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Abstract

The storage of continuous variables in working memory is hypothesized to be
sustained in the brain by the dynamics of recurrent neural networks (RNNs) whose
steady states form continuous manifolds. In some cases, it is thought that the
synaptic connectivity supports multiple attractor manifolds, each mapped to a
different context or task. For example, in hippocampal area CA3, positions in
distinct environments are represented by distinct sets of population activity patterns,
each forming a continuum. It has been argued that the embedding of multiple
continuous attractors in a single RNN inevitably causes detrimental interference:
quenched noise in the synaptic connectivity disrupts the continuity of each attrac-
tor, replacing it by a discrete set of steady states that can be conceptualized as
lying on local minima of an abstract energy landscape. Consequently, population
activity patterns exhibit systematic drifts towards one of these discrete minima,
thereby degrading the stored memory over time. Here we show that it is possible
to dramatically attenuate these detrimental interference effects by adjusting the
synaptic weights. Synaptic weight adjustments are derived from a loss function
that quantifies the roughness of the energy landscape along each of the embedded
attractor manifolds. By minimizing this loss function, the stability of states can be
dramatically improved, without compromising the capacity.

Introduction

In the brain, recurrent neural networks (RNNs) involved in working memory tasks are thought to
be organized such that their dynamics exhibit multiple attractor states, enabling the maintenance of
persistent neural activity even in the absence of external stimuli. In tasks that require tracking of a
continuous external variable, these attractors are thought to form a continuous manifold of neural
activity patterns. In some well studied brain circuits in flies and mammals, neural activity patterns
have been shown to robustly and persistently reside along a single, low-dimensional manifold, even
when the neural activity is dissociated from external inputs to the network [2, 39, 21, 35, 9, 15]. In
other brain regions, however, the same neural circuitry is thought to support multiple low-dimensional
manifolds such that activity lies on one of these manifolds at any given time, depending on the context
or task. The prefrontal cortex, for example, is crucial for multiple working memory and evidence
accumulation tasks [14, 34, 46, 47], and it is thus thought that the synaptic connectivity in this
brain region supports multiple attractor manifolds. Naively, however, embedding multiple attractor
manifolds in a single RNN inevitably causes interference that degrades the network performance.

To be specific, we focus here on attractor models of spatial representation by hippocampal place
cells [28]. The synaptic connectivity in area CA3 is thought to support auto-associative dynamics,
and place cells in this area are often modeled as participating in a continuous attractor network
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(CAN) [7, 41, 40, 31, 49, 36, 11, 13, 17, 8]. Typically, neurons are first arranged on an abstract
neural sheet which is mapped to their preferred firing location in the environment. The connectivity
between any two neurons is then assumed to depend on their distance on the neural sheet, with
excitatory synapses between nearby neurons and effectively inhibitory synaptic connections between
far away neurons. This architecture constrains the population activity dynamics to express a localized
self-sustaining activity pattern, or ‘bump’, which can be centered anywhere along the neural sheet.
Thus, the place cell network possesses a two-dimensional continuum of possible steady states. As
the animal traverses its environment, this continuum of steady states can be mapped in a one-to-one
manner to the animal’s position.

The same place cells, however, participate in representations of multiple distinct environments,
collectively exhibiting global remapping [27]: the relation between activity patterns of a pair of place
cells in one environment cannot predict the relation of their activity patterns in a different environment
and thus each environment has its unique neural population code. To account for this phenomenon
in the attractor framework, multiple, distinct continuous attractors which rely on the same place
cells are embedded in the connectivity, each representing a distinct single environment [36, 5, 25, 1].
Conceptually, this is similar to the Hopfield model [18], but instead of embedding discrete memory
patterns, each embedded memory pattern is a continuous manifold that corresponds to a different
spatial map. Despite the network’s ability to represent multiple environments, it has been argued that
the embedding of multiple continuous attractors inevitably produces frozen (or quenched) noise that
eliminates the continuity of steady states in each of the discrete attractors [36, 32, 19, 25, 26], leading
to detrimental drifts of the neural activity. Unlike stochastic dynamical noise which is expressed in
instantaneous neural firing rates, time-independent quenched noise is hard-wired in the connectivity
— it breaks the symmetry between the continuum of neural representations.
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Figure 1: Energy landscape. Schematic illustration of energy
surfaces along a 1-dimensional attractor when a single (a), and
multiple (b), maps are embedded. Cyan traces show energy
landscapes along bottom of surfaces.

From a qualitative perspective, the
bump of activity can be conceptual-
ized as residing on a minimum of an
abstract energy landscape in the N
dimensional space of neural activ-
ity (where N is the number of neu-
rons). This energy landscape is pre-
cisely flat in the single map case, in-
dependently of the bump’s position
(Fig. 1a). However, contributions to
the synaptic connectivity included
to support additional maps distort
this flat energy landscape into a sim-
ilar, yet wrinkled energy landscape,
and the continuous attractors are re-
placed by localized discrete attrac-
tor states (Fig. 1b). Consequently,
the system can no longer stably represent a continuous manifold of bump states for any of its embed-
ded attractors. Instead, activity patterns will systematically drift into one of the energy landscape’s
discrete minima, thereby degrading the network’s ability to sustain persistent memory. This highly
detrimental effect has been explored in previous works and was recognized as an inherent property of
such networks [25, 26, 1]. External sensory inputs can pin and stabilize the representation [26, 1], but
it remained unknown whether internal mechanisms could potentially attenuate the quenched noise in
the system and stabilize the representations, independently of external sensory inputs. These insights
raise the question, whether it is possible to embed multiple continuous attractors in a single RNN
while eliminating interference effects and retaining a precisely flat energy landscape for each attractor,
but without simply reducing the network capacity.

Here, we first formalize the concept of an energy landscape in the multiple attractor case. We then
minimize an appropriately defined loss function to flatten the energy landscape for all embedded
attractors. We show that the energy landscape can be made nearly flat, which is reflected by an
attenuation of the drifts, and a dramatic improvement in the stability of attractor states across the
multiple maps. These results provide a proof of principle – that internal brain mechanisms can
support maintenance of persistent representations in neural populations which participate in multiple
continuous attractors simultaneously, with much higher stability than previously and naively expected.
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Results

We consider the coding of spatial position in multiple environments, or maps, by hippocampal
place cells. Within each map, the connectivity between place cells produces a continuous attractor.
We adopt a simple CAN synaptic architecture with spatially periodic boundary conditions. In the
one-dimensional analogue of this architecture, this connectivity maps into the ring attractor model
[7, 41, 31, 49]: neurons, functionally arranged on a ring, excite nearby neighbors, while global
inhibitory connections elicit mutual suppression of activity between distant neurons. This synaptic
architecture leads to a bump of activity, which can be positioned anywhere along the ring.

The overall synaptic connectivity J is expressed as a sum over contributions from different maps,
J =

∑L
l=1 J

l, where L is the number of embedded maps (see Supplementary Material, SM). To
mimic the features of global remapping, a distinct spatial map is generated independently for each
environment, by choosing a random permutation that assigns all place cells to a set of preferred firing
locations that uniformly tile this environment. Consequently, the network possesses a discrete set of
continuous ring attractors, each mapping a distinct environment to a low-dimensional manifold of
population activity patterns. This is similar to previous models [36, 5, 25] but adapted here to the
formalism of a dynamical rate model [1].

Since the connectivity is symmetric, it is guaranteed that the network dynamics will converge to
a fixed point [10]. Qualitatively, these fixed points can be viewed as the minima of an abstract
high-dimensional energy landscape in which the population activity will eventually lie at steady state:
each population activity pattern is associated with an energy value, and the population dynamics are
constrained to follow only trajectories that cannot increase the energy and must ultimately settle in a
local minimum.

When only a single map is embedded in the connectivity, the representations span a true continuum of
steady states and can be accurately read out. From the energy perspective, this continuity corresponds
to a completely flat energy landscape where a continuum of steady states share an identical energy
value. Initialization of the network from any arbitrary state in this case will always converge to a
steady state which is a localized idealized bump of activity. Idealized bumps have a smooth symmetric
structure, and are invariant as they can evolve at any position along the attractor.

It is sufficient, however, to embed only one additional map to distort the continuity of true steady
states. Embedding multiple maps introduces quenched noise in the system which eliminates the
ability to represent a true continuum of steady states in each of the attractors. From the energy
perspective, the quenched noise is reflected in distortions of the energy landscape, as it becomes
wrinkled with multiple minima (Fig. 1b). Thus, the discrete attractors lose their ability to represent a
true continuum of steady states, and the memory patterns consequently accrue detrimental drifts (Fig.
2).

The idealized bumps from the single map case are no longer steady states of the dynamics when
multiple maps are embedded. Instead, activity patterns converge on distorted versions of idealized
bumps. Nevertheless, as long as the network is below its capacity, this activity is still localized.
When initializing the network from an idealized bump at a random position along any of the discrete
attractors, it will instantaneously become slightly distorted and will then systematically drift to the
energy minimum point in its basin of attraction (Fig. 2b). These effects are enhanced as the number
of embedded maps (and thus the magnitude of quenched noise) is increased and until capacity is
breached when the exhibited activity patterns are not expected to be localized in any of the attractors.

Flattening the energy landscape

To attenuate the systematic drifts that emerge upon embedding of multiple maps, we focused on
flattening of the wrinkled energy landscape. The methodology throughout this work relied on the
following two-step procedure: first, the wrinkled energy landscape was evaluated. Then, based on this
evaluation, small modifications M were added to the original synaptic weights to flatten the energy
landscape (SM). Importantly, the goal was to flatten the energy landscape for all maps simultaneously,
which rules out the trivial solution of flattening a subset of maps by unembedding the others.

Generally, the energy value of each arbitrary state for any RNN with symmetric connectivity is given
by the following Lyapunov function [10]:
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Figure 2: Embedding multiple maps distorts the idealized bump and induces systematic drifts.
a, Two examples (left and right) showing snapshots of population activity at three time points (0
ms, 10 ms and 1500 ms). Activity was initialized at a random position along the attractor in each
example. Population activity remains stationary when a single map is embedded (top), but distorts
and drifts when ten maps are embedded (bottom). b, Superimposed bump positions versus time of
ten independent idealized bump initialization (red), in two different embedded maps (top - map #3,
bottom - map #5), out of ten total embedded maps. The stable bump position obtained when a single
map is embedded is plotted for reference (dashed traces). Systematic drift is evident when ten maps
are embedded.

E(I⃗ ,W) =

N∑
i=1

∫ Ii

0

dziziϕ
′ (zi)− hϕ (Ii)−

1

2

N∑
j=1

ϕ (Ii)Wi,jϕ (Ij)

 (1)

where E is the energy value, I⃗ is the population synaptic activity, W is the connectivity, h is an
external constant current, and ϕ is the neural transfer function. To flatten the wrinkled energy
landscape, it was first necessary to evaluate it along each of the approximated attractor manifolds.
Since h, ϕ, and number of neurons (N ) are assumed to be fixed, the energy value (Eq. 1) of each state
depends only on the population activity (I⃗) and the synaptic connectivity (W) which, in our case, is
decomposed into the embedded maps and the weight modifications, namely, W =

∑
l J

l +M.

We first took a perturbative approach in which we examined the idealized bumps that emerge
when only a single map is embedded in the connectivity, while treating all the contributions to
the connectivity that arise from the other maps as inducing a small perturbation to the energy. In
Eq. (1), corrections to the energy of stationary bump states in map l arise from two sources: First, a
contribution arising directly from the synaptic weights associated with the other maps (J l′ where
l′ ̸= l), as well as from the modification weights M (third term in Eq. 1). This term, to leading
order, is linear in the synaptic weights. Second, corrections arising from deformation of the bump
state. Because a deformed bump drifts slowly when the perturbation to the synaptic weights is
weak, it is possible to conceptually define bump states along the continuum of positions, which are
nearly stationary (a precise way to do so will be introduced later on). This contribution to the energy
modification is quadratic in the deformations, because the idealized bump states are minima of the
unperturbed energy functional, and therefore the energy functional is locally quadratic near these
minima. Hence, to leading order in the perturbation, we neglect this modification in this section.
Overall, the energy Ek,l

ib of an idealized bump (ib) state centered around position k in map l is,
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Figure 3: Energy landscape is distorted when multiple maps are embedded but can be flattened
to reduce drifts. a, Evaluated energy landscape using idealized bumps, along two representative
embedded maps (top - map #3, bottom - map #5), out of the total L = 10 embedded maps (orange)
used in Fig. 2. The energy landscape obtained when L = 1 is superimposed in blue. For visibility
purposes, energy landscapes are shown after subtraction of the mean across all positions and maps
(SM). b, Re-evaluated energy landscape using idealized bumps after weight modifications were added
(orange). The landscape is precisely flat. Note that this is only an approximation to the actual energy
landscape, due to the use of idealized bumps (see text). Top: energy along map #3 (blue trace is
identical to orange trace in panel a, top). Bottom: same as top, for all embedded maps concatenated.
c, Bump trajectories as in Fig. 2b, but with added weight modifications. Qualitatively, the magnitude
of the drifts is reduced (compare with Fig. 2b).

Ek,l
ib = E0 −

1

2

∑
l′ ̸=l

r⃗ k,lT

0 J l′ r⃗ k,l
0 − 1

2
r⃗ k,lT

0 Mr⃗ k,l
0 (2)

where E0 is the energy value of an idealized bump state in the case of a single embedded map (which
is independent of k and l), and r⃗ k,l

0 = ϕ
(
I⃗ k,l
0

)
is an idealized bump around position k in map l.

As a first step, we evaluated the first two terms in Eq. 2, which represent the Lyapunov energy of
idealized bump states in the absence of the weight modifications M. In each one of the maps, the
energy landscape was evaluated using these idealized bumps at N uniformly distributed locations,
centered around the N preferred firing locations of the neurons. Since this resolution is much smaller
than the width of the bump, the continuous energy landscape was densely sampled. As expected,
a precisely flat energy landscape was observed when only a single map was embedded (Fig. 3a,
blue traces), as the attractor is truly continuous in this case. However, when multiple maps were
embedded, a wrinkled energy landscape was observed (Fig. 3a, orange traces), as a consequence of
the quenched noise in the system.

We next sought small modifications in the synaptic weights which could potentially flatten the energy
landscape with only mild effects on the population activity patterns. Under the approximations
considered above, flattening the energy landscape requires that the right hand side of Eq. 2 is a
constant, independent of k and l. Because the energy depends on the connectivity in a linear fashion
to leading order, we obtain a set of linear equations. Using the discretization described above and
when N > 2L + 1, such a system is underdetermined with more unknown weight modifications
than sampled energy evaluations along the attractors. Out of the infinite space of solutions, the least
squares solution, which has the overall minimal L2 norm of connectivity modifications was chosen.

As expected, re-evaluating the energy using idealized bumps with the addition of the weight mod-
ifications yielded a precisely flat energy landscape (Fig. 3b, orange traces). This does not imply,
however, that drifts will vanish since we evaluated the true energy landscape only up to first order
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Figure 4: Effects of weight modifications obtained using idealized bumps scheme on the stability
of bump states. a, Energy difference between consecutive network states without (left) and with
(right) the weight modifications as a function of L, the total number of embedded maps. In both cases,
the changes in energy of network states are negligible after 3 seconds, indicating that steady states
were reached (see also Supplementary Fig. 1). b, The bump score (SM) without (blue) and with
(orange) the weight modifications as a function of L. c, Mean squared change of all neuron’s firing
rates [Hz] between time points 0 and 3 sec, without (blue) and with (orange) the weight modifications
as a function of L. Note that the scale is logarithmic. d, Measured drifts without (blue) and with
(orange) the weight modifications as a function of L. Error bars are ±1.96 SEM in all panels (SM).

in the deviations from an idealized bump state. To test whether the weight modifications led to
decreased drifts, we independently initialized the network using an idealized bump, centered in each
realization at one of ten uniformly distributed positions in each attractor. First, changes in the energy
of the population activity through time were monitored, to verify that steady states were reached.
As expected for a Lyapunov energy function, this quantity decreased monotonically, and stabilized
almost completely for all initial conditions within three seconds, indicating that the convergence
to a steady state was nearly complete (Fig. 4a). To further validate that activity was nearly settled
within three seconds, we measured the drift rates and the rate of mean squared change in the firing
rate of all the neurons as defined below. Only subtle changes were still observed beyond this time
(Supplementary Fig. 1), justifying the consideration of the states achieved after three seconds as
approximated steady states. We next evaluated a bump score that quantifies the similarity between the
population activity with any one of the idealized bumps states, placed at all possible positions along
all the attractors (SM). In the large N limit, a sharp transition is expected when capacity is breached,
but this effect is smoothed for a smaller and finite number of neurons, as used in this study (SM).
Nevertheless, adding the weight modifications did not decrease the bump score (Fig. 4b), indicating
that the network can still reliably represent its multiple embedded maps. Our focus is on networks
below the capacity, which we roughly estimate to be ∼20 maps for N = 600.

To quantify the stability of the network, we measured the mean squared change in the firing rate of all
neurons, from initialization and until approximated steady states were reached (at 3s). This measure
of stability improved dramatically due to the synaptic weight modifications (Fig. 4c). A second
measure of stability was the drift of the bumps, obtained by examining the mean distance bumps
traveled. The bump location was defined as the position that maximized the bump score. We found
that the distance bumps traveled over 3s from initialization decreased significantly when the weight
modifications were added to the connectivity (Fig. 4d). Since the spatial resolution of the energy
landscape evaluation is identical to that in which neurons tile the environment, drifts lower than a
single unit practically correspond to a perfectly stable network. These results (Fig. 4c-d) demonstrate
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that flattening the approximated energy landscape across all maps by adding the synaptic weight
modifications indeed increased the stability of the multiple embedded attractors.

Despite the approximation of the energy function to first order in the weight modifications, our
approach achieved dramatic improvement in the network stability. Two limitations of this approach
can be clearly identified: first, the energy landscape was evaluated for idealized bump states, even
though these activity patterns are not the true steady states when multiple maps are embedded in the
connectivity. Second, weight modifications were designed to correct the energy only up to the first
order. Once introduced, these weight modifications produce slight changes in the structure of the
steady states, which in turn generate higher-order corrections to the energy that were neglected in the
approximation. Next, we describe how these limitations can be overcome by defining a more precise
loss function for the roughness of the energy landscape.

Iterative constrained gradient descent optimization

As discussed above, when L > 1 the unmodified system does not possess true steady states at
all positions: following initialization, an idealized bump state is immediately distorted, and then
systematically drifts to a local minimum of the energy functional (Fig. 2). In order to define an
energy landscape over a continuum of positions, it is thus necessary to first formalize the concept of
states that have reached an energy minimum but also span a continuum of positions. To do so, we
considered the minima of the energy functional under a constraint on the center of mass of the bump.
In practice, such minima are found by idealized bump initialization, followed by gradient descent on
the energy functional under the constraint. A distorted bump then dynamically evolves to minimize
the Lyapunov function, while maintaining a fixed center of mass at its initial position (Supplementary
Fig. 2). See SM for details on the constrained optimization procedure and its validation.

Since the goal of the constraint is to parametrize all states along the approximated continuous attractor,
its exact definition is not crucial as long as the optimization is applied along a dense representation of
positions. By finding the minima of the energy functional along such a dense sample of positions, it is
possible to precisely measure the energy landscape of the system along each one of the attractors. As
expected, the evaluated energy landscape obtained using gradient optimization achieved lower energy
values compared to the energy landscape obtained using idealized bumps (Fig. 5a, orange traces).

Using this formal definition of the position dependent energy, it is possible to formulate a learning
objective for the modification weights M, designed to flatten the energy landscape. We denote by
Ek,l the constrained minimum of the energy at position k in map l, evaluated using the constrained
gradient minimization scheme described above. We approached our goal by attempting to equate the
values of Ek,l for all k and l, using an iterative gradient-based scheme (SM). It is straightforward to
evaluate the gradient of Ek,l with respect to M, since up to first order in ∆M,

Ek,l(M+∆M)− Ek,l(M) ≃ −1

2
R⃗ k,lT (∆M) R⃗ k,l (3)

where R⃗k,l is the firing rate population vector at the constrained minimum corresponding to Ek,l.
We note that the constrained minima themselves are modified due to the change in M, but these
modifications contribute only terms of order (∆M)

2 to the change in the energy (see SM).

In each iteration of the weight modification scheme, Ek,l and R⃗ k,l were first evaluated numerically
for all k and l using constrained gradient optimization and the values of M from the previous
iteration (starting from vanishing modifications in the first iteration). Next, in iteration i, we sought
adjustments ∆Mi to the weight modifications M, that equate the energy across all k and l, to leading
order. As in the previous section, Eq. 3 yields an underdetermined set of linear equations (assuming
that N > 2L+ 1), where the least square solution was chosen in each iteration.

Fig. 5b-c shows results obtained over several gradient optimization iterations. The mean absolute
value and standard deviation of weight modifications decreased with the iteration number (Fig. 5b),
and the flatness of the energy landscape improved systematically in successive iterations (Fig. 5c,
top, and Supplementary Fig. 3). The standard deviation of the energy across locations and maps
decreased by almost four orders of magnitude after four iterations, and the maximal deviation of the
energy from its mean decreased dramatically as well (Fig. 5c, bottom).

We next examined the consequences of improved flatness of the energy landscape on the network’s
stability. Qualitatively, individual states exhibited much less drift after five iterations (Fig. 6a),
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Figure 5: Energy landscape evaluation and modifications using constrained gradient optimiza-
tion. a, Energy landscape evaluated using constrained gradient optimization (orange) for maps #3
(top) and #5 (bottom), out of L = 10 embedded maps as used in Figs. 2 and 3. For reference, energy
landscapes evaluated using idealized bumps are plotted as well (blue traces, identical to the orange
traces from Fig. 3a). As expected, the energy after gradient optimization (orange trace) is lower.
Re-evaluating the energy landscape to leading order in the weight modifications yielded a precisely
flat energy landscape when evaluated using the pre-modified network steady states (yellow). b, Top:
mean absolute value of the weights in the original connectivity matrix (blue) and in modification
adjustments for each gradient optimization iteration, as a function of L, the total number of embedded
maps. Bottom: corresponding standard deviation. Error bars are ±1.96 SEM (SM). c, Top: standard
deviation of the energy landscape without (blue) and with the weight modification for each gradient
optimization iteration as a function of L. Bottom: same as top, but showing the peak absolute
difference between all energy values and their mean. Error bars are ±1.96 SEM.

compared to the unmodified scenario (Fig. 2b), and also in comparison with the scheme based on
idealized bumps (Fig. 3c). To systematically quantify the improved stability, we first validated that
approximated steady states were reached three seconds after initialization (Fig. 6b), and that the
bump score was not significantly affected by these modifications (Fig. 6c) as in the idealized bump
approach (Fig. 4a-b). Next, we examined two measures of stability (as in Fig. 4c-d). The mean
squared change in the firing rate of all the neurons, across 3s from initialization was dramatically
improved, by almost three orders of magnitude, compared to the pre-modified networks for the
smaller values of L (Fig. 6d). Measured drifts were attenuated significantly as well (Fig. 6e). Note
that, as described above, drifts which are below or equal to the discretization precision of a single unit
correspond to perfect stability. For completeness, drifts were also measured using the phase of the
population activity vector and demonstrated similar results (Supplementary Fig. 4). Taken together,
these results show that with few constrained gradient optimization iterations, a dramatic increase can
be achieved in the inherent stability of a network forming a discrete set of continuous attractors.

Discussion

Interference between distinct manifolds is highly detrimental for the function of RNNs designed to
represent multiple continuous attractor manifolds. Naively, it is sufficient to embed only a second
manifold in a network to destroy the continuity of the energy landscapes in each attractor. This
leads to the loss of the continuity of steady states, which are replaced by a limited number of
discrete attractors. In tasks that require storage of a continuous parameter in working memory, these
effects are manifested by systematic drifts that degrade the memory over time. Sensory inputs can,
hypothetically, pin and stabilize the representation [26, 1], but in the absence of correcting external
inputs the representation is destined to systematically drift to the nearest local energy minima, thereby
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Figure 6: Effects of weight modifications obtained using constrained gradient optimization on
the stability of bump states. a, Bump trajectories as in Figs. 2b and 3c, but with added weight
modifications obtained after five constrained gradient optimization iterations. Qualitatively, the drifts
almost vanish (compare with Figs. 2b and 3c, and note cyclic boundary conditions). b, Same as Fig.
4a, but after five iterations of the constrained gradient optimization scheme. c-e, Same as Fig. 4b-d,
but with superimposed results obtained after five constrained gradient optimization iterations (yellow
traces). Adding weight modifications did not reduce the bump score (panel c). The network stability
improved significantly (panels d-e) compared to the unmodified network (blue traces) and to the
modified network using the idealized bumps scheme (orange traces). Error bars are ±1.96 SEM (SM).

impairing network functionality. This has been thought to be a fundamental limitation of such
networks.

Here we reexamined this question by adding small weight modifications, tailored to flatten the high
dimensional energy landscape along the approximate attractor, to the naive form of the connectivity
matrix. We found that appropriately chosen weight modifications can dramatically improve the
stability of states along the embedded attractors. Furthermore, the objective of obtaining a flat
energy landscape appears to be largely decoupled from the question of capacity, which is also limited
by interference between multiple attractors. Indeed, introducing the weight modifications did not
qualitatively affect the dependence of the bump score on L (Fig. 6c). In particular, the kink in this
function occurs at approximately L = 20 (for N = 600) both in the pre- and post-modified networks.
Theoretically, the position of the kink is expected to roughly match the location of a sharp transition in
the large N limit, while keeping L/N fixed. A recent work [6] suggests that the capacity may depend
logarithmically, and thus weakly, on the prescribed density of steady states. It will be interesting to
explore the relation of this result to our framework as it was obtained for RNNs composed of binary
neurons, with a linear kernel support vector machine based learning rule.

We explored our schemes in 1D to reduce the computational cost, but it is straightforward to extend
our approach to 2D. One notable difference between 1D and 2D environments is that the number of
neurons required to achieve a good approximation to a continuous attractor, even for a single map,
scales in proportion to the area in 2D, as opposed to length in 1D. However, for a given number of
neurons, there is no substantial difference between the two cases in terms of the complexity of the
problem: the number of equations scales as NL, and the number of parameters (synaptic weights)
scales as N2. Since the random permutations are completely unrelated to the spatial organization of
the firing fields, quenched (frozen) noise is expected to behave similarly in the two cases.

For simplicity, we assumed that each cell is active in each environment, but it is straightforward
to adapt the architecture to one in which the participation ratio, p, defined as the average fraction
of maps in which each cell participates, is smaller than unity. Measurements in CA3, performed
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in the same cells in multiple environments, indicate that CA3 cells are active only in a subset of
environments, with p ∼ 15% as a rough estimate [3]. Clearly, the quenched noise in the system
increases in proportion to the number of embedded maps L, and it will be interesting in future work to
assess how the roughness of the energy landscape depends on N , L, and p. We note that even though
small p implies low interference, it also implies a reduction in the number of neurons participating
in each map, and in each bump state. This is expected to reduce the resilience of each attractor to
the quenched noise. Hence, the overall effect of p on the roughness of the energy landscape (when
keeping N fixed) is non-trivial.

Previous works have suggested that synaptic scaling [32] or short term facilitation [19, 38] mecha-
nisms can stabilize working memory in networks with heterogeneous connectivity. These mechanisms
were achieved, however, in networks which are equivalent to the single map case but with random
added heterogeneity. In this respect, the source of heterogeneity in these networks is different
from the one in this work, where heterogeneity arises from the embedding of multiple coexisting
attractors. It would be interesting to investigate whether a synaptic facilitation mechanism [19] can
be implemented in the multiple map case and further improve the network’s stability alongside the
energy-based approach proposed here. However, since in a discrete set of continuous attractors each
neuron is participating in multiple representations, a synaptic scaling mechanism [32] is unlikely to
achieve such stabilization. In addition, it may also be interesting to explore other potential methods
for the design of a synaptic connectivity that supports multiple, highly continuous attractors, other
than the one explored here. These might include generalization of approaches that were based on
the pseudo-inverse learning rule for embedding of correlated memories in binary networks [29], or
training of rate networks to possess a near-continuum of persistent states by requiring stability of a
low-dimensional readout variable [12].

Our approach is based on the minimization of a loss function that quantifies the energy landscape’s
flatness. This raises several important questions from a biological standpoint. First, the connectivity
structure obtained after training is fine-tuned, raising the question of whether neural networks in the
brain can achieve a similar degree of fine tuning. A similar question applies very broadly to CAN
models, yet, there is highly compelling evidence for the existence of CAN networks in the brain
[45, 2, 48, 46, 39, 21, 15]. We also note that out of an infinite space of potential weight modifications
only a specific set (least-squares) was chosen, leaving many unexplored solutions to the energy
flattening problem which may relax the fine-tuning requirement. Second, our gradient-based learning
rule for the minimization of the loss function was not biologically plausible. In recent years, however,
many important insights were obtained on computation in biological neural networks by training
RNN models using gradient based learning [43, 4, 33, 44, 24, 30, 20, 37, 16, 22, 42]. The (often
implicit) assumption is that biological plasticity in the brain can reach similar connectivity structures
as those obtained from gradient based learning, even if the learning rules are not yet fully understood.
Thus, our results should be viewed as a proof of principle – that multiple embedded manifolds,
previously assumed to be inevitably unstable, can be restructured through learning to achieve highly
stable, nearly continuous attractors. It will be of great interest to seek biologically plausible learning
rules that could shape the neural connectivity into similar structures. Such rules might be derived
from the goal of stabilizing the neural representation during memory maintenance, either based solely
on the neural dynamics, or on corrective signals arising from a drift of sensory inputs relative to the
internally represented memory [23].
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