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Abstract

We consider the problem of identifying the best arm in stochastic Multi-Armed
Bandits (MABs) using a fixed sampling budget. Characterizing the minimal
instance-specific error probability for this problem constitutes one of the important
remaining open problems in MABs. When arms are selected using a static sampling
strategy, the error probability decays exponentially with the number of samples
at a rate that can be explicitly derived via Large Deviation techniques. Analyzing
the performance of algorithms with adaptive sampling strategies is however much
more challenging. In this paper, we establish a connection between the Large
Deviation Principle (LDP) satisfied by the empirical proportions of arm draws and
that satisfied by the empirical arm rewards. This connection holds for any adaptive
algorithm, and is leveraged (i) to improve error probability upper bounds of some
existing algorithms, such as the celebrated SR (Successive Rejects) algorithm
(Audibert et al., 2010), and (ii) to devise and analyze new algorithms. In particular,
we present CR (Continuous Rejects), a truly adaptive algorithm that can reject
arms in any round based on the observed empirical gaps between the rewards of
various arms. Applying our Large Deviation results, we prove that CR enjoys
better performance guarantees than existing algorithms, including SR. Extensive
numerical experiments confirm this observation.

1 Introduction

We study the problem of best-arm identification in stochastic bandits in the fixed budget setting. In this
problem, abbreviated by BAI-FB, a learner faces K distributions or arms ν1, . . . , νK characterized
by their unknown means µ = (µ1, . . . , µK) (we restrict our attention to distributions taken from
a one-parameter exponential family). She sequentially pulls arms and observes samples of the
corresponding distributions. More precisely, in round t ≥ 1, she pulls an arm At = k selected
depending on previous observations and observes Xk(t) a sample of a νk-distributed random variable.
(Xk(t), t ≥ 1, k ∈ [K]) are assumed to be independent over rounds and arms. After T arm draws,
the learner returns ı̂, an estimate of the best arm 1(µ) := argmaxk µk. We assume that the best
arm is unique, and denote by Λ the set of parameters µ such that this assumption holds. The
objective is to devise an adaptive sampling algorithm minimizing the error probability Pµ [̂ı ̸= 1(µ)].
This learning task is one of the most important problems in stochastic bandits, and despite recent
research efforts, it remains largely open (Qin, 2022). In particular, researchers have so far failed
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at characterizing the minimal instance-specific error probability. This contrasts with other basic
learning tasks in stochastic bandits such as regret minimization (Lai and Robbins, 1985) and BAI
with fixed confidence (Garivier and Kaufmann, 2016), for which indeed, asymptotic instance-specific
performance limits and matching algorithms have been derived. In BAI-FB, the error probability
typically decreases exponentially with the sample budget T , i.e., it scales as exp(−R(µ)T ) where
the instance-specific rate R(µ) depends on the sampling algorithm. Maximizing this rate over the set
of adaptive algorithms is an open problem.

Instance-specific error probability lower bound. To guess the maximal rate at which the error
probability decays, one may apply the same strategy as that used in regret minimization or BAI in
the fixed confidence setting: (i) derive instance-specific lower bound for the error probability for
some notion of uniformly good algorithms; (ii) devise a sampling strategy mimicking the optimal
proportions of arm draws identified in the lower bound. Here the notion of uniformly good algorithms
is that of consistent algorithms. Under such an algorithm, for any µ ∈ Λ, Pµ [̂ı = 1(µ)] → 1 as
T →∞. (Garivier and Kaufmann, 2016) conjectures the following asymptotic lower bound satisfied
by any consistent algorithm (refer to Appendix J for details): as T →∞,

1

T
log

1

Pµ [̂ı ̸= 1(µ)]
≤ max

ω∈Σ
inf

λ∈Alt(µ)
Ψ(λ,ω), (1)

where Σ is the (K − 1)-dimensional simplex, Ψ(λ,ω) =
∑K
k=1 ωkd(λk, µk), Alt(µ) = {λ ∈ Λ :

1(µ) ̸= 1(λ)} is the set of confusing parameters (those for which 1(µ) is not the best arm), and
d(x, y) denotes the KL divergence between two distributions of parameters x and y. Interestingly, the
solution ω⋆ ∈ Σ of the optimization problem maxω∈Σ infλ∈Alt(µ) Ψ(λ,ω) provides the best static
proportions of arm draws. More precisely, an algorithm selecting arms according to the allocation
ω⋆, i.e., selecting arm k ω⋆kT times and returning the best empirical arm after T samples, has an
error rate matching the lower bound (1). This is a direct consequence of the fact that, under a
static algorithm with allocation ω, the empirical reward process {µ̂(t)}t≥1 satisfies a LDP with rate
function λ 7→ Ψ(λ,ω), see (Glynn and Juneja, 2004) and refer to Section 3 for more details.

Adaptive sampling algorithms and their analysis. The optimal allocation ω⋆ depends on the
instance µ and is initially unknown. We may devise an adaptive sampling algorithm that (i) estimates
ω⋆ and (ii) tracks this estimated optimal allocation. In the BAI with fixed confidence, such tracking
scheme exhibits asymptotically optimal performance (Garivier and Kaufmann, 2016). Here however,
the error made estimating ω⋆ would inevitably impact the overall error probability of the algorithm.
To quantify this impact or more generally to analyze the performance of adaptive algorithms, one
would need to understand the connection between the statistical properties of the arm selection
process and the asymptotic statistics of the estimated expected rewards.

To be more specific, any adaptive algorithm generates a stochastic process {Z(t)}t≥1 =
{(ω(t), µ̂(t))}t≥1. ω(t) = (ω1(t), . . . , ωK(t)) represents the allocation realized by the algorithm
up to round t (ωk(t) = Nk(t)/t and Nk(t) denotes the number of times arm k has been selected up
to round t). µ̂(t) = (µ̂1(t), . . . , µ̂K(t)) denotes the empirical average rewards of the various arms up
to round t. Now assuming that at the end of round T , the algorithm returns the arm with the highest
empirical reward, the error probability is Pµ [̂ı ̸= 1(µ)] = Pµ[µ̂(T ) ∈ Alt(µ)]. Assessing the error
probability at least asymptotically requires understanding the asymptotic behavior of µ̂(t) as t grows
large. Ideally, one would wish to establish the Large Deviation properties of the process {Z(t)}t≥1.
This task is easy for algorithms using static allocations (Glynn and Juneja, 2004), but becomes
challenging and open for adaptive algorithms. Addressing this challenge is the main objective of this
paper.

Contributions. In this paper, we develop and leverage tools towards the analysis of adaptive sampling
algorithms for the BAI-FB problem. More precisely, our contributions are as follows.

(a) We establish a connection between the LDP satisfied by the empirical proportions of arm draws
{ω(t)}t≥1 and that satisfied by the empirical arm rewards. This connection holds for any adaptive
algorithm. Specifically, we show that if the rate function of {ω(t)}t≥1 is lower bounded by ω 7→
I(ω), then that of (µ̂(t))t≥1 is also lower bounded by λ 7→ minω∈Σ max{Ψ(λ,ω), I(ω)}. This
result has interesting interpretations and implies the following asymptotic upper bound on the error
probability of the algorithm considered: as T →∞,

1

T
log

1

Pµ [̂ı ̸= 1(µ)]
≥ inf

ω∈Σ,λ∈Alt(µ)
max{Ψ(λ,ω), I(ω)}. (2)
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The above formula, when compared to the lower bound (1), quantifies the price of not knowing ω⋆

initially, and relates the error probability to the asymptotic statistics of the sampling process used by
the algorithm.

(b) We show that by simply applying our generic Large Deviation result, we may improve the error
probability upper bounds of some existing algorithms, such as the celebrated SR algorithm (Audibert
et al., 2010). Our result further opens up opportunities to devise and analyze new algorithms with a
higher level of adaptiveness. In particular, we present CR (Continuous Rejects), an algorithm that,
unlike SR, can eliminate arms in each round. This sequential elimination process is performed by
comparing the empirical rewards of the various candidate arms using continuously updated thresholds.
Leveraging the LDP tools developed in (a), we establish that CR enjoys better performance guarantees
than SR. Hence CR becomes the algorithm with the lowest instance-specific and guaranteed error
probability. We illustrate our results via numerical experiments, and compare CR to other BAI
algorithms.

2 Related Work

We distinguish two main classes of algorithms to solve the best arm identification problem in the
fixed budget setting. Algorithms from the first class, e.g. Successive Rejects (SR) (Audibert et al.,
2010) and Sequential Halving (SH) (Karnin et al., 2013), split the sampling budget into phases of
fixed durations, and discard arms at the end of each phase. Algorithms from the second class, e.g.
UCB-E (Audibert et al., 2010) and UGapE (Gabillon et al., 2012) sequentially sample arms based
on confidence bounds of their empirical rewards. It is worth mentioning that algorithms from the
second class usually require some prior knowledge about the problem, for example, an upper bound
of H =

∑
k ̸=1(µ)

1
(µ1(µ)−µk)2

. Without this knowledge, the parameters can be chosen in a heuristic
way, but the performance gets worse.

Algorithms from the first class exhibit better performance numerically and are also those with the
best instance-specific error probability guarantees. SR had actually the best performance guarantees
so far: for example, when the reward distributions are supported on [0, 1], the error probability of
SR satisfies: lim infT→∞

1
T log 1

Pµ [̂ı̸=1(µ)] ≥
1

H2 logK , where H2 = maxk ̸=1(µ)
k

(µ1(µ)−µk)2
. In this

paper, we strictly improve this guarantee (see Section 3.4). Recently, (Barrier et al., 2022) also
refined and extended the analysis of (Audibert et al., 2010) by replacing, in the analysis, Hoeffding’s
inequality by a large deviation result involving KL-divergences. Again here, we further improve
this new guarantee. We also devise CR, an algorithm with error probability provably lower than our
improved guarantees for SR.

Fundamental limits on the error probability have also been investigated. In the minimax set-
ting, (Carpentier and Locatelli, 2016) established that for any algorithm, there exists a problem
within the class of instances with given complexity H such that the error probability is greater than
exp(− 400T

H logK ) ≥ exp(− 400T
H2 logK ). Up to a universal constant (here 400), SR is hence minimax

optimal. This lower bound was also recently revisited in (Ariu et al., 2021; Degenne, 2023; Wang
et al., 2023) to prove that the instance-specific lower bound (1) cannot be achieved on all instances by
a single algorithm . Deriving tight instance-specific lower bounds remains open (Qin, 2022).

We conclude this section by mentioning two interesting algorithms. In (Komiyama et al., 2022), the
authors propose DOT, an algorithm trying to match minimax error probability lower bounds. To this
aim, the algorithm requires to periodically call an oracle able to determine an optimal allocation,
solution of an optimization problem with high and unknown complexity. DOT has minimax guarantees
but is computationally challenging if not infeasible (numerically, the authors cannot go beyond simple
instances with 3 arms). Finally, researchers have also looked at the best arm identification problem
from a Bayesian perspective. For example, (Russo, 2016) devise variants of the celebrated Thompson
Sampling algorithm, that could potentially work well in practice. Nevertheless, as discussed in
(Komiyama, 2022), Bayesian algorithms cannot be analyzed nor provably perform well in the
frequentist setting.

3



3 Large Deviation Analysis of Adaptive Sampling Algorithms

In this section, we first recall key concepts in Large Deviations (refer to the classical textbooks
(Budhiraja and Dupuis, 2019; Dembo and Zeitouni, 2009; Dupuis and Ellis, 2011; Varadhan, 2016)
for a more detailed exposition). We then apply these concepts to the performance analysis of adaptive
sampling algorithms. Finally, we exemplify the analysis and apply it to improve existing performance
guarantees for the SR algorithm (Audibert et al., 2010).

3.1 Large Deviation Principles

Consider the stochastic process {Y (t)}t≥1 with values in a separable complete metric space (i.e.,
a Polish space) Y . Large Deviations are concerned with the probabilities of rare events related to
{Y (t)}t≥1 that decay exponentially in the parameter t. The asymptotic decay rate is characterized
by the rate function I : Y → R+ defined so that essentially − 1

t logP [Y (t) ∈ B] converges to
minx∈B I(x) for any Borel set B. We provide a more rigorous definition below.
Definition 1. [Large Deviation Principle (LDP)] The stochastic process {Y (t)}t≥1 satisfies a LDP
with rate function I if:
(i) I is lower semicontinuous, and ∀s ∈ [0,∞], the set Ks = {y ∈ Y : I(y) ≤ s} is compact;
(ii) for every closed (resp. open) set C ⊂ Y (resp. O ⊂ Y),

lim
t→∞

1

t
log

1

P [Y (t) ∈ C]
≥ inf
y∈C

I(y), (3)

lim
t→∞

1

t
log

1

P [Y (t) ∈ O]
≤ inf
y∈O

I(y). (4)

LDPs have been derived earlier in stochastic bandit literature. (Glynn and Juneja, 2004) have used
Gärtner-Ellis Theorem (Ellis, 1984; Gärtner, 1977) to establish that under a static sampling algorithm
with allocation ω ∈ Σ (i.e., each arm k is selected ωkT times up to round T ), the process {µ̂(T )}T≥1

satisfies an LDP with rate function λ 7→ Ψ(λ,ω) =
∑K
k=1 ωkd(λk, µk). Our objective in the next

subsection is to investigate how to extend this result to the case of adaptive sampling algorithms.

3.2 Analysis of adaptive sampling algorithms

An adaptive sampling algorithm generates a stochastic process {Z(t)}t≥1 = {(ω(t), µ̂(t))}t≥1.
When the sampling budget T is exhausted, should the algorithm returns the arm with the highest
empirical reward, the error probability is Pµ [̂ı ̸= 1(µ)] = Pµ[µ̂(T ) ∈ Alt(µ)]. To assess the rate at
which this probability decays with the budget, we may try to establish a LDP for the empirical reward
process {µ̂(t)}t≥1. Due to the intricate dependence between the sampling and the empirical reward
processes, deriving such an LDP is very challenging. Instead, we establish a connection between
the LDPs satisfied by these processes. This connection will be enough for us to derive tight upper
bounds on the error probability. We present our main result in the following theorem.
Theorem 1. Assume that under some adaptive sampling algorithm, {ω(t)}t≥1 satisfies the LDP
upper bound (3) with rate function I . Then {µ̂(t)}t≥1 satisfies the LDP upper bound (3) with rate
function λ 7→ minω∈Σ max{Ψ(λ,ω), I(ω)}. Moreover, we have: for any bounded Borel subset S
of RK and any Borel subset W of Σ,

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈W ]
≥ inf

ω∈cl(W )
max {FS(ω), I(ω)} ,

where FS(ω) := infλ∈cl(S) Ψ(λ,ω), and cl(S) denotes the closure of S .

Before proving the above theorem, we make the following remarks and provide a simple corollary
that will lead to improved upper bound on the error probability of the SR algorithm.

(a) Not a complete LDP. To upper bound the error probability of a given algorithm, we do not actually
need to establish that {µ̂(t)}t≥1 satisfies a complete LDP. Instead, deriving a LDP upper bound is
enough. Theorem 1 provides such an upper bound, but does not yield a complete LDP. We conjecture
if {ω(t)}t≥1 satisfies an LDP with rate function I , {µ̂(t)}t≥1 satisfies an LDP with rate function
λ 7→ infω∈W max{Ψ(λ,ω), I(ω)}. The conjecture holds for static sampling algorithms as shown
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below. If it holds for adaptive algorithms, we show, in Appendix I, that when K > 3, no algorithm
can attain the instance-specific lower bound (1) for all parameters.

(b) Theorem 1 is tight for static sampling algorithms. When the sampling rule is static, namely
ω(t) = ω ∈ Σ, then {ω(t)}t≥1 satisfies a LDP with rate function I defined as I(ω) = 0 and∞
elsewhere. Theorem 1 with W = Σ states that {µ̂(t)}t≥1 satisfies the LDP upper bound (3) with
rate function FS . In fact, as shown by (Glynn and Juneja, 2004), {µ̂(t)}t≥1 satisfies a complete LDP
with this rate function.

(c) A useful corollary. From Theorem 1, we have:

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈W ]
≥ inf

ω∈cl(W )
FS(ω).

From there, we will be able to improve the performance guarantee for SR.

3.3 Proof of Theorem 1

Proof. Observe that when S or W is empty, the result holds. Now recall that FS(·) =
infλ∈cl(S) Ψ(λ, ·) is the infimum of a family of linear functions on a compact set, Σ, hence it
is upper bounded. Denote u > 0 such an upper bound. FS(·) is also continuous (see Appendix F for
details). For each integer N ∈ N, we define a collection of closed sets:

WN
n =

{
ω ∈ cl(W ) :

u(n− 1)

N
≤ FS(ω) ≤ un

N

}
, ∀n ∈ [N ]. (5)

We observe that:

Pµ[µ̂(t) ∈ S,ω(t) ∈W ] ≤
N∑
n=1

Pµ[µ̂(t) ∈ S,ω(t) ∈WN
n ]

≤ N max
n∈[N ]

Pµ[µ̂(t) ∈ S,ω(t) ∈WN
n ].

Taking the logarithm on both sides and dividing them by −t yields that

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈W ]
≥ lim
t→∞

min
n∈[N ]

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈WN
n ]

= min
n∈[N ]

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈WN
n ]

≥ min
n∈[N ]

max

{
u(n− 1)

N
, inf
ω∈WN

n

I(ω)

}
, (6)

where the last inequality follows from Lemma 1. Since for all n ∈ [N ],

max

{
u(n− 1)

N
, inf
ω∈WN

n

I(ω)

}
= inf

ω∈WN
n

max

{
u(n− 1)

N
, I(ω)

}
,

the r.h.s. of (6) is equal to

min
n∈[N ]

inf
ω∈WN

n

max

{
u(n− 1)

N
, I(ω)

}
≥ min
n∈[N ]

inf
ω∈WN

n

max {FS(ω), I(ω)} − u/N

= inf
ω∈cl(W )

max{FS(ω), I(ω)} − u/N,

where the first inequality is due to (5). As N can be taken arbitrarily large, we conclude this theorem.

Lemma 1. For any N ∈ N, n ∈ [N ],

lim
t→∞

1

t
log

1

Pµ[µ̂(t) ∈ S,ω(t) ∈WN
n ]
≥ max

{
u(n− 1)

N
, inf
ω∈WN

n

I(ω)

}
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Proof. Recall FS(·) = infλ∈cl(S) Ψ(λ, ·). We deduce that

Pµ

[
µ̂(t) ∈ S,ω(t) ∈WN

n

]
≤ Pµ

[
X ≥ tFS(ω(t)),ω(t) ∈WN

n

]
,

where X denotes tΨ(µ̂(t),ω(t)) for short. Let α ∈ (0, 1), Markov’s inequality implies that

Pµ

[
X ≥ tFS(ω),ω(t) ∈WN

n

]
= Pµ

[
1{ω(t) ∈WN

n }eα(X−tFS(ω(t))) ≥ 1
]

≤ Eµ

[
1{ω(t) ∈WN

n }eα(X−tFS(ω(t)))
]

≤ Eµ

[
1{ω(t) ∈WN

n }eαX
]
e−

αu(n−1)
N , (7)

where the last inequality uses the definition ofWN
n (see (5)). By applying Hölder’s inequality with p, q,

where p ∈ [1, 1/α) and q = p/(p−1) on r.h.s. of (7), we deduce that logPµ

[
µ̂(t) ∈ S,ω(t) ∈WN

n

]
is at most

(logEµ

[
eαpX

]
)/p+ (logEµ[1{ω(t) ∈WN

n }])/q −
αu(n− 1)

N
.

As αp ∈ (0, 1), Lemma 2 in Appendix B shows that the first term above is o(t). Using definition of the
rate function, (3) with C =WN

n , on the second term yields that limt→∞
1
t log

1
Pµ[µ̂(t)∈S,ω(t)∈WN

n ]

is lower bounded by

(1/q) inf
ω∈WN

n

I(ω) +
αu(n− 1)

N
= (1− 1/p) inf

ω∈WN
n

I(ω) +
αu(n− 1)

N
.

As p can be arbitrarily close to 1/α, we get the lower bound (1 − α)I(ω) + αu(n−1)
N . Further

choosing α close to either 1 or 0, the proof is completed.

3.4 Improved analysis of the Successive Rejects algorithm

In SR, the set of candidate arms is initialized as CK = [K]. The budget of samples is partitioned into
K − 1 phases, and at the end of each phase, SR discards the empirical worst arm from the candidate
set. In each phase, SR uniformly samples the arms in candidate set. The lengths of phases are set as
follows. Define logK := 1

2 +
∑K
k=2

1
k . The candidate set is denoted by Cj when it has j > 2 arms.

In the corresponding phase, (i) each arm in Cj is sampled until the round t when mink∈Cj
Nk(t)

reaches T/(jlogK) (recall that Nk(t) is the number of times arm k has been sampled up to round t);
(ii) the empirical worst arm, denoted by ℓj , is then discarded, i.e., Cj−1 = Cj \ {ℓj}. During the last
phase, the algorithm equally samples the two remaining arms and finally recommends ı̂, the arm with
higher empirical mean in C2. The pseudo code is presented in Algorithm 1.

Algorithm 1: SR
initialization CK ← [K], j ← K;
for (t = 1, . . . , T ) do

if (j > 2 and mink∈Cj
Nk(t) ≥ T

jlogK
) then

ℓj ← argmink∈Cj
µ̂k(t) (tie broken arbitrarily), Cj−1 ← Cj \ {ℓj}, and j ← j − 1 ;

end
sample At ← argmink∈Cj

Nk(t) (tie broken arbitrarily), update {Nk(t)}k∈Cj
and µ̂(t);

end
ℓ2 ← argmink∈C2

µ̂k(T ) and return ı̂← argmaxk∈C2
µ̂k(T ) (tie broken arbitrarily).

We apply the corollary (c) in Section 3.2 to improve the existing performance guarantees of SR. To
simplify the presentation, we assume wlog that µ1 > µ2 ≥ . . . ≥ µK . For j = 2, . . . ,K, define

Γj = min
J∈J

inf

{∑
k∈J

d(λk, µk) : λ ∈ RK , λ1 ≤ min
k∈J

λk

}
, (8)

where J = {J ⊆ [K] : |J | = j, 1 ∈ J}.
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Theorem 2. Let µ ∈ Λ. Under SR, we have: for j = 2, . . . ,K, limT→∞
1
T log 1

Pµ[ℓj=1] ≥
Γj

jlogK
.

Hence, the error probability of SR is upper bounded by limT→∞
1
T log 1

Pµ [̂ı ̸=1] ≥ minj ̸=1
Γj

jlogK
.

Proof of Theorem 2. Fix j ∈ {2, . . . ,K}. Observe that

Pµ [ℓj = 1] =
∑
J∈J

Pµ [ℓj = 1, Cj = J ] ≤ |J |max
J∈J

Pµ [ℓj = 1, Cj = J ] ,

which implies that

lim
T→∞

1

T
log

1

Pµ [ℓj = 1]
≥ min
J∈J

lim
T→∞

1

T
log

1

Pµ [ℓj = 1, Cj = J ]
(9)

as |J | <∞.
Since ℓj is selected at the θT -th round1 where θ = (1 +

∑K
k=j+1

1
k )/logK, the event {ℓj = 1, Cj =

J} implies that {µ̂(θT ) ∈ S, ω(θT ) ∈W}, where

S =
{
λ ∈ RK : λ1 ≤ λk,∀k ∈ J

}
and W =

{
ω ∈ Σ : ωk =

1

θjlogK
,∀k ∈ J

}
.

In other words, Pµ[ℓj = 1, Cj = J ] ≤ Pµ[µ̂(θT ) ∈ S, ω(θT ) ∈ W ]. Applying (c) in Section 3.2
with the above S and W yields that limT→∞

1
θT log 1

Pµ[µ̂(θT )∈S,ω(θT )∈W ] is larger than

inf
ω∈W

inf
λ∈cl(S)

Ψ(λ,ω) ≥ 1

θjlogK
inf

{∑
k∈J

d(λk, µk) : λ1 ≤ min
k∈J

λk

}
≥ Γj

θjlogK
, (10)

where the first inequality uses the fact that KL-divergences and the components of ω are nonnegative,
and the second one is due to the definition (8) of Γj . Combining (9) and (10) completes the proof.□

The upper bound derived in Theorem 2 is tighter than those recently derived in (Barrier et al., 2022).
Indeed, for any J ∈ J , since |J | = j, one can find at least one index in J at least larger than j, say
kJ . Hence,

Γj ≥ min
J∈J

inf
λ∈RK ,λ1≤λkJ

d(λ1, µ1) + d(λkJ , µkJ ) ≥ inf
λ∈RK ,λ1≤λj

d(λ1, µ1) + d(λj , µj).

The r.h.s. in the previous inequality corresponds to the upper bounds derived by (Barrier et al., 2022).

To simplify the presentation and avoid rather intricate computations involving the KL-divergences, in
the remaining of the paper, we restrict our attention to specific classes of reward distributions.
Assumption 1. The rewards are bounded with values in (0, 1). The reward distributions ν1, . . . , νK
are Bernoulli distributions such that νa is of mean a, and for any a ̸= b, d(a, b) ≥ 2(a− b)2 (this is
a consequence of Pinsker’s inequality as rewards are in (0, 1)).

Under Assumption 1, we have Γj ≥ 2ξj (a direct consequence of Proposition 3 in Appendix D.1),
where for j = 2, . . . ,K,

ξj = inf
λ∈[0,1]j

{
j∑

k=1

(λk − µk)2 : λ1 ≤ min
k=1,...,j

λk

}
.

We give an explicit expression of ξj in Proposition 1, presented in Appendix D.1. More-
over, 2ξj is clearly larger than 2 infλ1≤λj

{
(λ1 − µ1)

2 + (λj − µj)2
}
= (µ1 − µj)2, and hence

minj ̸=1 Γj/(jlogK) ≥ minj ̸=1(µ1 − µj)2/(jlogK). This implies that our error probability upper
bound is better than that derived in (Audibert et al., 2010).

Example 1. To illustrate the improvement brought by Theorem 2 on the performance guarantees of
SR, consider the simple example with 3 Bernoulli arms and µ = (0.9, 0.1, 0.1). Then minj ̸=1(µ1 −
µj)

2/(jlog3) = 0.16 for the upper bound presented in (Audibert et al., 2010). From Proposition 1,
instead we get minj ̸=1 2ξj/(jlog3) = 0.21.

1To simplify the presentation, we ignore cases where θT is not an integer. Refer to Appendix E for details.
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4 Continuous Rejects Algorithms

In this section, we present CR, a truly adaptive algorithm that can discard an arm in any round. We
propose two variants of the algorithm, CR-C using a conservative criterion to discard arms and CR-A
discarding arms more aggressively. Using the Large Deviation results of Theorem 1, we establish
error probability upper bounds for both CR-C and CR-A.

4.1 The CR-C and CR-A algorithms

As SR, CR initializes its candidate set as CK = [K]. For j ≥ 2, Cj denotes the candidate set
when it is reduced to j arms. When j > 2, the algorithm samples arms in the candidate set Cj
uniformly until a discarding condition is met. The algorithm then discards the empirically worst
arm ℓj ∈ Cj , i.e., Cj−1 ← Cj \ {ℓj}. More precisely, in round t, if there are j candidate arms
remaining and if ℓ(t) denotes the empirically worst candidate arm, the discarding condition is
Nℓ(t)(t) > maxk/∈Cj

Nk(t), (∀k ∈ Cj , Nℓ(t)(t) = Nk(t))
2, and

for CR-C: min
k∈Cj ,k ̸=ℓ(t)

µ̂k(t)− µ̂ℓ(t)(t) ≥ G

(∑
k∈Cj

Nk(t)logj

T −
∑
k/∈Cj

Nk(t)

)
, (11)

for CR-A:

∑
k∈Cj ,k ̸=ℓ(t) µ̂k(t)

j − 1
− µ̂ℓ(t)(t) ≥ G

(∑
k∈Cj

Nk(t)logj

T −
∑
k/∈Cj

Nk(t)

)
, (12)

where G(β) = 1/
√
β − 1 for all β > 0. The idea behind (11) is to keep the probability of discarding

the best arm at most smaller than that of SR while using less budget. Note that (12) is easier to
achieve than (11). CR-A is hence more aggressive than CR-C, and reduces the set of arms to C2
faster, but at the expense of a higher risk. After discarding ℓ3, CR will sample the arms in C2 evenly,
and recommend the empirical best arm in C2 when the budget is exhausted. The pseudo-code of CR
is presented in Algorithm 2.

Algorithm 2: CR-C and CR-A

Input: θ0 ∈ (0, 1
logK

) ∩Q independent of T (can be chosen as small as one wishes)
initialization
CK ← [K], j ← K, sample each arm k ∈ [K] once, update {Nk(t)}k∈CK

and µ̂(t);
for t = K + 1, . . . , ⌊θ0T ⌋ do

sample At ← argmink∈Cj
Nk(t) (tie broken arbitrarily), update {Nk(t)}k∈Cj and µ̂(t);

end
for (t = ⌊θ0T ⌋+ 1, . . . , T ) do

ℓ(t)← argmink∈Cj
µ̂k(t) (tie broken arbitrarily);

if j > 2, Nℓ(t)(t) > maxk/∈Cj
Nk(t), (∀k ∈ Cj , Nℓ(t)(t) = Nk(t)),

and (11) (resp. (12)) holds for CR-C (resp. CR-A) then
ℓj ← ℓ(t), Cj−1 ← Cj \ {ℓj}, j ← j − 1

sample At ← argmink∈Cj
Nk(t) (tie broken arbitrarily), update {Nk(t)}k∈Cj and µ̂(t);

end
ℓ2 ← ℓ(T ); return ı̂← argmaxk∈C2

µ̂k(T ) (tie broken arbitrarily).

4.2 Analysis of CR-C and CR-A

As in Section 3.4, µ1 > µ2 ≥ . . . ≥ µK is assumed wlog and we further define µK+1 = 0. We
introduce the following instance-specific quantities needed to state our error probability upper bounds.
For j ∈ {2, . . . ,K}, define

ψj =
j − 1

j

(
µ1 −

∑j
k=2 µk
j − 1

)2

, ψ̄j =
j − 1

j

(
µ1 −

∑j−1
k=2 µk + µj+1

j − 1

)2

, ζj = µj−µj+1,

2This condition is only imposed to simplify our analysis. It may be removed.

8



φj =

∑j
k=1 µk
j

−µj+1, and ξ̄j = inf

{
K∑
k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤ min
k=2,...,j−1,j+1

λk

}
.

Here we remark ξ̄j ≥ ξj and ψ̄j ≥ ψj . These inequalities are proven in Proposition 3 and Proposition
5 in Appendix D.
Theorem 3. Let µ ∈ [0, 1]K . Under CR-C, limT→∞

1
T log 1

Pµ [̂ı̸=1] is larger than

2 min
j=2,...,K


min

{
max

{
ξj log(j+1)(1−αj)1{j ̸=K}

logj
, ξj

}
, ξ̄j

}
jlogK

 ,

where αj ∈ R is the real number such that 2ξj(1−αj)

jlogj
= [((1 + ζj)

√
αj −

√
1

(j+1)log(j+1)
)+]

2.

Theorem 4. Let µ ∈ [0, 1]K . Under CR-A, limT→∞
1
T log 1

Pµ [̂ı̸=1] is larger than

2 min
j=2,...,K

min{max{ψj log(j+1)(1−αj)1{j ̸=K}

logj
, ψj}, ψ̄j}

jlogK

 ,

where αj ∈ R is the real number such that ψj(1−αj)

jlogj
= j

j+1 [((1 + φj)
√
αj −

√
1

(j+1)log(j+1)
)+]

2.

Note that Theorem 3 implies that CR-C enjoys better performance guarantees than SR, and hence
has for now the best known error probability upper bounds.

Proof sketch. The complete proof of Theorems 3 and 4 are given in Appendices C.1 and C.2. We
sketch that of Theorem 3. The proof consists in upper bounding Pµ[ℓj = 1] for j ∈ {2, . . . ,K}. We
focus here on the most challenging case where j ∈ {3, . . . ,K − 1} (the analysis is simpler when
j = K, since the only possible allocation is uniform, and when j = 2, since the only possible round
deciding ℓ2 is the last round).

To upper bound Pµ[ℓj = 1] using Theorem 1, we will show that it is enough to study the large
deviations of the process {ω(θT )}T≥1 for any fixed θ ∈ [θ0, 1] and to define a set S ⊆ [0, 1]K under
which ℓj = ℓ(θT ) = 1. We first observe that ℓj = ℓ(θT ) restricts the possible values of ω(θT ):
ω(θT ) ∈ Xj :=

{
x ∈ Σ : ∃σ ∈ [K]2 s.t. xσ(1) = . . . = xσ(j) > xσ(j+1) > . . . > xσ(K) > 0

}
.

We can hence just derive the LDP satisfied by {ω(θT )}T≥1 on Xj . This is done in Appendix
E, and we identify by Iθ a rate function leading to an LDP upper bound. By defining

Xj,i(θ) =

{
x ∈ Xj : θxσ(i)ilogi > 1− θ

K∑
k=i+1

xσ(k)

}
, ∀i ∈ {j, . . . ,K},

As it is shown in Appendix E.1 that Iθ(x) =∞ if x ∈ Xj,i(θ) for i ≥ j, we may further restrict to
Xj \ ∪Ki=jXj,i(θ).

Next, we explain how to apply Theorem 1 to upper bound Pµ[ℓj = 1]. Let J = {J ⊆ [K] : |J | =
j, 1 ∈ J} as defined in Section 3.4. For all β, θ ∈ (0, 1] and J ∈ J , we introduce the sets

SJ(β) =
{
λ ∈ [0, 1]K : min

k∈J,k ̸=1
λk − λ1 ≥ G(β)

}
,

ZJ(θ, β) =

{
z ∈ Xj \ ∪Ki=jXj,i(θ) : (∀k ∈ J, zk = max

k′∈[K]
zk′),

θ
∑
k∈J zklogj

1− θ
∑
k/∈J zk

= β

}
.

Assume that in round t, ℓj = ℓ(t) = 1, Cj = J and let τ =
∑
k/∈J Nk(t) ≤ t be the number of times

arms outside J are pulled. While ω(t) /∈ Xj,j(t/T ), we have β = (t−τ)logj
T−τ ∈ (0, 1]. Using the

criteria (11), we observe that
T∑

t=K+1

∑
J∈J

Pµ

[
ℓj = ℓ(t) = 1, Cj = J,ω(t) ∈ Xj \ ∪Ki=jXj,i(

t

T
)

]

≤
T∑

t=K+1

∑
J∈J

∑
τ≤t,τ∈N

Pµ

[
µ̂(t) ∈ SJ(

(t− τ)logj
T − τ

),ω(t) ∈ ZJ(
t

T
,
(t− τ)logj
T − τ

)

]
.
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To upper bound the r.h.s. in the above inequality, we combine the results of Theorem 1 and a
partitioning technique (presented in Appendix G). This gives:

lim
T→∞

1

T
log

1

Pµ [µ̂(θT ) ∈ SJ(β),ω(θT ) ∈ ZJ(θ, β)]
≥ θ inf

z∈cl(ZJ (θ,β))
max{FSJ (β)(z), Iθ(z)}.

The proof is completed by providing lower bounds of θFSJ (β)(z) and θIθ(z) for a fixed z ∈ ZJ(θ, β)
with various J . Such bounds are derived in Appendix D.1 and E.3.1, respectively. □

Example 2. To conclude this section, we just illustrate through a simple example the gain in terms of
performance guarantees brought by CR compared to SR. Assume we have 50 Bernoulli arms with
µ1 = 0.95, µ2 = 0.85, µ3 = 0.2, and µk = 0 for k = 4, . . . , 50. For SR, Theorem 2 states that
with a budget of 5000 samples, the error probability of SR does not exceed 1.93× 10−3. With the
same budget, Theorems 3 and 4 state that the error probabilities of CR-C and CR-A do not exceed
6.40× 10−4 and 6.36× 10−4, respectively.

We note that in general, we cannot say that one of our two algorithms, CR-C or CR-A, has better
guarantees than the other. This is demonstrated in the problem instances presented in Appendix K.1
and K.4.

5 Numerical Experiments

We consider various problem instances to numerically evaluate the performance of CR. In these
instances, we vary the number of arms from 5 to 55; we use Bernoulli distributed rewards, and vary
the shape of the arm-to-reward mapping. For each instance, we compare CR to SR, SH, and UGapE.

Most of our numerical experiments are presented in Appendix K. Due to space constraints, we
just provide an example of these results below. In this example, we have 55 arms with convex
arm-to-reward mapping. The mapping has 10 steps, and the m-th step consists of m arms with same
average reward, equal to 3

4 · 3
− m

10 . Table 1 presents the error probabilities averaged over 40, 000
independent runs. Observe that CR-A performs better than CR-C (being aggressive when discarding
arms has some benefits), and both versions of CR perform better than SR and all other algorithms.

Table 1: Error probability (in %).
T = 3, 000 T = 4, 000 T = 5, 000

UGapE (Gabillon et al., 2012) 24.7 21.3 18.9
SH Karnin et al. (2013) 10.2 5.9 3.2
SR Audibert et al. (2010) 5.5 2.8 1.3
CR-C (this paper) 7.1 2.6 1.1
CR-A (this paper) 4.7 1.6 0.6

6 Conclusion

In this paper, we have established, in MAB problems, a connection between the LDP satisfied by the
sampling process (under any adaptive algorithm) and that satisfied by the empirical average rewards
of the various arms. This connection has allowed us to improve the performance analysis of existing
best arm identification algorithms, and to devise and analyze new algorithms with an increased level
of adaptiveness. We show that one of these algorithms CR-C has better performance guarantees than
existing algorithms and that it performs also better in practice in most cases.

Future research directions include: (i) developing algorithms with further improved performance
guarantees – can the discarding conditions of CR be further optimized? (ii) Enhancing the Large
Deviation analysis of adaptive algorithms – under which conditions, can we establish a complete
LDP of the process {Z(t)}t≥1 = {(ω(t), µ̂(t))}t≥1? Answering this question would constitute
a strong step towards characterizing the minimal instance-specific error probability for best arm
identification with fixed budget. (iii) Extending our approach to other pure exploration tasks: top-m
arm identification problems (Bubeck et al., 2013), best arm identification in structured bandits (Yang
and Tan, 2022; Azizi et al., 2022), or best policy identification in reinforcement learning.
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