
Learning DAGs from Data with Few Root Causes

Panagiotis Misiakos, Chris Wendler and Markus Püschel
Department of Computer Science, ETH Zurich

{pmisiakos, wendlerc, markusp}@ethz.ch

Abstract

We present a novel perspective and algorithm for learning directed acyclic graphs
(DAGs) from data generated by a linear structural equation model (SEM). First,
we show that a linear SEM can be viewed as a linear transform that, in prior work,
computes the data from a dense input vector of random valued root causes (as
we will call them) associated with the nodes. Instead, we consider the case of
(approximately) few root causes and also introduce noise in the measurement of the
data. Intuitively, this means that the DAG data is produced by few data generating
events whose effect percolates through the DAG. We prove identifiability in this
new setting and show that the true DAG is the global minimizer of the L0-norm of
the vector of root causes. For data satisfying the few root causes assumption, we
show superior performance compared to prior DAG learning methods.

1 Introduction

We consider the problem of learning the edges of an unknown directed acyclic graph (DAG) given
data indexed by its nodes. DAGs can represent causal dependencies (edges) between events (nodes)
in the sense that an event only depends on its predecessors. Thus, DAG learning has applications
in causal discovery, which, however, is a more demanding problem that we do not consider here,
since it requires further concepts of causality analysis, in particular interventions [Peters et al., 2017].
However, DAG learning is still NP-hard in general [Chickering et al., 2004]. Hence, in practice, one
has to make assumptions on the data generating process, to infer information about the underlying
DAG in polynomial time. Recent work on DAG learning has focused on identifiable classes of
causal data generating processes. A frequent assumption is that the data follow a structural equation
model (SEM) [Shimizu et al., 2006, Zheng et al., 2018, Gao et al., 2021], meaning that the value
of every node is computed as a function of the values of its direct parents plus noise. Zheng et al.
[2018] introduced NOTEARS, a prominent example of DAG learning, which considers the class of
linear SEMs and translates the acyclicity constraint into a continuous form for easier optimization. It
inspired subsequent works to use continuous optimization schemes for both linear [Ng et al., 2020]
and nonlinear SEMs [Lachapelle et al., 2019, Zheng et al., 2020]. A more expansive discussion of
related work is provided in Section 4.

In this paper we also focus on linear SEMs but change the data generation process. We first translate
the common representation of a linear SEM as recurrence into an equivalent closed form. In this form,
prior data generation can be viewed as linearly transforming an i.i.d. random, dense vector of root
causes (as we will call them) associated with the DAG nodes as input, into the actual data on the DAG
nodes as output. Then we impose sparsity in the input (few root causes) and introduce measurement
noise in the output. Intuitively, this assumption captures the reasonable situation that DAG data may
be mainly determined by few data generation events of predecessor nodes that percolate through the
DAG as defined by the linear SEM. Note that our use of the term root causes is related to but different
from the one in the root cause analysis by Ikram et al. [2022].

Contributions. We provide a novel DAG learning method designed for DAG data generated by linear
SEMs with the novel assumption of few root causes. Our specific contributions include the following:

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

• We provide an equivalent, closed form of the linear SEM equation showing that it can
be viewed as a linear transform obtained by the reflexive-transitive closure of the DAG’s
adjacency matrix. In this form, prior data generation assumed a dense, random vector as
input, which we call root causes.

• In contrast, we assume a sparse input, or few root causes (with noise) that percolate through
the DAG to produce the output, whose measurement is also subject to noise. Interestingly,
Seifert et al. [2023] identify the assumption of few root causes as a form of Fourier-sparsity.

• We prove identifiability of our proposed setting under weak assumptions, including zero
noise in the measurements. We also show that, given enough data, the original DAG is the
unique minimizer of the associated optimization problem in the case of absent noise.

• We propose a novel and practical DAG learning algorithm, called SparseRC, for our setting,
based on the minimization of the L1-norm of the approximated root causes.

• We benchmark SparseRC against prior DAG learning algorithms, showing significant
improvements for synthetic data with few root causes and scalability to thousands of nodes.
SparseRC also performs among the best on real data from a gene regulatory network,
demonstrating that the assumption of few root causes can be relevant in practice.

2 Linear SEMs and Root Causes

We first provide background on prior data generation for directed acyclic graphs (DAGs) via linear
SEMs. Then we present a different viewpoint on linear SEMs based on the concept of root causes that
we introduce. Based on it, we argue for data generation with few root causes, present it mathematically
and motivate it, including with a real-world example.

DAG. We consider DAGs G = (V,E) with |V | = d vertices, E the set of directed edges, no cycles
including no self-loops. We assume the vertices to be sorted topologically and set accordingly
V = {1, 2, ..., d}. Further, aij ∈ R is the weight of edge (i, j) ∈ E, and

A = (aij)i,j∈V =

{
aij , if (i, j) ∈ E,

0, else.
(1)

is the weighted adjacency matrix. A is upper triangular with zeros on the diagonal and thus Ad = 0.

Linear SEM. Linear SEMs [Peters et al., 2017] formulate a data generating process for DAGs G.
First, the values at the sources of a DAG G are initialized with random noise. Then, the remaining
nodes are processed in topological order: the value xj at node j is assigned the linear combination of
its parents’ values (called the causes of xj) plus independent noise. Mathematically, a data vector
x = (x1, ..., xd) ∈ Rd on G follows a linear SEM if xj = xA:,j + nj , where the subscript :, j
denotes column j, and nj are i.i.d. random noise variables [Shimizu et al., 2006, Zheng et al., 2018,
Ng et al., 2020]. Assuming n such data vectors collected as the rows of a matrix X ∈ Rn×d, and the
noise variables in the matrix N, the linear SEM is typically written as

X = XA+N. (2)

2.1 Transitive closure and root causes

Equation (2) can be viewed as a recurrence for computing the data values X from N. Here, we
interpret linear SEMs differently by first solving this recurrence into a closed form. We define
A = A+A2 + ...+Ad−1, which is the Floyd-Warshall (FW) transitive closure of A over the ring
(R,+, ·) [Lehmann, 1977], and I+A the associated reflexive-transitive closure of A. Since Ad = 0
we have (I−A)(I+A) = I and thus can isolate X in (2):

Lemma 2.1. The linear SEM (2) computes data X as

X = N
(
I+A

)
. (3)

In words, the data values in X are computed as linear combinations of the noise values N of all
predecessor nodes with weights given by the reflexive-transitive closure I+A.

2

Since X is uniquely determined by N, we call the latter the root causes of X. The root causes must
not be confused with the root nodes (sources) of the DAG, which are the nodes without parents. In
particular, N can be non-zero in nodes that are not sources.

Few root causes. In (3) we view N as the input to the linear SEM at each node and X as the
measured output at each node. With this viewpoint, we argue that it makes sense to consider a data
generation process that differs in two ways from (3) and thus (2). First, we assume that only few
nodes produce a relevant input that we call C, up to low magnitude noise Nc. Second, we assume
that the measurement of X is subject to noise Nx. Formally, this yields the closed form

X = (C+Nc)
(
I+A

)
+Nx. (4)

Multiplying both sides by
(
I+A

)−1
= (I−A) yields the (standard) form as recurrence

X = XA+ (C+Nc) +Nx (I−A) , (5)

i.e., N in (2) is replaced by C + Nc + Nx (I−A), which in general is not i.i.d. Note that (4)
generalizes (3), obtained by assuming zero root causes C = 0 and zero measurement noise Nx = 0.

We consider C not as an additional noise variable but as the actual information, i.e., the relevant input
data at each node, which then percolates through the DAG as determined by the SEM to produce the
final output data X, whose measurement, as usual in practice, is subject to noise. Few root causes
mean that only few nodes input relevant information in one dataset. This assumption can be stated as:
Definition 2.2 (Few Root Causes assumption). We assume that the input data (C+Nc)+Nx (I−A)
to a linear SEM are approximately sparse. Formally this holds if:

∥C∥0/nd < ϵ (few root causes),
∥Nc +Nx (I−A)∥1 /nd

∥C∥1/∥C∥0
< δ (negligible noise), (6)

where ∥·∥0 counts the nonzero entries of C, ∥·∥1 is elementwise, and ϵ, δ are small constants.

For example, in Appendix A we show that (6) holds (in expectation) for ϵ = δ = 0.1 if Nc,Nx are
normally distributed with zero mean and standard deviation σ = 0.01 and the ground truth DAG G
has uniformly random weights in [−1, 1] and average degree 4. The latter two conditions bound the
amplification of Nx in (6) when multiplied by I−A.

The term root cause in the root cause analysis by Ikram et al. [2022] refers to the ancestor that was the
only cause of some effect(s). If there is only one root cause in our sense, characterized by a non-zero
value, then determining its location is the problem considered by Ikram et al. [2022].

2.2 Example: Pollution model

Linear SEMs and associated algorithms have been extensively studied in the literature [Loh and
Bühlmann, 2014, Peters and Bühlmann, 2014, Ghoshal and Honorio, 2017, Aragam and Zhou, 2015].
However, we are not aware of any real-world example given in a publication. The motivation for
using linear SEMs includes the following two reasons: d-variate Gaussian distributions can always
be expressed as linear SEMs [Aragam and Zhou, 2015] and linearity is often a workable assumption
when approximating non-linear systems.

Our aim is to explain why we propose the assumption of few root causes. The high-level intuition is
that it can be reasonable to assume that, with the view point of (3), the relevant DAG data is triggered
by sparse events on the input size and not by random noise. To illustrate this, we present a linear
SEM that describes the propagation of pollution in a river network.

DAG. We assume a DAG describing a river network. The acyclicity is guaranteed since flows only
occur downstream. The nodes i ∈ V represent geographical points of interest, e.g., cities, and
edges are rivers connecting them. We assume that the cities can pollute the rivers. An edge weight
aij ∈ [0, 1], (i, j) ∈ E, captures what fraction of a pollutant inserted at i reaches the neighbour j.
An example DAG with six nodes is depicted in Fig. 1a.

Transitive closure. Fig. 1b shows the transitive closure of the DAG in (a). The (i, j)-th entry of the
transitive closure is denoted with aij and represents the total fraction of a pollutant at i that reaches j
via all connecting paths.

3

0.5

0.5

0.8

0.3

0.7

0.1

(a) Original DAG

0.5

0.5

0.8

0.3

0.7

0.1

0.39

0.06

0.55

0.56

0.03

0.08

0.21

(b) Transitive closure

3

1.5

1.5

6.65

4.66

0.67

(c) Measurements vector

3

0

0

5

0

0.00

(d) Root causes

Figure 1: (a) A DAG for a river network. The weights capture fractions of pollution transported
between adjacent nodes. (b) The transitive closure. The weights are fractions of pollution transported
between all pairs of connected nodes. (c) A possible vector measuring pollution, and (d) the root
causes of the pollution, sparse in this case.

Data and root causes. Fig. 1c shows a possible data vector x on the DAG, for example, the pollution
measurement at each node done once a day (and without noise in this case). The measurement is the
accumulated pollution from all upstream nodes. Within the model, the associated root causes c in
Fig. 1d then show the origin of the pollution, two in this case. Sparsity in C means that each day only
a small number of cities pollute. Negligible pollution from other sources is captured by noise Nc and
Nx models the noise in the pollution measurements (both are assumed to be 0 in Fig. 1).

We view the pollution model as an abstraction that can be transferred to other real-world scenarios.
For example, in gene networks that measure gene expression, few root causes would mean that few
genes are activated in a considered dataset. In a citation network where one measures the impact of
keywords/ideas, few root causes would correspond to the few origins of them.

3 Learning the DAG

In this section we present our approach for recovering the DAG adjacency matrix A from given
data X under the assumption of few root causes, i.e., (4) (or (5)) and (6). We first show that under
no measurement noise, our proposed setting is identifiable. Then we theoretically analyze our data
generating model in the absence of noise and prove that the true DAG adjacency A is the global
minimizer of the L0-norm of the root causes. Finally, to learn the DAG in practice, we perform a
continuous relaxation to obtain an optimization problem that is solvable with differentiation.

3.1 Identifiability

The rows of the data X generated by a linear SEM are commonly interpreted as observations of a
random row vector X = (X1, ..., Xd) [Peters and Bühlmann, 2014, Zheng et al., 2018], i.e., it is
written analogous to (2) as Xi = XA:,i +Ni, where Ni are i.i.d. zero-mean random noise variables,
or, equivalently, as X = XA+N . Given a distribution PN of the noise vector, the DAG with graph
adjacency matrix A is then called identifiable if it is uniquely determined by the distribution PX of
X . Shimizu et al. [2006] state that A is identifiable if all Ni are non-Gaussian noise variables. This
applies directly to our setting and yields the following result.

Theorem 3.1. Assume the data generation X = (C+Nc)
(
I+A

)
, where C and Nc are independent.

Let p ∈ [0, 1) and assume the Ci are independent random variables taking uniform values from [0, 1]
with probability p, and are = 0 with probability 1− p. The noise vector Nc is defined as before. Then
the DAG given by A is identifiable.

Proof. Using (5), the data generation equation can be viewed as a linear SEM (in standard recursive
form) with noise variable C+Nc, which is non-Gaussian due to Lévy-Cramér decomposition theorem
[Lévy, 1935, Cramér, 1936], because C is non-Gaussian. The statement then follows from LiNGAM
[Shimizu et al., 2006], given that the noise variables of C and Nc are independent. Note that this
independency would be violated if we assumed non-zero measurement noise Nx, as in (4).

In Theorem 3.1, C yields sparse observations whenever p is close to zero (namely dp root causes in
expectation). However, identifiability follows for all p due to non-Gaussianity.

4

3.2 L0 minimization problem and global minimizer

Suppose that the data X are generated via the noise-free version of (4):

X = C
(
I+A

)
. (7)

We assume C to be generated as in Theorem 3.1, i.e., with randomly uniform values from [0, 1] with
probability p and 0 with probability 1− p, where p is small such that C is sparse. Given the data X
we aim to find A by enforcing maximal sparsity on the associated C, i.e., by minimizing ∥C∥0:

min
A∈Rd×d

∥∥∥X (
I+A

)−1
∥∥∥
0

s.t. A is acyclic. (8)

The following Theorem 3.2 states that given enough data, the true A is the unique global minimizer
of (8). This means that in that case the optimization problem (8) correctly specifies the true DAG.
One can view the result as a form of concrete, non-probabilistic identifiability. Note that Theorem 3.2
is not a sample-complexity result, but a statement of exact reconstruction in the absence of noise. The
sample complexity of our algorithm is empirically evaluated later.

Theorem 3.2. Consider a DAG with weighted adjacency matrix A with d nodes. Given exponential
(in d) number n of samples X the matrix A is, with high probability, the global minimizer of the
optimization problem (8).

Proof. See Appendix C.

3.3 Continuous relaxation

In practice the optimization problem (8) is too expensive to solve due its combinatorial nature, and, of
course, the noise-free assumption rarely holds in real-world data. We now consider again our general
data generation in (4) assuming sparse root causes C and noises Nc,Nx satisfying the criterion (6).
To solve it we consider a continuous relaxation of the optimization objective. Typically (e.g., [Zheng
et al., 2018, Lee et al., 2019, Bello et al., 2022]), continuous optimization DAG learning approaches
have the following general formulation:

min
A∈Rd×d

ℓ (X,A) +R (A)

s.t. h (A) = 0,
(9)

where ℓ (A,X) is the loss function corresponding to matching the data, R (A) is a regularizer that
promotes sparsity in the adjacency matrix, usually equal to λ ∥A∥1, and h (A) is a continuous
constraint enforcing acyclicity.

In our case, following a common practice in the literature, we substitute the L0-norm from (8) with
its convex relaxation [Ramirez et al., 2013], the L1-norm. Doing so allows for some robustness
to (low magnitude) noise Nc and Nx. We capture the acyclicity with the continuous constraint
h (A) = tr

(
eA⊙A

)
− d used by Zheng et al. [2018], but could also use the form of Yu et al. [2019].

As sparsity regularizer for the adjacency matrix and we choose R (A) = λ ∥A∥1. Hence, our final
continuous optimization problem is

min
A∈Rd×d

1

2n

∥∥∥X (
I+A

)−1
∥∥∥
1
+ λ ∥A∥1 s.t. h (A) = 0. (10)

We call this method SparseRC (sparse root causes).

4 Related work

The approaches to solving the DAG learning problem fall into two categories: combinatorial search
or continuous relaxation. In general, DAG learning is an NP-hard problem since the combinatorial
space of possible DAGs is super-exponential in the number of vertices [Chickering et al., 2004].
Thus, methods that search the space of possible DAGs apply combinatorial strategies to find an
approximation of the ground truth DAG [Ramsey et al., 2017, Chickering, 2002, Tsamardinos et al.,
2006].

5

Continuous optimization. Lately, with the advances of deep learning, researchers have been
focusing on continuous optimization methods [Vowels et al., 2021] modelling the data generation
process using SEMs. Among the first methods to utilize SEMs were CAM [Bühlmann et al.,
2014] and LiNGAM [Shimizu et al., 2006], which specializes to linear SEMs with non-Gaussian
noise. NOTEARS by Zheng et al. [2018] formulates the combinatorial constraint of acyclicity as
a continuous one, which enables the use of standard optimization algorithms. Despite concerns,
such as lack of scale-invariance [Kaiser and Sipos, 2022, Reisach et al., 2021], it has inspired many
subsequent DAG learning methods. The current state-of-the-art of DAG learning methods for linear
SEMs include DAGMA by Bello et al. [2022], which introduces a log-det acyclicity constraint, and
GOLEM by Ng et al. [2020], which studies the role of the weighted adjacency matrix sparsity, the
acyclicity constraint, and proposes to directly minimize the data likelihood. Zheng et al. [2020]
extended NOTEARS to apply in non-linear SEMs. Other nonlinear methods for DAG learning
include DAG-GNN by Yu et al. [2019], in which also a more efficient acyclicity constraint than
the one in NOTEARS is proposed, and DAG-GAN by Gao et al. [2021]. DAG-NoCurl by Yu et al.
[2021] proposes learning the DAG on the equivalent space of weighted gradients of graph potential
functions. Pamfil et al. [2020] implemented DYNOTEARS, a variation of NOTEARS, compatible
with time series data. A recent line of works considers permutation-based methods to parameterize
the search space of the DAG [Charpentier et al., 2022, Zantedeschi et al., 2022]. The work in this
paper considers DAG learning under the new assumption of few root causes. In Misiakos et al. [2024]
we further build on this work by learning graphs from time series data.

Fourier analysis. Our work is also related to the recently proposed form of Fourier analysis on
DAGs from Seifert et al. [2023, 2022], where equation (3) appears as a special case. The authors
argue that (what we call) the root causes can be viewed as a form of spectrum of the DAG data. This
means the assumption of few root causes is equivalent to Fourier-sparsity, a frequent assumption for
common forms of Fourier transform [Hassanieh, 2018, Stobbe and Krause, 2012, Amrollahi et al.,
2019]. Experiments in [Seifert et al., 2023, Misiakos et al., 2024] reconstruct data from samples
under this assumption.

5 Experiments

We experimentally evaluate our DAG learning method SparseRC with both synthetically generated
data with few root causes and real data from gene regulatory networks [Sachs et al., 2005]. We
also mention that our method was among the winning solutions [Misiakos et al., 2023, Chevalley
et al., 2023] of a competition of DAG learning methods to infer causal relationships between genes
[Chevalley et al., 2022]. The evaluation was done on non-public data by the organizing institution
and is thus not included here.

Benchmarks. We compare against prior DAG learning methods suitable for data generated by
linear SEMs with additive noise. In particular, we consider the prior GOLEM [Ng et al., 2020],
NOTEARS [Zheng et al., 2018], DAGMA [Bello et al., 2022], DirectLiNGAM [Shimizu et al.,
2011], PC [Spirtes et al., 2000] and the greedy equivalence search (GES) [Chickering, 2002].
We also compared SparseRC against LiNGAM [Shimizu et al., 2006], causal additive models
(CAM) [Bühlmann et al., 2014], DAG-NoCurl [Yu et al., 2021], fast greedy equivalence search
(fGES) [Ramsey et al., 2017], the recent simple baseline sortnregress [Reisach et al., 2021] and
max-min hill-climbing (MMHC) [Tsamardinos et al., 2006], but they where not competitive and thus
we only include the results in Appendix B.

Metrics. To evaluate the found approximation Â of the true adjacency matrix A, we use common
performance metrics as in [Ng et al., 2020, Reisach et al., 2021]. In particular, the structural Hamming
distance (SHD), which is the number of edge insertions, deletions, or reverses needed to convert
Â to A, and the structural intervention distance (SID), introduced by Peters and Bühlmann [2015],
which is the number of falsely estimated intervention distributions. SHD gives a good estimate
of a method’s performance when it is close to 0. In contrast, when it is high it can either be that
the approximated DAG has no edges in common with the ground truth, but it can also be that the
approximated DAG contains all the edges of the original one together with some false positives. Thus,
in such cases, we also consider the true positive rate (TPR) of the discovered edges. We also report
the total number of nonzero edges discovered for the real dataset [Sachs et al., 2005] and, for the
synthetic data, provide results reporting the TPR, SID, and normalized mean square error (NMSE)
metrics in Appendix B. For the methods that can successfully learn the underlying graph we further

6

Table 1: SHD metric (lower is better) for learning DAGs with 100 nodes and 400 edges. Each row is
an experiment. The first row is the default, whose settings are in the blue column. In each other row,
exactly one default parameter is changed (Change column). The last six columns correspond to prior
algorithms. The best results are shown in bold. Entries with SHD > 400 are reported as failure or
shown in green if the TPR is > 0.8.

Hyperparameter Default Change Varsort. SparseRC (ours) GOLEM NOTEARS DAGMA DirectLiNGAM PC GES

1 Default settings 0.95 0.6± 0.8 82± 34 59± 22 269± 6.0 282± 34 247± 9.0 failure
2 Graph type Erdös-R. Scale-free 0.99 2.2± 1.5 34± 9.0 28± 9.5 296± 14 188± 27 275± 16 375± 141
3 Nc,Nx distribution Gaussian Gumbel 0.97 1.4± 1.0 87± 44 59± 17 278± 7.4 287± 43 250± 17 396± 33
4 Edges / Vertices 4 10 0.99 46± 7.5 212± 70 243± 26 896± 30 1078± 105 973± 17 failure
5 Standardization No Yes 0.50 624± 48 failure failure failure 278± 25 247± 18 failure
6 Larger weights in A (0.1, 0.9) (0.5, 2) 1.00 failure 96± 25 92± 14 209± 4.1 840± 121 400± 9.8 failure
7 Nc,Nx deviation σ = 0.01 σ = 0.1 0.97 504± 19 98± 14 199± 12 238± 13 538± 45 255± 11 failure
8 Dense root causes C p = 0.1 p = 0.5 0.98 1221± 33 29± 2.5 126± 32 83± 8.0 257± 14 244± 12 failure
9 Samples n = 1000 n = 100 0.97 2063± 92 failure failure 328± 13 error 351± 12 failure

10 Fixed support No Yes 0.89 failure failure failure failure failure 379± 37 failure

proceed on approximating the true root causes C that generated the data X via (4). With regard to
this aspect, we count the number of correctly detected root causes C TPR, their false positive rate
C FPR and the weighted approximation C NMSE. We also report the runtime for all methods in
seconds. For each performance metric, we compute the average and standard deviation over five
repetitions of the same experiment.

Our implementation. To solve (10) in practice, we implemented1 a PyTorch model with a trainable
parameter representing the weighted adjacency matrix A. This allows us to utilize GPUs for the
acceleration of the execution of our algorithm (GOLEM uses GPUs, NOTEARS does not). Then we
use the standard Adam [Kingma and Ba, 2014] optimizer to minimize the loss defined in (10).

5.1 Evaluation on data with few root causes

Data generating process and defaults. In the second, blue column of Table 1 we report the default
settings for our experiment. We generate a random Erdös-Renyi graph with d = 100 nodes and
assign edge directions to make it a DAG as in [Zheng et al., 2018]. The ratio of edges to vertices is
set to 4, so the number of edges is 400. The entries of the weighted adjacency matrix are sampled
uniformly at random from (−b,−a) ∪ (a, b), where a = 0.1 and b = 0.9. As in [Zheng et al., 2018,
Ng et al., 2020, Bello et al., 2022] the resulting adjacency matrix is post-processed with thresholding.
In particular, the edges with absolute weight less than the threshold ω = 0.09 are discarded. Next, the
root causes C are instantiated by setting each entry either to some random uniform value from (0, 1)
with probability p = 0.1 or to 0 with probability 1− p = 0.9 (thus, as in Theorem 3.1, the location
of the root causes will vary). The data matrix X is computed according to (4), using Gaussian noise
Nc,Nx of standard deviation σ = 0.01 to enforce (6). Finally, we do not standardize (scale for
variance = 1) the data, and X contains n = 1000 samples (number of rows).

Experiment 1: Different application scenarios. Table 1 compares SparseRC to six prior algorithms
using the SHD metric. Every row corresponds to a different experiment that alters one particular
hyperparameter of the default setting, which is the first row with values of the blue column as
explained above. For example, the second row only changes the graph type from Erdös-Renyi to
scale-free, while keeping all other settings. Note that in the last row, fixed support means that the
location of the root causes is fixed for every sample in the data.

Since the graphs have 400 edges, an SHD ≪ 400 can be considered as good and beyond 400 can
be considered a failure. In row 3 this threshold is analogously set to 1000. The failure cases are
indicated as such in Table 1, or the SHD is shown in green if they still achieve a good TPR > 0.8. In
Appendix B.1 we report the TPR, SID, and the runtimes of all methods.

In the first three rows, we examine scenarios that perfectly match the condition (6) of few root
causes. For the default settings (row 1), scale-free graphs (row 2), and different noise distribution
(row 3) SparseRC performs best and almost perfectly detects all edges. The next experiments alter
parameters that deteriorate the few root causes assumption. Row 4 considers DAGs with average
degree 10, i.e., about 1000 edges. High degree can amplify the measurement noise and hinder the
root causes assumption (6). However, our method still performs best, but even larger degrees decay
the performance of all methods as shown in experiment 5 below. The standardization of data (row

1Our code is publicly available at https://github.com/pmisiakos/SparseRC.

7

https://github.com/pmisiakos/SparseRC

Table 2: Runtime [seconds] report of the top-performing methods in Table 1.

Hyperparameter Default Change SparseRC (ours) GOLEM NOTEARS

1. Default settings 10± 1.8 529± 210 796± 185
2. Graph type Erdös-Renyi Scale-free 11± 1.1 460± 184 180± 7.2
3. Nc,Nx distribution Gaussian Gumbel 8.2± 0.7 349± 125 251± 48
4. Edges / Vertices 4 10 14± 1.0 347± 121 471± 82
5. Samples n = 1000 n = 100 13± 0.7 194± 9.6 679± 72
6. Standardization No Yes 11± 1.9 326± 145 781± 76
7. Larger weights in A (0.1, 0.9) (0.5, 2) 8.4± 0.6 431± 177 2834± 228
8. Nc,Nx deviation σ = 0.01 σ = 0.1 8.7± 0.7 309± 63 433± 53
9. Dense root causes C p = 0.1 p = 0.5 9.1± 0.7 334± 121 427± 35

10. Fixed support No Yes 15± 2.0 360± 142 669± 386

5) is generally known to negatively affect algorithms with continuous objectives [Reisach et al.,
2021] as is the case here. Also, standardization changes the relative scale of the root causes and as a
consequence affects (6). Row 6 considers edge weights > 1 which amplifies the measurement noise
in (6) and our method fails. Higher standard deviation in the root causes noise (row 7) or explicitly
higher density in C (row 8) decreases performance overall. However, In both cases SparseRC still
discovers a significant amount of the unknown edges. For a small number of samples (row 9) most
methods fail. Ours achieves a high TPR but requires more data to converge to the solution as we will
see in experiment 2 below. Row 10 is out of the scope of our method and practically all methods fail.

Overall, the performance of SparseRC depends heavily on the degree to which the assumption of few
root causes (6) is fulfilled. The parameter choices in the table cover a representative set of possibilities
from almost perfect recovery (row 1) to complete failure (row 10).

SparseRC is also significantly faster than the best competitors GOLEM and NOTEARS with typical
speedups in the range of 10–50× as shown in Table 2. It is worth mentioning that even though
LiNGAM provides the identifiability Theorem 3.1 of our proposed setting, it is not able to recover
the true DAG. While both DirectLiNGAM and LiNGAM come with theoretical guarantees for their
convergence, these require conditions, such as infinite amount of data, which in practice are not met.
We include a more extensive reasoning for their subpar performance in Appendix B.4 together a
particularly designed experiment for LiNGAM and DirectLiNGAM.

Varsortability. In Table 1 we also include the varsortability for each experimental setting. Our
measurements for Erdös-Renyi graphs (all rows except row 2) are typically 1–2% lower than those
reported in [Reisach et al., 2021, Appendix G.1] for linear SEMs, but still high in general. However,
the trivial variance-sorting method sortnregress, included in Appendix B, fails overall. Note again
that for fixed sparsity support (last row), all methods fail and varsortability is lower. Therefore, in
this scenario, our data generating process poses a hard problem for DAG learning.

Experiment 2: Varying number of nodes or samples. In this experiment we first benchmark
SparseRC with varying number of nodes (and thus number of edges) in the ground truth DAG, while
keeping the data samples in X equal to n = 1000. Second, we vary the number of samples, while
keeping the number of nodes fixed to d = 100. All other parameters are set to default. The results
are shown in Fig. 2 reporting SHD, SID, and the runtime.

When varying the number of nodes (first row in Fig. 2) SparseRC, GOLEM, and NOTEARS achieve
very good performance whereas the other methods perform significantly worse. As the number of
nodes increases, SparseRC performs best both in terms of SHD and SID while being significantly
faster than GOLEM and NOTEARS. When increasing the number of samples (second row) the
overall performances improve. For low number of samples SparseRC, GOLEM and NOTEARS fail.
Their performance significantly improves after 500 samples where SparseRC overall achieves the
best result. The rest of the methods have worse performance. SparseRC is again significantly faster
than GOLEM and NOTEARS in this case.

Experiment 3: Learning the root causes. Where our method succeeds we can also recover the root
causes that generate the data. Namely, if we recover a very good estimate of the true adjacency matrix
via (10), we may compute an approximation Ĉ of the root causes C, up to noise, by solving (4):

Ĉ = C+Nc +Nx (I−A) = X
(
I+A

)−1
. (11)

In the last row of Fig. 2 we evaluate the top-performing methods on the recovery of the root causes
(and the associated values) with respect to detecting their locations (C TPR and FPR) and recovering

8

20 40 60 80 100
Number of nodes

0

100

200

300

400

500

600

700

SH
D

100 200 500 800 1000
Number of samples

0

100

200

300

400

500

SH
D

(a) SHD (↓)

20 40 60 80 100
Number of nodes

0
1000
2000
3000
4000
5000
6000
7000
8000

SI
D

100200 500 800 1000
Number of samples

0

2000

4000

6000

8000

SI
D

(b) SID (↓)

20 40 60 80 100
Number of nodes

0

100

200

300

400

500

T
im

e
(s

)

100 200 500 800 1000
Number of samples

0

100

200

300

400

500

T
im

e
(s

)

(c) Runtime [s]

SparseRC

GOLEM

NOTEARS

DAGMA

DirectLiNGAM

PC

GES

20 40 60 80 100
Number of nodes

0.75

0.80

0.85

0.90

0.95

1.00

C
T

PR

(d) Root causes TPR (↑)

20 40 60 80 100
Number of nodes

0.00

0.01

0.02

0.03

0.04

C
FP

R

(e) Root causes FPR (↓)

20 40 60 80 100
Number of nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
N

M
SE

(f) Root causes NMSE(↓)

SparseRC

GOLEM

NOTEARS

Figure 2: Performance report on the default settings. (a,b,c) illustrate SHD, SID and runtime (lower
is better) while varying the number of nodes with 1000 samples (first row) or varying the number of
samples with 100 nodes (second row). (d, e) illustrate TPR and FPR of the estimated support of C,
and (f) reports the accuracy of estimating C as NMSE.

Table 3: Performance of the top-performing methods on larger DAGs.
Nodes d, samples n SparseRC NOTEARS GOLEM

d = 200, n = 500 22 155 281
d = 500, n = 1000 27 245 574
d = 1000, n = 5000 26 282 699
d = 2000, n = 10000 50 489 time-out
d = 3000, n = 10000 134 time-out time-out

(a) SHD (↓)

SparseRC NOTEARS GOLEM

21 1061 600
204 5789 5428

1085 10104 37290
7141 46213 time-out

19660 time-out time-out

(b) Runtime (s)

their numerical values using the C NMSE metric. The support is chosen as the entries (i, j) of C
that are in magnitude within 10% of the largest value in C (i.e., relatively large): cij > 0.1 ·Cmax.
We consider the default experimental settings.

Experiment 4: Larger DAGs. In Table 3, we investigate the scalability of the best methods
SparseRC, GOLEM, and NOTEARS from the previous experiments. We consider five different
settings up to d = 3000 nodes and n = 10000 samples. We use the prior default settings except for
the sparsity of the root causes, which is now set to 5%. The metrics here are SHD and the runtime .
The results show that SparseRC excels in the very sparse setting with almost perfect reconstruction,
far outperforming the others including in runtime. SparseRC even recovers the edge weights with an
average absolute error of about 5% for each case in Table 3, as shown in Appendix B.3.

Experiment 5: Varying average degree. We evaluate the top-scoring methods on DAGs with higher
average degree (dense DAGs). Note that this violates the typical assumption of sparse DAGs [Zheng
et al., 2018]. In Fig. 3 we consider default settings with DAGs of average degree up to 20. SID
was not computed due to the presence of cycles in the output of the algorithms and TPR is reported
instead. We conclude that for dense DAGs the performance decays, as expected.

9

5 10 15 20
Avg. degree

0

500

1000

1500

2000

SH
D

(a) SHD (↓)

5 10 15 20
Avg. degree

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
PR

(b) TPR (↑)

5 10 15 20
Avg. degree

0

50

100

150

200

250

T
im

e
(s

)

(c) Runtime [s]

SparseRC

GOLEM

NOTEARS

Figure 3: Evaluation of the top-performing methods on denser DAGs.

Table 4: Performance of the top-performing methods on the dataset by Sachs et al. [2005].
SHD ↓ SID ↓ Total edges

SparseRC 15 45 16
NOTEARS 11 44 15
GOLEM 21 43 19
DAGMA 14 46 11

5.2 Evaluation on a real dataset

We apply SparseRC on the causal protein-signaling network data provided by Sachs et al. [2005].
The dataset consists of 7466 samples (we use the first 853) for a network with 11 nodes that represent
proteins, and 17 edges representing their interactions. It is small, but the task of learning it has been
considered a difficult benchmark in [Ng et al., 2020, Gao et al., 2021, Yu et al., 2019, Zheng et al.,
2018]. It is not known whether the assumption of few root causes holds in this case. We report the
performance metrics SHD and SID for the most successful methods in Table 4. The number of total
edges is used to ensure that the output of the methods are non-trivial (e.g. empty graph).

The best SID is achieved by GOLEM (equal variance), which, however, has higher SHD. NOTEARS
has the best SHD equal to 11. Overall, SparseRC performs well, achieving the closest number of
edges to the real one with 16 and a competitive SHD and SID. We also mention again the good
performance of SparseRC on a non-public biological dataset [Misiakos et al., 2023, Chevalley et al.,
2023] as part of the competition by Chevalley et al. [2022].

6 Broader Impact and Limitations

Our method inherits the broader impact of prior DAG learning methods including the important
caveat for practical use that the learned DAG may not represent causal relations, whose discovery
requires interventions. Further limitations that we share with prior work include (a) Learning DAGs
beyond 10000 nodes are out of reach, (b) there is no theoretical convergence guarantee for the case
that includes noise, (c) empirically, the performance drops in low varsortability, (d) our method is
designed for linear SEMs like most of the considered benchmarks.

A specific limitation of our contribution is that it works well only for few root causes of varying
location in the dataset. This in addition implies that the noise must have low deviation and the graph
to have low average degree and weights of magnitude less than one. Also, in our experiments, we
only consider root causes with support that follows a multivariate Bernoulli distribution.

7 Conclusion

We presented a new perspective on linear SEMs by introducing the notion of root causes. Mathemati-
cally, this perspective translates (or solves) the recurrence describing the SEM into an invertible linear
transformation that takes as input DAG data, which we call root causes, to produce the observed data
as output. Prior data generation for linear SEMs assumed a dense, random valued input vector. In
this paper, we motivated and studied the novel scenario of data generation and DAG learning for few
root causes, i.e., a sparse input with noise, and noise in the measurement data. Our solution in this
setting performs significantly better than prior algorithms, in particular for high sparsity where it can
even recover the edge weights, is scalable to thousands of nodes, and thus expands the set of DAGs
that can be learned in real-world scenarios where current methods fail.

10

References
A. Amrollahi, A. Zandieh, M. Kapralov, and A. Krause. Efficiently learning Fourier sparse set functions.

Advances in Neural Information Processing Systems, 32, 2019.

B. Aragam and Q. Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks. The Journal of
Machine Learning Research, 16(1):2273–2328, 2015.

K. Bello, B. Aragam, and P. Ravikumar. DAGMA: Learning DAGs via M-matrices and a Log-Determinant
Acyclicity Characterization. Advances in Neural Information Processing Systems, 35:8226–8239, 2022.

P. Bühlmann, J. Peters, and J. Ernest. CAM: Causal additive models, high-dimensional order search and
penalized regression. The Annals of Statistics, 42(6):2526–2556, 2014.

B. Charpentier, S. Kibler, and S. Günnemann. Differentiable DAG Sampling. In International Conference on
Learning Representations, 2022.

M. Chevalley, Y. Roohani, A. Mehrjou, J. Leskovec, and P. Schwab. CausalBench: A Large-scale Benchmark
for Network Inference from Single-cell Perturbation Data. arXiv preprint arXiv:2210.17283, 2022.

M. Chevalley, J. Sackett-Sanders, Y. Roohani, P. Notin, A. Bakulin, D. Brzezinski, K. Deng, Y. Guan, J. Hong,
M. Ibrahim, et al. The CausalBench challenge: A machine learning contest for gene network inference from
single-cell perturbation data. arXiv preprint arXiv:2308.15395, 2023.

D. M. Chickering. Optimal structure identification with greedy search. Journal of machine learning research, 3
(Nov):507–554, 2002.

M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is NP-hard. Journal
of Machine Learning Research, 5:1287–1330, 2004.

H. Cramér. Über eine eigenschaft der normalen verteilungsfunktion. Mathematische Zeitschrift, 41(1):405–414,
1936.

Y. Gao, L. Shen, and S.-T. Xia. DAG-GAN: Causal structure learning with generative adversarial nets. In
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3320–3324. IEEE,
2021.

A. Ghoshal and J. Honorio. Learning identifiable Gaussian Bayesian networks in polynomial time and sample
complexity. Advances in Neural Information Processing Systems, 30, 2017.

H. Hassanieh. The Sparse Fourier Transform: Theory and Practice, volume 19. Association for Computing
Machinery and Morgan and Claypool, 2018.

A. Ikram, S. Chakraborty, S. Mitra, S. Saini, S. Bagchi, and M. Kocaoglu. Root cause analysis of failures in
microservices through causal discovery. Advances in Neural Information Processing Systems, 35:31158–
31170, 2022.

M. Kaiser and M. Sipos. Unsuitability of NOTEARS for Causal Graph Discovery when dealing with Dimensional
Quantities. Neural Processing Letters, pages 1–9, 2022.

D. Kalainathan and O. Goudet. Causal discovery toolbox: Uncover causal relationships in python. arXiv preprint
arXiv:1903.02278, 2019. URL https://github.com/FenTechSolutions/CausalDiscoveryToolbox.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien. Gradient-based neural dag learning. In International
Conference on Learning Representations, 2019.

H.-C. Lee, M. Danieletto, R. Miotto, S. T. Cherng, and J. T. Dudley. Scaling structural learning with NO-BEARS
to infer causal transcriptome networks. In Pacific Symposium on Biocomputing, pages 391–402. World
Scientific, 2019.

D. J. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science, 4(1):59–76, 1977.

P. Lévy. Propriétés asymptotiques des sommes de variables aléatoires enchaînées. Bull. Sci. Math, 59(84-96):
109–128, 1935.

P.-L. Loh and P. Bühlmann. High-dimensional learning of linear causal networks via inverse covariance
estimation. The Journal of Machine Learning Research, 15(1):3065–3105, 2014.

11

https://github.com/FenTechSolutions/CausalDiscoveryToolbox

P. Misiakos, C. Wendler, and M. Püschel. Learning Gene Regulatory Networks under Few Root Causes
assumption. OpenReview, 2023. URL https://openreview.net/pdf?id=TOaPl9tXlmD.

P. Misiakos, V. Mihal, and M. Püschel. Learning signals and graphs from time-series graph data with few causes.
In International Conference in Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024. To appear.

I. Ng, A. Ghassami, and K. Zhang. On the role of sparsity and DAG constraints for learning linear DAGs.
Advances in Neural Information Processing Systems, 33:17943–17954, 2020.

R. Pamfil, N. Sriwattanaworachai, S. Desai, P. Pilgerstorfer, K. Georgatzis, P. Beaumont, and B. Aragam.
Dynotears: Structure learning from time-series data. In International Conference on Artificial Intelligence
and Statistics, pages 1595–1605. PMLR, 2020.

J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with equal error variances.
Biometrika, 101(1):219–228, 2014.

J. Peters and P. Bühlmann. Structural intervention distance for evaluating causal graphs. Neural computation, 27
(3):771–799, 2015.

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning algorithms.
The MIT Press, 2017.

C. Ramirez, V. Kreinovich, and M. Argaez. Why ℓ1 is a good approximation to ℓ0: A Geometric Explanation.
Journal of Uncertain Systems, 7(3):203–207, 2013.

J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour. A million variables and more: the fast greedy
equivalence search algorithm for learning high-dimensional graphical causal models, with an application to
functional magnetic resonance images. International journal of data science and analytics, 3(2):121–129,
2017.

A. Reisach, C. Seiler, and S. Weichwald. Beware of the simulated DAG! causal discovery benchmarks may be
easy to game. Advances in Neural Information Processing Systems, 34:27772–27784, 2021.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan. Causal protein-signaling networks derived
from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

B. Seifert, C. Wendler, and M. Püschel. Learning Fourier-Sparse Functions on DAGs. In ICLR2022 Workshop
on the Elements of Reasoning: Objects, Structure and Causality, 2022.

B. Seifert, C. Wendler, and M. Püschel. Causal Fourier Analysis on Directed Acyclic Graphs and Posets. IEEE
Trans. Signal Process., 71:3805–3820, 2023. doi: 10.1109/TSP.2023.3324988.

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A Linear Non-Gaussian Acyclic Model for Causal
Discovery. Journal of Machine Learning Research, 7(72):2003–2030, 2006. URL http://jmlr.org/
papers/v7/shimizu06a.html.

S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvarinen, Y. Kawahara, T. Washio, P. O. Hoyer, K. Bollen, and P. Hoyer.
Directlingam: A direct method for learning a linear non-gaussian structural equation model. Journal of
Machine Learning Research-JMLR, 12(Apr):1225–1248, 2011.

P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman. Causation, prediction, and search. MIT press, 2000.

P. Stobbe and A. Krause. Learning Fourier sparse set functions. In Artificial Intelligence and Statistics, pages
1125–1133. PMLR, 2012.

M. Tsagris, C. Beneki, and H. Hassani. On the folded normal distribution. Mathematics, 2(1):12–28, 2014.
ISSN 2227-7390. doi: 10.3390/math2010012. URL https://www.mdpi.com/2227-7390/2/1/12.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning
algorithm. Machine learning, 65(1):31–78, 2006.

M. J. Vowels, N. C. Camgoz, and R. Bowden. D’ya like DAGs? A survey on structure learning and causal
discovery. ACM Computing Surveys (CSUR), 2021.

Y. Yu, J. Chen, T. Gao, and M. Yu. DAG-GNN: DAG structure learning with graph neural networks. In
International Conference on Machine Learning, pages 7154–7163. PMLR, 2019.

Y. Yu, T. Gao, N. Yin, and Q. Ji. DAGs with no curl: An efficient DAG structure learning approach. In
International Conference on Machine Learning, pages 12156–12166. PMLR, 2021.

12

https://openreview.net/pdf?id=TOaPl9tXlmD
http://jmlr.org/papers/v7/shimizu06a.html
http://jmlr.org/papers/v7/shimizu06a.html
https://www.mdpi.com/2227-7390/2/1/12

V. Zantedeschi, J. Kaddour, L. Franceschi, M. Kusner, and V. Niculae. DAG Learning on the Permutahedron. In
ICLR2022 Workshop on the Elements of Reasoning: Objects, Structure and Causality, 2022.

X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. Dags with no tears: Continuous optimization for
structure learning. Advances in Neural Information Processing Systems, 31, 2018.

X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. Xing. Learning Sparse Nonparametric DAGs. In
International Conference on Artificial Intelligence and Statistics, pages 3414–3425. PMLR, 2020.

13

A Few Root Causes Assumption

Lemma A.1. Consider random row vector C ∈ R1×d of root causes that are generated as in Section 5.1 with
probability p = 0.1 being non-zero and value taken uniformly at random from (0, 1). Also, let the noise vectors
Nc, Nx ∈ R1×d be Gaussian Nc, Nx ∼ N (0, σI) with σ = 0.01 and the DAG has average degree δ(G) = 4
and weights aij ∈ [−1, 1]. Then we show that for ϵ = δ = 0.1:

E [∥C∥0]
d

≤ ϵ (few root causes),

E
[
∥Nc +Nx (I−A)∥1

]
E [∥C∥1]

≤ δ (negligible noise), (12)

Proof. From the Bernoulli distribution for the support of the root causes we get

E [∥C∥0] =
pd

d
= 0.1 (13)

Also the root causes take uniform values in (0, 1) and have expected value = 0.5. Therefore,

E [∥C∥1] = 0.5d (14)

Finally, we have that:

E
[
∥Nc +Nx (I−A)∥1

]
≤

E [∥Nc∥1] + E [∥Nx (I−A) ∥1] ≤ (15)
E [∥Nc∥1] + (δ(G) + 1)E [∥Nx∥1] =

6dσ

√
2

π
(16)

The computation of the expected value follows from the mean of the Folded normal distribution [Tsagris et al.,
2014]. Dividing the last two relations gives the required relation

E
[
∥Nc +Nx (I−A)∥1

]
E [∥C∥1]

≤ 0.1 · 6
5

√
2

π
< δ (17)

B Additional experimental results

B.1 Different application scenarios

Experiment 1: Different application scenarios. We present additional experimental results to include more
metrics and baselines. The results support our observations and conclusions from the main text. First, we expand
Table 1 reporting the SHD metric and provide the computation of SHD, TPR, SID and runtime in the tables
below. Those further include the methods LiNGAM [Shimizu et al., 2006], CAM [Bühlmann et al., 2014],
DAG-NoCurl [Yu et al., 2021], fGES [Ramsey et al., 2017], sortnregress [Reisach et al., 2021] and MMHC
[Tsamardinos et al., 2006] .

14

B.2 Varying number of nodes or samples

Experiment 2: Varying number of nodes or samples. In addition to Fig. 2 we include the plots of Fig. 4 for
the experiments that vary the number of nodes of the ground truth DAG or the number of samples in the data.
The plots include the methods LiNGAM, CAM, DAG-NoCurl, fGES, sortnregress and MMHC and additionally
contain the metrics TPR and total number of edges regarding the unweighted adjacency matrix and NMSE with
respect to the weighted approximation of the adjacency matrix.

B.3 Larger DAGs

Experiment 3: Larger DAGs. In the large scale experiment we don’t report SID as it is computationally too
expensive for a large number of nodes. Since, our method achieved perfect reconstruction, we further investigate
whether the true weights were recovered. Table 9 reports metrics that evaluate the weighted approximation of
the true adjacency matrix. Denoting with |E| the number of edges of the ground truth DAG G = (V,E), we
compute:

• the average L1 loss
∥A−Â∥

1
|E| ,

• the Max-L1 loss maxi,j

∣∣∣Aij − Âij

∣∣∣,
• the average L2 loss

∥A−Â∥
2

|E| and

• the NMSE
∥A−Â∥

2
∥A∥2

.

B.4 LiNGAM’s performance

The subpar performance of DirectLiNGAM arises as a contradiction to the fact that [Shimizu et al., 2006]
provide the identifiability result for our setting. A possible reasoning to this can be that the corresponding
linear noise variances as in (5) are non i.i.d., where as both LiNGAM and DirectLiNGAM consider i.i.d. noise
distribution. In Fig. 5, we evaluate LiNGAM and DirectLiNGAM with respect to ours, using default settings, but
with zero measurement noise Nx = 0, which translates (4) to a linear SEM with i.i.d. noise. We conclude that
the methods cannot recover the true graph even in these settings. The reasoning we give for their failure is the
following: First, LiNGAM can stay on a local optimum due to a badly chosen initial state in the ICA step of the
algorithm, or even compute a wrong ordering of the variables [Shimizu et al., 2011]. Secondly, DirectLiNGAM
is guaranteed to converge to the true solution only if the conditions are striclty met, among which is the infinite
number of available data, which is not the case in our experiments.

B.5 Real Data

In the real dataset from [Sachs et al., 2005] we follow Lachapelle et al. [2019] and only use the first 853 samples
from the dataset. Differences may occur between the reported results and the literature due to different choice of
hyperparameters and the use of 853 samples, where others might utilize the full dataset.

Root causes in real data. To question whether the few root causes assumption is valid in the real dataset of
[Sachs et al., 2005] we perform the following experiment. Using the ground truth matrix in the [Sachs et al.,

Table 5: SHD metric (lower is better) for learning DAGs with 100 nodes and 400 edges. Each row is
an experiment. The first row is the default, whose settings are in the blue column. In each other row,
exactly one default parameter is changed (change). The best results are shown in bold. Entries with
SHD higher that 400 are reported as failure and in such a case the corresponding TPR is reported if it
is higher than 0.8.

Hyperparameter Default Change LiNGAM CAM DAG-NoCurl fGES sortnregress MMHC

1. Default settings 285± 38 325± 28 737± 94 547± 86 800± 136 failure
2. Graph type Erdös-Renyi Scale-free 187± 28 failure 247± 45 382± 64 300± 36 failure
3. Nc,Nx distribution Gaussian Gumbel 478± 342 350± 18 642± 55 497± 38 796± 86 failure
4. Edges / Vertices 4 10 1102± 108 961± 20 1455± 277 failure 1950± 97 failure
5. Samples n = 1000 n = 100 error time-out failure error error failure
6. Standardization No Yes 365± 38 329± 34 failure 570± 109 failure failure
7. Larger weights in A (0.1, 0.9) (0.5, 2) 860± 129 failure 135± 56 failure 1275± 133 failure
8. Nc,Nx deviation σ = 0.01 σ = 0.1 failure 341± 29 failure failure 906± 53 failure
9. Dense root causes C p = 0.1 p = 0.5 failure 271± 21 586± 58 528± 72 746± 134 failure
10. Fixed support No Yes failure 390± 51 failure failure failure failure

15

Table 6: TPR (higher is better). Entries with TPR lower that 0.5 are reported as failure.

(a)

Hyperparameter Default Change SparseRC (ours) GOLEM NOTEARS DAGMA DirectLiNGAM PC GES

1. Default settings 1.00± 0.00 0.82± 0.09 0.92± 0.02 failure 0.99± 0.00 failure 0.72± 0.04
2. Graph type Erdös-Renyi Scale-free 0.99± 0.00 0.95± 0.01 0.95± 0.02 failure 0.99± 0.01 failure 0.84± 0.09
3. Nc,Nx distribution Gaussian Gumbel 1.00± 0.00 0.82± 0.11 0.92± 0.01 failure 0.99± 0.00 failure 0.81± 0.02
4. Edges / Vertices 4 10 0.98± 0.00 0.80± 0.07 0.90± 0.01 failure 0.99± 0.00 failure failure
5. Samples n = 1000 n = 100 0.90± 0.02 failure 0.75± 0.02 failure error failure 0.61± 0.05
6. Standardization No Yes 0.84± 0.01 failure failure failure 0.99± 0.01 failure 0.78± 0.09
7. Larger weights in A (0.1, 0.9) (0.5, 2) failure 0.85± 0.04 0.89± 0.01 0.53± 0.01 1.00± 0.00 failure 0.70± 0.09
8. Nc,Nx deviation σ = 0.01 σ = 0.1 0.88± 0.01 0.85± 0.03 0.86± 0.01 failure 0.97± 0.01 failure 0.70± 0.04
9. Dense root causes C p = 0.1 p = 0.5 0.88± 0.02 0.94± 0.01 0.93± 0.00 0.81± 0.02 0.99± 0.00 failure 0.80± 0.05
10. Fixed support No Yes failure failure failure failure 0.57± 0.02 failure 0.64± 0.05

(b)

Hyperparameter Default Change LiNGAM CAM DAG-NoCurl fGES sortnregress MMHC

1. Default settings 0.99± 0.00 failure 0.84± 0.02 0.80± 0.04 0.87± 0.02 0.58± 0.03
2. Graph type Erdös-Renyi Scale-free 0.99± 0.01 failure 0.92± 0.02 0.76± 0.06 0.96± 0.01 failure
3. Nc,Nx distribution Gaussian Gumbel 0.94± 0.10 failure 0.82± 0.02 0.82± 0.03 0.88± 0.02 0.56± 0.04
4. Edges / Vertices 4 10 0.98± 0.01 failure 0.84± 0.05 0.54± 0.04 0.90± 0.01 failure
5. Samples n = 1000 n = 100 error time-out 0.76± 0.03 error error failure
6. Standardization No Yes 0.94± 0.01 failure failure 0.80± 0.03 failure 0.57± 0.05
7. Larger weights in A (0.1, 0.9) (0.5, 2) 1.00± 0.00 failure 0.92± 0.04 0.74± 0.06 0.94± 0.01 failure
8. Nc,Nx deviation σ = 0.01 σ = 0.1 0.64± 0.12 failure 0.78± 0.01 0.76± 0.04 0.85± 0.01 0.58± 0.02
9. Dense root causes C p = 0.1 p = 0.5 0.70± 0.03 0.51± 0.03 0.84± 0.04 0.83± 0.03 0.88± 0.02 0.57± 0.04
10. Fixed support No Yes 0.52± 0.04 failure failure 0.54± 0.03 0.58± 0.04 failure

Table 7: SID (lower is better).

(a)

Hyperparameter Default Change SparseRC (ours) GOLEM NOTEARS DAGMA DirectLiNGAM PC GES

1. Default settings 51± 66 4005± 1484 2720± 720 6989± 268 257± 94 7944± 118 6006± 561
2. Graph type Erdös-Renyi Scale-free 72± 42 442± 71 425± 59 1581± 172 98± 64 2570± 314 1032± 371
3. Nc,Nx distribution Gaussian Gumbel 125± 91 4208± 1767 2945± 601 7697± 220 214± 133 7986± 406 4957± 577
4. Edges / Vertices 4 10 1190± 149 7174± 1083 5914 8833± 95 808± 156 SID time-out SID time-out
5. Samples n = 1000 n = 100 SID time-out 7410± 326 SID time-out SID time-out error SID time-out SID time-out
6. Standardization No Yes SID time-out 9381± 147 8937± 30 8851± 185 293± 174 7801± 358 5268± 1078
7. Larger weights in A (0.1, 0.9) (0.5, 2) 6988± 305 3165± 549 2379± 292 6624± 351 17± 34 SID time-out SID time-out
8. Nc,Nx deviation σ = 0.01 σ = 0.1 7140± 411 3898± 635 4398± 238 7227± 373 882± 157 7841± 306 6810± 792
9. Dense root causes C p = 0.1 p = 0.5 SID time-out 1871± 256 3040± 257 4539± 383 275± 102 SID time-out SID time-out
10. Fixed support No Yes 7605± 259 8110± 413 7707± 275 7749± 310 6800± 601 8119± 314 5817± 759

(b)

Hyperparameter Default Change LiNGAM CAM DAG-NoCurl fGES sortnregress MMHC

1. Default settings 595± 212 8494± 476 5320± 594 7706± 456 4418± 464 SID time-out
2. Graph type Erdös-Renyi Scale-free 99± 45 SID time-out 807± 219 7412± 493 427± 83 SID time-out
3. Nc,Nx distribution Gaussian Gumbel 1796± 2754 8916± 317 5723± 575 9040± 170 4522± 797 SID time-out
4. Edges / Vertices 4 10 1516± 234 9540± 30 6200± 620 9057± 172 4967± 557 SID time-out
5. Samples n = 1000 n = 100 error time-out 4496± 507 error error SID time-out
6. Standardization No Yes 2847± 577 8707± 287 8955± 68 7872± 605 7945± 124 SID time-out
7. Larger weights in A (0.1, 0.9) (0.5, 2) 16± 33 8147± 234 1660± 781 7137± 496 958± 181 SID time-out
8. Nc,Nx deviation σ = 0.01 σ = 0.1 7403± 862 8854± 168 6006± 555 7842± 625 4715± 611 SID time-out
9. Dense root causes C p = 0.1 p = 0.5 6944± 401 8334± 278 5008± 489 7510± 187 4072± 181 SID time-out
10. Fixed support No Yes 6952± 619 7175± 578 7350± 569 8632± 383 5477± 279 SID time-out

2005] dataset we perform an approximation of the underlying root causes. As the known matrix is unweighted
we choose to assign them the weights that would minimize the sparsity of the root causes ∥C∥1. The root causes
C that are computed based on this optimization are depicted in Fig. 6a. In Fig. 6b We see the distribution of the
values of root causes: there are many values with low magnitude close to zero and a few with significantly high
magnitude. Also many at roughly the same location (Fig. 6a).

B.6 Implementation details

Training details. In the implementation of SparceRC we initiate a PyTorch nn.Module with a single d × d
weighted matrix represented as a linear layer. The model is trained so that the final result will have a weight
matrix which approximates the original DAG adjacency matrix. To train our model we use the Adam optimizer
[Kingma and Ba, 2014] with learning rate 10−3. We choose λ = 10−3 as the coefficient for the L1 regularizer
of optimization problem (10). For NOTEARS we also choose λ = 10−3. The rest of the methods are used with

16

Table 8: Runtime [s].

(a)

Hyperparameter Default Change SparseRC (ours) GOLEM NOTEARS DAGMA DirectLiNGAM PC GES

1. Default settings 10± 1.8 529± 210 796± 185 320± 94 106± 1.5 22± 3.1 7.1± 1.5
2. Graph type Erdös-Renyi Scale-free 11± 1.1 460± 184 180± 7.2 258± 49 108± 0.8 115± 59 5.2± 1.0
3. Nc,Nx distribution Gaussian Gumbel 8.2± 0.7 349± 125 251± 48 256± 70 107± 0.8 15± 2.1 4.6± 0.4
4. Edges / Vertices 4 10 14± 1.0 347± 121 471± 82 217± 11 149± 24 5.6± 1.1 64± 2.6
5. Samples n = 1000 n = 100 13± 0.7 194± 9.6 679± 72 254± 28 error 2.2± 0.1 3.9± 0.5
6. Standardization No Yes 11± 1.9 326± 145 781± 76 157± 19 107± 0.6 17± 4.4 5.3± 1.4
7. Larger weights in A (0.1, 0.9) (0.5, 2) 8.4± 0.6 431± 177 2834± 228 493± 46 117± 3.2 2.3± 0.1 21± 4.7
8. Nc,Nx deviation σ = 0.01 σ = 0.1 8.7± 0.7 309± 63 433± 53 257± 37 111± 7.1 19± 4.8 5.3± 0.5
9. Dense root causes C p = 0.1 p = 0.5 9.1± 0.7 334± 121 427± 35 133± 20 142± 3.6 15± 5.4 4.9± 1.2
10. Fixed support No Yes 15± 2.0 360± 142 669± 386 501± 91 106± 0.6 5.3± 3.2 6.2± 2.1

(b)

Hyperparameter Default Change LiNGAM CAM DAG-NoCurl fGES sortnregress MMHC

1. Default settings 2.4± 0.0 372± 7.4 15± 2.8 7.9± 2.7 2.6± 0.2 3.5± 0.3
2. Graph type Erdös-Renyi Scale-free 2.7± 0.0 282± 9.3 13± 1.1 6.2± 0.9 2.0± 0.0 210± 160
3. Nc,Nx distribution Gaussian Gumbel 2.5± 0.3 312± 38 11± 1.0 6.2± 1.4 2.1± 0.3 3.4± 0.6
4. Edges / Vertices 4 10 3.1± 0.5 341± 9.7 24± 3.8 573± 167 2.1± 0.0 3.1± 0.2
5. Samples n = 1000 n = 100 error time-out 33± 4.9 error error 0.7± 0.1
6. Standardization No Yes 2.4± 0.1 304± 13 13± 1.5 7.2± 1.9 2.0± 0.0 3.7± 0.6
7. Larger weights in A (0.1, 0.9) (0.5, 2) 3.0± 0.1 339± 10.0 106± 11 118± 46 2.3± 0.0 2.5± 0.2
8. Nc,Nx deviation σ = 0.01 σ = 0.1 8.2± 2.1 323± 2.8 7.8± 0.9 4.4± 0.8 2.0± 0.0 3.7± 0.3
9. Dense root causes C p = 0.1 p = 0.5 6.8± 0.7 306± 7.4 11± 3.1 6.8± 0.5 2.0± 0.0 3.1± 0.2
10. Fixed support No Yes 5.5± 0.6 342± 11 52± 15 6.1± 5.1 2.0± 0.0 2.4± 0.6

Table 9: SparseRC weight reconstruction performance on larger DAGs.
Nodes d, samples n Avg. L1 loss Max-L1 loss Avg. L2 loss NMSE

d = 200, n = 500 0.071 0.317 0.003 0.087
d = 500, n = 1000 0.066 0.275 0.002 0.079
d = 1000, n = 5000 0.050 0.287 0.001 0.060
d = 2000, n = 10000 0.050 0.388 0.001 0.062
d = 3000, n = 10000 0.054 0.399 0.001 0.067

default parameters, except for the post-processing threshold which is always set to 0.09, except to the case of
larger weights (Table 1, row 6) where it is set slightly below the weights ω = 0.4.

Resources. Our experiments were run on a single laptop machine with 8 core CPU with 32GB RAM and an
NVIDIA GeForce RTX 3080 GPU.

Licenses. We use code repositories that are open-source and publicly available on github. All repos-
itories licensed under the Apache 2.0 or MIT license. In particular we use the github reposito-
ries of DAGMA [Bello et al., 2022] https://github.com/kevinsbello/dagma, GOLEM [Ng et al., 2020]
https://github.com/ignavierng/golem, NOTEARS [Zheng et al., 2018] https://github.com/xunzheng/notears,
DAG-NoCurl [Yu et al., 2021] https://github.com/fishmoon1234/DAG-NoCurl, LiNGAM [Shimizu
et al., 2006] https://github.com/cdt15/lingam the implementation of sortnregress [Reisach et al., 2021]
https://github.com/Scriddie/Varsortability and the causal discovery toolbox [Kalainathan and Goudet, 2019]
https://github.com/FenTechSolutions/CausalDiscoveryToolbox. Our code is licensed under the MIT license and
available publicly in github.

C Global Minimizer

We provide the proof of Theorem 3.2 of the main paper. The data X are assumed to be generated via noise-less
root causes as described . We denote by Â the optimal solution of the optimization problem (8). We want to
prove the following result.

Theorem C.1. Consider a DAG with weighted adjacency matrix A with d nodes. Given exponential (in d)
number n of samples X the matrix A is, with high probability, the global minimizer of the optimization problem
(8).

In particular what we will show the following result, from which our theorem follows directly.

17

https://github.com/kevinsbello/dagma
https://github.com/ignavierng/golem
https://github.com/xunzheng/notears
https://github.com/fishmoon1234/DAG-NoCurl
https://github.com/cdt15/lingam
https://github.com/Scriddie/Varsortability
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/pmisiakos/SparseRC

20 40 60 80 100
Number of nodes

0

200

400

600

800

SH
D

100 200 500 800 1000
Number of samples

0

100

200

300

400

500

SH
D

(a) SHD (↓)

20 40 60 80 100
Number of nodes

0

2000

4000

6000

8000

SI
D

100200 500 800 1000
Number of samples

0

2000

4000

6000

8000

10000

SI
D

(b) SID (↓)

20 40 60 80 100
Number of nodes

0

100

200

300

400

500

T
im

e
(s

)

100 200 500 800 1000
Number of samples

0

100

200

300

400

500

T
im

e
(s

)

(c) Runtime [s]

SparseRC

GOLEM

NOTEARS

DAGMA

DirectLiNGAM

PC

GES

LiNGAM

CAM

DAG-NoCurl

fGES

sortnregress

MMHC

20 40 60 80 100
Number of nodes

0.2

0.4

0.6

0.8

1.0

T
PR

100 200 500 800 1000
Number of samples

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
PR

(d) TPR (↑)

20 40 60 80 100
Number of nodes

0

200

400

600

800

1000

1200

N
N

Z

100200 500 800 1000
Number of samples

0

500

1000

1500

2000

2500

3000

3500

N
N

Z

(e) Total edges

20 40 60 80 100
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
M

SE

100 200 500 800 1000
Number of samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

M
SE

(f) NMSE (↓)

Figure 4: Plots illustrating performance metrics (a) SHD (lower is better), (b) SID (lower is better),
(c) Time [seconds], (d) TPR (higher is better), (e) Total number of proposed edges and (f) NMSE
(lower is better). Each metric is evaluated in two experimental scenarios: when varying the number
of rows (upper figure) and when varying the number of samples (lower figure).

20 40 60 80 100
Number of nodes

0

100

200

300

400

500

SH
D

(a) SHD (↓)

20 40 60 80 100
Number of nodes

0

1000

2000

3000

SI
D

(b) SID (↓)

20 40 60 80 100
Number of nodes

0

100

200

300

400

500

T
im

e
(s

)

(c) Runtime [s]

SparseRC

LiNGAM

DirectLiNGAM

Figure 5: Evaluation of LiNGAM’s performance when Nx = 0.

Theorem C.2. Consider a DAG with weighted adjacency matrix A. Given that the number of data n satisfies

n ≥ 23d−2d(d− 1)

(1− δ)2pk(1− p)d−k
(18)

where k = ⌊dp⌋ and

δ ≥ max

 1

pk(1− p)d−k
(
d
k

)√1

2
ln

(
1

ϵ

)
,

(
d

k

)√√√√1

2
ln

((
d
k

)
ϵ

) . (19)

18

Rows (samples)

C
ol

um
ns

 (
no

de
s)

(a) Illustration of CT

0 500 100015002000250030003500
|cij|

0

500

1000

1500

2000

2500

3000

C
ou

nt
 o

f v
al

ue
s

(b) Histogram of values of C

Figure 6: Root causes C in [Sachs et al., 2005] dataset. (a) Root causes illustration: darker color
means higher value. (b) Histogram of values of C.

Then with probability (1− ϵ)2 the solution to the optimization problem (8) coincides with the true DAG, namely
Â = A.

Remark C.3. The reason we choose k = ⌊dp⌋ is that because of the Bernoulli trials for the non-zero root
causes, the expected value of the cardinality of the support will be exactly ⌊dp⌋. Thus we expect to have more
concentration on that value of k which is something we desire, since in the proof we use all possible patterns
with support equal to k.

Proof sketch. Given a large (exponential), but finite number of data n we can find, with high likelihood
(approaching one as n increases), pairs of sub-matrices of root causes matrices C (true) and Ĉ (corresponding
to the solution of optimization), with the same support and covering all possibilities of support with k non-zero
elements, due to the assumption of randomly varying support. Exploiting the support of the pairs we iteratively
prove that the entries of the matrices A (true) and Â (solution of the optimization) are equal. The complete
proof is provided next.

We begin with some important observations and definitions.

Lemma C.4. If Â = A then Â = A.

Proof. We have that

I+ Â = I+A ⇔
(
I+ Â

)−1

=
(
I+A

)−1 ⇔
(
I− Â

)
= (I−A) ⇔ Â = A (20)

Definition C.5. We define Ĉ = X−XÂ the root causes corresponding to the optimal adjacency matrix.

Definition C.6. Let S ⊂ {1, 2, 3, ..., d} be a set of indices. We say that a root causes vector c = (c1, ..., cd)
has support S if ci = 0 for i ∈ [d] \ S.

Definition C.7. For a given support S we consider the set R ⊂ [n] of the rows of C that have support S. Then,
CR, ĈR denote the submatrices consisting of the rows with indices in R.

Lemma C.8. For any row subset R ⊂ [n] we have that rank
(
ĈR

)
= rank (CR)

Proof. We have that

Ĉ
(
I+ Â

)
= X = C

(
I+A

)
(21)

Therefore, since both A, Â are acyclic and I+ Â, I+A are invertible we have that

ĈR

(
I+ Â

)
= CR

(
I+A

)
⇒ rank

(
ĈR

)
= rank (CR) (22)

Lemma C.9. For any row subset R ⊂ [n] of root causes C with the same support S such that |S| = k
and |R| = r ≥ k the nonzero columns of CR are linearly independent with probability 1 and therefore
rank (CR) = k.

19

Proof. Assume c1, ..., ck are the non-zero columns of CR. Then each ci is a vector of dimension r whose each
entry is sampled uniformly at random in the range (0, 1]. Given any k − 1 vectors out of c1, ..., ck their linear
span can form a subspace of (0, 1]r of dimension at most k − 1. However, since every ci is sampled uniformly
at random from (0, 1]r and r ≥ k > k − 1 the probability that ci lies in the linear span of the other k − 1
vectors has measure 0. Therefore, the required result holds with probability 1.

Lemma C.10. With probability (1− ε)2 for every different support S with |S| = k there are rows R such that
CR have support S and

|R| > 23d−2d(d− 1) (23)

Proof. Set l = 23d−2d(d− 1) and K =
l(dk)
(1−δ)

. Also set N be the random variable representing the number of

root causes c with |supp(c)| = k and Ni the number of repetitions of the i−th k−support pattern, i = 1, ...,
(
d
k

)
.

We first use conditional probability.

P (N ≥ K ∩Ni ≥ l, ∀i) = P (Ni ≥ l, ∀i|N ≥ k)P (N ≥ K) (24)

Now we will show that P (N ≥ K) ≥ (1− ϵ) and P (Ni ≥ l, ∀i|N ≥ k) ≥ (1− ϵ) using Chernoff bounds.
From Hoeffding inequality we get:

P (N ≤ (1− δ)µ) ≤ e−2δ2µ2/n2

(25)

where µ = npk(1 − p)d−k
(
d
k

)
is the expected value of N , δ ≥ 1

pk(1−p)d−k(dk)

√
1
2
ln
(
1
ϵ

)
and n ≥

1
1−δ

K

pk(1−p)d−k(dk)
so

P (N ≤ K) ≤ P (N ≤ (1− δ)µ) ≤ e−2δ2µ2/n2

≤ ε ⇔ P (N ≥ K) ≥ 1− ϵ (26)

Now given that we have at least K root causes with support exactly k, we will show that, on exactly K such root
causes, each different pattern will appear at least l times with probability (1− ϵ). From the union bound

P

(⋃
i

Ni ≤ l

)
≤
∑
i

P (Ni ≤ l) (27)

So we need to show that P (Ni ≤ l) ≤ ϵ

(dk)
. We use again the Hoeffding inequality.

P (Ni ≤ (1− δ)µ) ≤ e−2δ2µ2/K2

(28)

where the expected value is µ = K

(dk)
= l

1−δ
since now the probability is uniform over all possible k−sparsity

patterns. Given δ ≥
(
d
k

)√
1
2
ln

(
(dk)
ϵ

)
we derive

P (Ni ≤ l) = P (Ni ≤ (1− δ)µ) ≤ e−2δ2µ2/K2

≤ ϵ(
d
k

) (29)

The result follows.

Lemma C.11. Assume that the data number n is large enough so that for every different support S we have the
rows R such that CR have support S and |R| > 2dl where

l > 22d−2d(d− 1) = 2d
d∑

k=2

(
d

k

)
k(k − 1) (30)

Then there exist rows R̂ such that |R̂| > k, CR̂ has support S and ĈR̂ has support Ŝ with |Ŝ| = k. Moreover,
both the non-zero columns of CR̂, ĈR̂ form two linearly independent set of vectors. In words, this means that
the data are many enough so we can always find pairs of corresponding submatrices of root causes with each
consisting of k non-zero columns.

Proof. According to the assumption there exists a row-submatrix CR where all rows have support R and
|R| > 2dl. Group the root causes ĈR into all different supports, which are 2d in number. Take any such group

R′ ⊂ R of rows of Ĉ that all have the same support S′. If |R′| ≥ k then from Lemma C.8 rank
(
ĈR′

)
=

rank (CR′) = k so ĈR′ will have at least k non-zero columns, and since the support is fixed, it will have at
least k non-zero elements at each row, which means at least as many non-zeros as CR′ . Therefore ĈR′ can only

20

have less non-zero elements if |R′| < k, and in that case CR′ has at most k(k − 1) more elements. If we count
for all k = 1, ..., d all different supports of ĈR′ for all possible supports of CR this gives that Ĉ can have at
most

∑d
k=2

(
d
k

)
2dk(k − 1) less non-zero elements compared to C.

Due to the pigeonhole principle, there exists R̂ ⊂ R and |R̂| > l with ĈR̂ all having the same support Ŝ, not
necessarily equal to S. According to our previous explanation we need to have at least k non-zero columns in
ĈR̂. If we had k + 1 columns then this would give l more non-zero elements, but

l > 22d−2d(d− 1) = 2dd(d− 1)2d−2 = 2d
d−2∑
k=0

(
d− 2

k − 2

)
d(d− 1) = 2d

d∑
k=2

(
d

k

)
k(k − 1) (31)

So then ∥Ĉ∥0 > ∥C∥ which is a contradiction due to the optimality of Â. Therefore, ĈR̂ has exactly k non-zero

columns which necessarily need to be linearly independent in order to have rank
(
ĈR̂

)
= rank (CR̂) = k as

necessary. The linear independence of the columns of CR̂ follows from Lemma C.9 since l ≫ k.

Definition C.12. A pair CR, ĈR constructed according to Lemma C.11 that have fixed support S, Ŝ respectively
with cardinality k each and |R| large enough so that rank

(
ĈR

)
= rank (CR) = k, will be called a k−pair of

submatrices.
Remark C.13. For notational simplicity we will drop the index R whenever the choice of the rows according to
the sparsity pattern S is defined in the context.

The complete Theorem 3.2 follows after combining the following two propositions C.16 and C.18. Before, the
proof of the first proposition we need the following lemmas.

Lemma C.14. A is (strictly) upper triangular if and only if A is (strictly) upper triangular.

Proof. If A is (strictly) upper triangular then it is straightforward to show the same for A = A+A2+...+Ad−1.
For the other way round, remember that the inverse of an upper triangular matrix (if exists) it is an upper triangular
matrix. However, the inverse of I+A is I−A which means, that if A is strictly upper triangular, then I+A
and so is I−A are upper triangular which in turn reduces to A being strictly upper triangular.

Lemma C.15. Consider C, Ĉ a k−pair. Also let X be the corresponding submatrix of data. If X:,i = 0 then

Ĉ:,i = 0 and âji = 0 ∀j ∈ supp
(
Ĉ
)

(32)

Proof.

0 = X:,i =

d∑
j=1

âjiĈ:,j + Ĉ:,i =
∑

j∈supp(Ĉ)

âjiĈ:,j + Ĉ:,i (33)

If Ĉ:,i ̸= 0 then i ∈ supp
(
Ĉ
)

, and the expression above constitutes a linear combination of the support

columns with not all coefficients non-zero. This contradicts Lemma C.9. Thus C:,i = 0 and âji = 0 ∀j ∈
supp

(
Ĉ
)

.

We are now ready to prove Prop. C.16.

Proposition C.16. If the data X are indexed such that A is (strictly) upper triangular, then so is Â.
Remark C.17. Based on lemma C.14, in our proof of Prop. C.16 next we may only care about the transitive
weights, namely we will only need to show that âji = 0 for all i < j.

Proof. We first choose a k−pair C, Ĉ such that the support S of C is concetrated to the last k columns, namely
C:,i = 0 for i = 1, ..., d− k. Then the corresponding data submatrix X will necessarily have the same sparsity
pattern since the values are computed according to predecessors, which in our case lie in smaller indices. Thus
X:,i = 0 ∀i = 1, ..., d− k and necessarily Ĉ will follow the same sparsity pattern. Moreover, according to
Lemma C.15 we get that

âji = 0, for all 1 ≤ i ≤ d− k and d− k + 1 ≤ j ≤ d. (34)

We notice that the desired condition is fullfilled for i = d− k, i.e. it has zero influence from a node with larger
index. We now prove the same sequentially for i = d− k − 1, d− k − 2, ..., 1 by moving each time (one step)
left the leftmost index of the support S. We prove the following statement by induction:

P (l) : âji = 0 for l < j, i < j, i ≤ d− k (35)

21

We know that P (d− k) is true and P (1) gives the required relation for all indices i = 1, ..., d− k. Now we
assume that P (l) holds. If we pick k−pair C, Ĉ such that C has support S = {l, d− k + 2, d− k + 3..., d}.

Then X:,i = 0 for all i < l which with Lemma C.15 gives Ĉ:,i = 0 for i < l which means supp
(
Ĉ
)
⊂

{l, l+ 1, ..., d} and âji = 0 for j ∈ supp
(
Ĉ
)

. Note, that by the induction hypothesis we have that âjl = 0 for
all l < j. However it is true that X:,l = C:,l and also

X:,l =

d∑
j∈supp(Ĉ)

âjlĈ:,j + Ĉ:,l = Ĉ:,l (36)

Therefore l ∈ supp
(
Ĉ
)

and thus âli = 0 for all i < l which combined with P (l) gives

âji = 0 for l − 1 < j, i < j, i ≤ d− k (37)

which is exactly P (l − 1) and the induction is complete.

Now it remains to show that âji = 0 for d− k + 1 ≤ i ≤ d and i < j. We will again proceed constructively
using induction. This time we will sequentially choose support S that is concentrated on the last k + 1 columns
and at each step we will move the zero column one index to the right. For l = d− k + 1, ..., d let’s define:

Q(l) : âjl = 0 for l < j and âjl = ajl for d− k ≤ j < l (38)

First we show the base case Q(d − k + 1). For this we choose a k−pair C, Ĉ such that C has support
S = {d− k, d− k + 2, d− k + 3, ..., d}. It is true that X:,i = 0 for i = 1, ..., d− k − 1 hence Ĉ:,i = 0 for
i ≤ d − k − 1 and therefore the node d − k doesn’t have any non-zero parents, since also âj(d−k) = 0 for
d− k < j from previous claim. Therefore Ĉ:,d−k = X:,d−k = C:,d−k. Also, for l = d− k + 1

X:,l = ad−k,lC:,d−k = ad−k,lĈ:,d−k (39)

The equation from Â gives:

X:,l =

d∑
j=d−k

âjlĈ:,j + Ĉ:,l ⇒
(
ad−k,l − âd−k,l

)
Ĉ:,d−k +

d∑
j=d−k+1

âjlĈ:,j + Ĉ:,l = 0 (40)

From the linear Independence Lemma C.9 of the support of Ĉ we necessarily need to have Ĉ:,l = 0, ad−k,l =

âd−k,l and âjl = 0 for l < j which gives the base case.

For the rest of the induction we proceed in a similar manner. We assume with strong induction that all
Q(d− k + 1), ..., Q(l) are true and proceed to prove Q(l + 1). Given these assumptions we have that

âji = aji for d− k ≤ j < i, d− k ≤ i ≤ l and âji = 0 for i < j, d− k ≤ i ≤ l (41)
Consider root causes support S = {d − k, d − k + 1, ..., l, l + 2, ..., d} (the
(l + 1)−th column is 0) for the k−pair C, Ĉ. Then we have the equations:

X:,d−k = C:,d−k = Ĉ:,d−k

X:,d−k+1 = ad−k,d−k+1C:,d−k +C:,d−k+1 = âd−k,d−k+1Ĉ:,d−k + Ĉ:,d−k+1 ⇒ Ĉ:,d−k+1 = C:,d−k+1

...

X:,l =

l−1∑
j=d−k

ajlC:,j +C:,l =

l−1∑
j=d−k

âjlĈ:,j + Ĉ:,l ⇒ Ĉ:,l = C:,l

Where we used the linear independence lemma and sequentially proved that the root causes columns up to l are
equal. The equation for the (l + 1)−th column now becomes:

X:,l+1 =

l∑
j=d−k

aj,l+1C:,j +C:,l =

d∑
j=d−k

âj,l+1Ĉ:,j + Ĉ:,l+1 (42)

⇔
d∑

j=d−k

(
âj,l+1 − aj,l+1

)
Ĉ:,j + Ĉ:,l+1 = 0 ⇒

âj,l+1 = 0 for l + 1 < j

âj,l+1 = aj,l+1 for j < l + 1

Ĉ:,l+1 = 0

(43)

where the last set of equalities follows from linear independence. This concludes the induction and the proof.

22

To complete the proof of Theorem 3.2 it remains to show the following proposition.

Proposition C.18. If both A, Â are upper triangular then Â = A.

For our proof we use the following definition.

Definition C.19. We denote by Pk the set of all k−pairs CR, ĈR for all possible support patterns.

Now we proceed to the proof.

Proof. We will show equivalently that Â = A using two inductions. First we show for l = 1, ..., k the following
statement.

P (l) : For all k−pairs C, Ĉ in Pk the first l non-zero columns C:,i1 ,C:,i2 , ...,C:,il and Ĉ:,î1
, Ĉ:,î2

, ..., Ĉ:,îl

are in the same positions, i.e. ij = îj and

• either they are respectively equal C:,ij = Ĉ:,ij

• or C:,il is in the last possible index, namely il = d− (l − 1)

For the base case P (1), consider a k−pair C, Ĉ and let i1 be the position of the first non-zero root causes
column of C. Then X:,i = 0 for i < i1 and therefore from Lemma C.15 Ĉ:,i = 0 for i < i1. Hence

X:,i1 =
∑
j<i1

âji1Ĉ:,j + Ĉ:,i1 = Ĉ:,i1 (44)

Therefore Ĉ:,i1 = C:,i1 and we proved P (1), by satisfying both the positioning and the first requirement.

Assuming now that P (l) holds, we will show P (l + 1). Take any k−pair of Pk which we denote by C, Ĉ.
Then, if C:,il is in the last possible position, then necessarily C:,il+1 is in the last possible position. Moreover,
from the induction hypothesis the first l root causes columns are in the same positions. Therefore in the same
manner, Ĉ:,il is in the last position and Ĉ:,il+1 , too. This case fulfills the desired statement.

If C:,il is not in the last position, then from induction hypothesis, the first l root
causes columns are equal. If C:,il+1 is in the last position and the same holds Ĉ:,̂il+1

,

the requirement is satisfied. Otherwise îl+1 < il+1 and the equation for îl+1 gives:

X:,̂il+1
=

l∑
j=1

âij ,̂il+1
Ĉ:,ij+Ĉ:,̂il+1

=
l∑

j=1

aij ,̂il+1
C:,ij+0 ⇔

l∑
j=1

(
âij ,̂il+1

− aij ,̂il+1

)
Ĉ:,ij+Ĉ:,̂il+1

= 0

According to linear independence Lemma C.9 we necessarily derive Ĉ:,̂il+1
= 0, absurd. Thus îl+1 = il+1 and

the induction statement is fullfilled in that case.

It remains to consider the case where C:,il+1 is not in the last position. Since, il+1 is not the last position there
exists a k−pair C′, Ĉ′ such that the column il+1 is zero and the (l + 1)− root causes column of C′ lies at
i′l+1 > il+1. The equation at il+1 for X′ gives:

X′
:,il+1

=

l∑
j=1

aij ,il+1C
′
:,ij =

l∑
j=1

âij ,̂il+1
Ĉ′

:,ij + Ĉ′
:,̂il+1

(45)

For the pair C′, Ĉ′ the induction hypothesis holds, thus we derive:
l∑

j=1

(
âij ,̂il+1

− aij ,il+1

)
Ĉ′

:,ij + Ĉ′
:,̂il+1

= 0 (46)

Therefore, Lemma C.9 gives âij ,̂il+1
= aij ,il+1 for all j = 1, ..., l and returning back to the equation for

X:,il+1 we derive:

X:,il+1 =

l∑
j=1

aij ,il+1C:,ij +C:,il+1 =

l∑
j=1

âij ,̂il+1
Ĉ:,ij + Ĉ:,̂il+1

(47)

P (l)
=

l∑
j=1

aij ,̂il+1
C:,ij + Ĉ:,̂il+1

(48)

⇒ Ĉ:,̂il+1
= C:,̂il+1

(49)

23

which completes the induction step. Notice that P (k) gives that for all k−pairs, the k root causes columns
are in the same position. Given this fact we will now show that Â = A. We will prove by induction that for
l = k − 1, ..., 1, 0

Q(l) : âij = aij for 1 ≤ i < j < d− l (50)

To prove Q(k−1) we choose all the k−pairs C, Ĉ, such that C:,i2 is in the last possible position, i2 = d−k+2.
Then for i1 ≤ d − k the columns C:,i1 , Ĉ:,i1 lie at the same position and are equal. Choosing i1 = i and
computing the equation for X:,j where i < j ≤ d− k + 1 gives:

X:,j = aijC:,i = âijĈ:,i = âijC:,i (51)

Therefore âij = aij for all 1 ≤ i < j ≤ d− (k − 1) and Q(k − 1) is satisfied. Next, assume that Q(k − l) is
true. We want to show Q(k − l− 1). Similarly to the base case we consider all k−pairs such that C:,l+2 lies in
its last possible position il+2 = d− k+ l+ 2, and il+1 ≤ d− k+ l. Since the (l+ 1)−th column is not in the
last position, from the previous induction we have that:

Ĉ:,i1 = C:,i1

Ĉ:,i2 = C:,i2

...
Ĉ:,il+1 = C:,il+1

(52)

The equation for d− k + l + 1 gives:

X:,d−k+l+1 =

l+1∑
j=1

aij ,d−k+l+1C:,ij (53)

=

l+1∑
j=1

âij ,d−k+l+1Ĉ:,ij (54)

=

l+1∑
j=1

âij ,d−k+l+1C:,ij (55)

Lemma C.9
=====⇒âij ,d−k+l+1 = aij ,d−k+l+1 (56)

By choosing all such possible k−pairs the indices ij span all possibilities 1 ≤ i < d− k + l + 1. Combining
this with Q(k − l) we get that Q(k − l − 1) is true and the desired result follows.

24

	Introduction
	Linear SEMs and Root Causes
	Transitive closure and root causes
	Example: Pollution model

	Learning the DAG
	Identifiability
	L0 minimization problem and global minimizer
	Continuous relaxation

	Related work
	Experiments
	Evaluation on data with few root causes
	Evaluation on a real dataset

	Broader Impact and Limitations
	Conclusion
	Few Root Causes Assumption
	Additional experimental results
	Different application scenarios
	Varying number of nodes or samples
	Larger DAGs
	LiNGAM's performance
	Real Data
	Implementation details

	Global Minimizer

