + d(xt, xt−1)

)
=∇xt

(
f(xt, yt) + d(xt, xt−1)

)
∇Wxt +∇xt−1

(
f(xt, yt) + d(xt, xt−1)

)
∇Wxt−1

=∇xt

(
f(xt, yt) + d(xt, xt−1)

)
∇Wxt +∇xt−1

d(xt, xt−1)∇Wxt−1,

(51)

where the gradients ∇xt

(
f(xt, yt) + d(xt, xt−1)

)
and ∇xt−1

d(xt, xt−1) are trivial given the hitting
and switching cost functions, and the gradient ∇Wxt−1 is obtained at time t− 1 in the same way as
∇Wxt. To derive ∇Wxt, by the chain rule, we have:

∇Wxt = ∇x̃t
xt∇W x̃t +∇cost(x1:t−1)xt∇W cost(x1:t−1), (52)

where ∇W x̃t is the gradient of the ML output (following a recurrent architecture illustrated in Fig. 1
in the appendix) with respect to the weight W and can be obtained recursively by using off-the-shelf
BPTT optimizers [64], and ∇W cost(x1:t−1) =

∑t−1
τ=1 ∇W

(
f(xτ , yτ ) + d(xτ , xτ−1)

)
can also be

recursively calculated once we have the gradient in Eqn. (51). Nonetheless, it is non-trivial to
calculate the two gradient terms in Eqn. (52), i.e., ∇x̃txt and ∇cost(x1:t−1)xt, where xt itself is the
solution to the constrained optimization problem (1) unlike in the simpler unconstrained case [55].
As we cannot explicitly write xt in a closed form in terms of x̃t and cost(x1:t−1), we leverage the
KKT conditions [66, 67, 68] to implicitly derive ∇x̃t

xt and ∇cost(x1:t−1)xt in the next proposition.
Proposition D.1 (Gradients by KKT conditions). Let xt ∈ X and µ ≥ 0 be the primal and dual
solutions to the problem (1), respectively. The gradients of xt with respect to x̃t and cost(x1:t−1) are

∇x̃t
xt = ∆−1

11 [I +∆12Sc(∆,∆11)
−1∆21∆

−1
11 ],
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∇cost(x1:t−1)xt = ∆−1
11 ∆12Sc(∆,∆11)

−1µ,

where ∆11 = I + µ
(
∇xt,xt

f(xt, yt) +
(
1 + (1 + 1

λ0
)(L2

1 + L1)
)
I
)

, ∆12 = ∇xt
f(xt, yt) +

(xt − δ(xt−1)) +
(
1 + (1 + 1

λ0
)(L2

1 + L1)
)
(xt − xπ

t ), ∆21 = µ∆⊤
12, ∆22 = f(xt, yt) +

d(xt, xt−1)+G(xt, x
π
t )+cost(x1:t−1)− (1+λ)cost(xπ

1:t), and Sc(∆,∆11) = ∆22−∆21∆
−1
11 ∆12

is the Schur-complement of ∆11 in the blocked matrix ∆ =
[
[∆11,∆12], [∆21,∆22]

]
.

If the ML prediction x̃t happens to lie on the boundary such that the inequality in (1) becomes an
equality for x = x̃t, then the gradient does not exist in this case and Sc(∆,∆11) may not be full-
rank. Nonetheless, we can still calculate the pseudo-inverse of Sc(∆,∆11) and use Proposition D.1
to calculate the subgradient. Such approximation is actually a common practice to address non-
differentiable points for training ML models, e.g., using 0 as the subgradient of ReLu(·) at the zero
point [64].
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