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Abstract

This paper considers a stochastic Multi-Armed Bandit (MAB) problem with dual
objectives: (i) quick identification and commitment to the optimal arm, and (ii)
reward maximization throughout a sequence of T consecutive rounds. Though
each objective has been individually well-studied, i.e., best arm identification for
(i) and regret minimization for (ii), the simultaneous realization of both objectives
remains an open problem, despite its practical importance. This paper introduces
Regret Optimal Best Arm Identification (ROBAI) which aims to achieve these dual
objectives. To solve ROBAI with both pre-determined stopping time and adaptive
stopping time requirements, we present an algorithm called EOCP and its variants
respectively, which not only achieve asymptotic optimal regret in both Gaussian and
general bandits, but also commit to the optimal arm in Oplog T q rounds with pre-
determined stopping time and Oplog2 T q rounds with adaptive stopping time. We
further characterize lower bounds on the commitment time (equivalent to the sample
complexity) of ROBAI, showing that EOCP and its variants are sample optimal with
pre-determined stopping time, and almost sample optimal with adaptive stopping
time. Numerical results confirm our theoretical analysis and reveal an interesting
“over-exploration” phenomenon carried by classic UCB algorithms, such that
EOCP has smaller regret even though it stops exploration much earlier than UCB,
i.e., Oplog T q versus OpT q, which suggests over-exploration is unnecessary and
potentially harmful to system performance.

1 Introduction

The stochastic Multi-Armed Bandit (MAB) problem [1], which models a wide range of applications
including online recommendations [2, 3, 4], job assignments [5, 6, 7], clinical trials [8, 9], and etc,
is a sequential decision-making process between an agent and an environment which consists of
a number of arms (actions). In this paper, we will use “arm” and “action” interchangeably. Most
existing studies, say [10, 11, 12, 13, 14, 15], formulate a regret minimization problem to study
the bandit model, where the agent aims to maximize the cumulative reward through interacting
with the environment for a number of consecutive rounds. The well-known UCB algorithm [10]
and its variants [12] are among the most popular bandit algorithms for regret minimization, which
exhibit outstanding performances both theoretically and empirically in bandit models. Moreover,
state-of-the-art reinforcement learning algorithms, e.g., [16, 17], are also motivated by the essence of
UCB which sets up confidence intervals to encourage exploration. However, the UCB algorithms
do not commit to a single arm. Instead, they continue to switch among all arms based on reward
signals received. Since one of the ultimate goals of the MAB model is to learn the optimal arm, it
would be ideal if the algorithm would commit to an arm quickly without sacrificing the regret. In fact
and in practice, a number of applications such as occupational decisions [18], medicine release and
pandemic control [19, 20], and long-term investments [21], require or prefer quick commitment to an
action instead of continuous exploration. This motivated us to consider an MAB problem with dual
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Algorithm Regret Setting Optimality Commitment Confidence

UCB [22] 2`op1q

∆ log T Gaussian Yes T N/A
KL-UCB [12] ∆`op1q

KLpµ2,µ1q
log T General Yes T N/A

TS [15] ∆`op1q

KLpµ2,µ1q
log T General Yes T N/A

BAI-ETC [22] 4`op1q

∆ log T Gaussian No Oplog T q ÕpT´1q

DETC [23] 2`op1q

∆ log T Gaussian Yes Ωplog2 T q OpT´1q

UCBα [24] 2α2
`op1q

∆ log T Gaussian No Oplog T q ÕpT´1q

EOCP (Ours) 2`op1q

∆ log T Gaussian Yes Oplog T q O
`

T´1
˘

EOCP-UG (Ours) 2`op1q

∆ log T Gaussian Yes Oplog2 T q O
`

T´1
˘

KL-EOCP (Ours) ∆`op1q

KLpµ2,µ1q
log T General Yes Oplog T q O

`

T´1
˘

LB(pre-determined) 2`op1q

∆ log T Gaussian Oplogc T q Oplog T q OpT´1q

LB(adaptive) 2`op1q

∆ log T Gaussian Oplogc T q Oplog2´c T q OpT´1q

Table 1: Caparison under 2-armed bandits where ∆ “ |µ1 ´ µ2| is the expected reward difference,
KLpµ2, µ1q is the Kullback-Leibler divergence between reward distributions, and α ą 1. EOCP
and KL-EOCP use a pre-determined stopping time and require the knowledge of ∆, while EOCP-
UG uses an adaptive stopping time. Both LBs represent the commitment time lower bound under
Gaussian bandits for regret optimal algorithms with Oplogc T q finite-time regret violation and
OpT´1q confidence.

objectives: (i) quick identification and commitment to the optimal arm, and (ii) minimization of the
cumulative regret throughout a sequence of rounds.

Regret Optimal Best Arm Identification: The lack of commitment in traditional regret minimization
formulation motivates us to propose a new viewpoint towards online decision-making called Regret
Optimal Best Arm Identification (ROBAI), which intends to manage two goals at the same time:
minimizing regret while committing to an arm quickly. Specifically, it is ideal for the agent to quickly
commit to the optimal arm which has the highest expected reward while minimizing the exploration
regret. To solve ROBAI, we need to answer three fundamental questions: (1) how should the learner
explore arms while maintaining a low-regret performance (exploration strategy)? (2) when should
the learner stop exploration and commit to an arm (stopping criterion)? and (3) which arm to commit
to when the exploration ends (action selection strategy)? All three components need to be designed
together to make the algorithm most efficient. The fundamental question this paper addresses is: Can
we design an efficient algorithm that is both regret optimal and identifies the optimal arm quickly,
and what are the fundamental limits of such algorithms?

Connection to Best Arm Identification: One approach people may take to solve ROBAI is the Best
Arm Identification (BAI) algorithm, which studies how to learn the optimal arm with the minimum
number of samples (rounds) and then commit to the selected arm. However, since BAI focuses purely
on sample complexity (or commitment time), the algorithms for BAI explore sub-optimal arms too
aggressively and too often, leading to large regret. As shown in [22], the regret is asymptotically
at least twice as large as the regret under the classic UCB algorithm. Modifications shown in [23]
may lead to better regret performance, but they also make the algorithm too complicated to find the
optimal arm quickly. Moreover, these algorithms adapted from BAI often exhibit poor empirical
regret performances as shown in our numerical experiments of Fig. 1.

Our Contributions: We propose an algorithm called EOCP, which stands for Explore Optimistically
then Commit Pessimistically, to solve the ROBAI problem. It first uses an optimistic modified
version of the classic UCB algorithm to explore arms with a slightly larger exploration function, and
then it commits to the optimal arm candidate according to a pessimistic LCB algorithm when the
exploration ends, by selecting the arm that has the largest lower confidence bound. The exploration
and action identification strategies are respectively motivated by the inflated bonus trick [24] and the
principle of pessimism from the literature of offline bandits [25, 26, 27] and offline reinforcement
learning [28, 29, 30]. Our greatest contributions include designing new stopping rules with both pre-
determined stopping time (vanilla EOCP) and adaptive stopping time (the EOCP-UG variant), which
probably balance the trade-off between regret minimization and action identification. We theoretically
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show that both algorithms are asymptotically regret optimal in Gaussian bandit models. Moreover,
EOCP and EOCP-UG algorithms commit to the optimal arm in Oplog T q and Oplog2 T q number
of rounds respectively, both with OpT´1q confidence. We further characterize the fundamental
commitment time (sample complexity until commitment) limits of action identification for regret
optimal algorithms, which shows that Oplog T q number of samples is always required with pre-
determined stopping time, and Oplog2´c T q number of samples is required with adaptive stopping
time if the finite-time regret of the algorithm does not exceed its asymptotic regret rate by Oplogc T q.
This shows that EOCP is sample optimal and EOCP-UG is nearly sample optimal. We also propose an
improved algorithm called KL-EOCP to achieve regret optimality in general bandits beyond Gaussian
rewards. To the best of our knowledge, KL-EOCP is the first algorithm that not only achieves
asymptotic regret optimality in general bandit models but also commits to the optimal arm in Oplog T q

rounds, which also matches the commitment time lower bound. The more detailed comparison
between existing algorithms and our proposed algorithms with lower bounds is summarized in Tab. 1.
Numerical experiments confirm the superiority of our proposed algorithm and show an interesting
“over-exploration” phenomenon carried by UCB algorithms. As shown in Fig. 1, our EOCP algorithm
reduces more than 20% of regret compared to the vanilla UCB algorithm by finding and committing
to the optimal arm early.

2 Preliminaries

Stochastic Multi-armed Bandits: A stochastic multi-armed bandit problem is an online decision-
making process between an agent and an environment for a number of T consecutive rounds. At
each round t P t1, 2, ¨ ¨ ¨ , T u, the agent can choose an action At among a set of actions (arms)
with cardinality A, denoted by A “ t1, 2, ¨ ¨ ¨ , Au, to interact with the environment. Each action
a is associated with a probability distribution νa and we denote the set of distributions as ν “

tν1, ¨ ¨ ¨ , νAu with respective expectations µ “ tµ1, ¨ ¨ ¨ , µAu which is unknown to the agent a priori.
The expectations are assumed to be bounded so without loss of generality, we have µa P r0, 1s

for any action a. After the agent chooses an action, say action At at round t, it will observe an
independent reward rt which is sampled from the distribution νAt

associated with the action At that it
chooses. We define the optimal action a˚ to be the action which has the highest expected reward, i.e.,
µa˚ “ argmaxaPA µa, and for simplicity, we assume it is unique. Let ∆a “ |µa˚ ´ µa| P p0, 1s

to be the expected reward gap between the optimal action and a sub-optimal action a, and we use
∆min “ mina:∆aą0 |µa˚ ´ µa| to denote the minimum reward gap among all sub-optimal actions.

Regret: The goal of the agent is to maximize the expected cumulative reward from the total T rounds
of interactions with the environment, i.e., to maximize Err1 ` r2 ` ¨ ¨ ¨ ` rT s, where the expectation
is taken over all randomness. The performance of any bandit algorithm Alg chosen by the agent is
usually measured by the cumulative Regret up to round T defined as follows:

RegAlgµ pT q “ Tµa˚ ´ Eµ

«

T
ÿ

t“1

rt

ff

,

where the subscript µ denotes the bandit instance represented by the reward expectations. Maximizing
reward is equivalent to minimizing the cumulative regret. For most of the algorithms to achieve this
goal, the agent will make action-choosing decisions based on two statistics maintained and updated
at each round for every action: the empirical mean r̄tpaq and the number of pulls Ntpaq in previous
rounds. They are defined as:

Ntpaq “

t
ÿ

k“1

1At“a, r̄tpaq “
1

Ntpaq

t
ÿ

k“1

rt1At“a.

The theoretical regret limit of any algorithm Alg is studied and characterized in [13], which shows:

lim inf
TÑ8

RegAlgµ pT q

log T
ě

ÿ

a:∆aą0

∆a

KLpνa, νa˚ q
, (1)

where KLp¨, ¨q denotes the Kullback–Leibler divergence between two distributions. We call an
algorithm Alg regret optimal (asymptotically) if the asymptotic regret performance of Alg achieves
this lower bound. Therefore, whether an algorithm is asymptotically regret optimal will depend on
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the distributions ν of the rewards. Specifically, for Gaussian bandits, the KL divergence between
distributions N pµa, 1q and N pµa1 , 1q is simply pµa ´ µa1 q2{2. So the asymptotic regret rate lower
bound in the RHS for Gaussian bandits would be 2

ř

a:∆aą0 ∆
´1
a .

Commitment: In ROBAI, commitment to a single action â (ideally, the optimal action) is required.
After a stopping time Tc, the agent will not be allowed to switch actions and will commit to the same
action until the end. We consider two categories of commitment: the pre-determined stopping-time
setting and the adaptive stopping time setting. The pre-determined stopping time requires Tc to
be pre-specified before the first round of interaction, while the adaptive stopping criterion requires
Tc to be a stopping time measurable to the natural filtration. How quickly the agent commits is
measured by the Sample Complexity until Commitment (also called commitment time) which is the
expected number of exploration rounds, i.e., SCCAlg

µ pT q “ EµrTcs. The accuracy of identifying the
optimal action is measured by the confidence, which is the probability that the agent commits to a
sub-optimal action, i.e., Pµpâ ‰ a˚q. An ideal algorithm should minimize the commitment time
while maintaining confidence lower than a pre-specified threshold.

ROBAI Problem Formulation: We use ΠRO to denote the class of regret optimal algorithms which
commit to the optimal action with a confidence lower than OpT´1q, i.e.,

ΠRO “

#

Alg

ˇ

ˇ

ˇ

ˇ

ˇ

lim sup
TÑ8

RegAlgµ pT q

log T
ď

ÿ

a:∆aą0

∆a

KLpνa, νa˚ q
and Pµpâ ‰ a˚q “ O

`

T´1
˘

+

.

ROBAI aims to design a regret optimal algorithm Alg P ΠRO to minimize the commitment time:

minSCCAlg
µ pT q “ EµrTcs, s.t., Alg P ΠRO.

3 Low-Complexity Algorithms

In this section, we propose a low-complexity algorithm called EOCP with a pre-determined stopping
time to solve ROBAI. Then, we propose a variant called EOCP-UG with adaptive stopping time.

3.1 The Pre-determined Stopping Time Setting

The pre-determined stopping time setting is motivated by real-world applications such as A/B tests in
medical experiments with operational or budget limits [31], where the number of testers is usually pre-
designed and determined before the experiment starts. Therefore, we require the agent to pre-specify
the stopping time Tc before the first round. We also assume the algorithm knows a strictly positive
lower bound ∆lb on the minimum reward gap ∆min between the optimal action and sub-optimal
actions. We propose our EOCP algorithm in Algorithm. 1.

Algorithm 1 EOCP with Pre-determined Stopping Time
Require: Exploration function l; Lower bound ∆lb on minimum reward gap.

1: Let Tc “ 8Al
∆2

lb
` A be the pre-determined stopping time.

2: Initialize by pulling each arm a once.
3: for t “ A ` 1 : Tc do
4: Set uncertainty bonus bt´1paq “

b

2l
Nt´1paq

, and UCBt´1paq “ r̄t´1paq ` bt´1paq.

5: Take action At “ argmaxa UCBt´1paq. // UCB Exploration
6: end for
7: Set bonus bTc

paq “

b

2l
NTc paq

, and LCBTc
paq “ r̄Tc

paq ´ bTc
paq.

8: For t P rTc ` 1, T s, commit to action â “ argmaxa LCBTc
paq. // LCB Commitment

In EOCP, the agent will spend the first A rounds exploring each arm once as a start. Our choice of
exploration strategy is a modified version of the classic UCB algorithm where the agent will choose
the action with the largest upper confidence bound in terms of empirical reward. The exploration
function l controls the intensity of exploration to achieve the optimal trade-off between reducing
uncertainty for action identification and minimizing regret. After the pre-determined stopping time
Tc, the agent will commit to an action that has the largest lower confidence bound of empirical
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reward. This LCB commitment strategy is inspired by the principle of pessimism from the literature
of offline learning [25, 26, 27, 28, 29, 30], where the empirical reward of each action is penalized by
the amount of uncertainty to combat the imbalanced data coverage of actions in the offline dataset.
It is also shown that the pessimistic principle works well when the data coverage is concentrated
on the optimal action, i.e., the optimal action has the largest number of pulls. This trait of the LCB
algorithm matches the trait of UCB exploration, in which the optimal action will be chosen much
more often than sub-optimal actions in exploration. So by designing such a proper Tc, we will be
able to achieve the best of both worlds: a low-regret exploration of the UCB algorithm, and a fast
best arm identification through the choice of LCB algorithm.

3.2 The Adaptive Stopping Time Setting

In this setting, we do not assume the algorithm is provided a priori with additional information on
the lower bound ∆lb on the minimum reward gap, so there is no hope of designing a pre-determined
stopping time. Instead, we design our stopping criterion based on the samples collected from the
explorations, which leads to the fact that Tc is a stopping time measurable to the natural filtration.
We propose our EOCP-UG algorithm in Algorithm 2 corresponding to an unknown gap.

Algorithm 2 EOCP-UG with Adaptive Stopping Time
Require: Exploration function l.

1: Initialize by pulling each arm a once.
2: while maxa mina1 Nt´1paq ´ lNt´1pa1q ď 1 do
3: Set uncertainty bonus bt´1paq “

b

2l
Nt´1paq

, UCBt´1paq “ r̄t´1paq ` bt´1paq.

4: Take action At “ argmaxa UCBt´1paq. // UCB Exploration
5: end while
6: Let Tc Ð t ´ 1, bonus bTcpaq “

b

2l
NTc paq

, and LCBTcpaq “ r̄Tcpaq ´ bTcpaq.

7: For t P rTc ` 1, T s, commit to the action â “ argmaxa LCBTc
paq. // LCB Commitment

In EOCP-UG, we use the same UCB exploration and LCB best action identification strategies as in
the pre-determined stopping time setting. The only difference compared to EOCP comes from the
new stopping rule based on the number of pulls Ntpaq for each action. Specifically, the exploration
ends if there is an imbalanced fraction of Ntpaq among all actions, that is, one action has l times more
pulls than all other actions in previous rounds. Here, l is the exploration function and we will select l
to be slightly larger than log T in later sections. The intuition of such a stopping criterion comes from
the characteristics of UCB exploration, i.e., as round t increases, the algorithm will slowly adapt
to choosing the optimal action more often. When the fraction between the number of pulls for the
optimal action and any sub-optimal action is large enough, the optimal action will be identifiable.
Note that in action identification, we can simply choose the action that has the largest number of
pulls NTc

paq when we stop, and obtain exactly the same performance guarantees. However, to keep
it consistent with the pre-determined stopping time setting, we use the LCB commitment.

4 Main Results

In this section, we assume the distributions tν1, ¨ ¨ ¨ , νAu come from a Gaussian family, where
νa associated with action a follows a Gaussian distribution with mean µa and unit variance, i.e.,
νa „ N pµa, 1q. The results in this section can be easily generalized to sub-Gaussian distributions.
The key idea towards the optimal trade-off between controlling regret and identifying the optimal
action is inspired by the inflated bonus trick from [24], where we will choose the exploration function
l to be slightly larger than the log T used in vanilla UCB algorithms to encourage more exploration
of sub-optimal arms, i.e., we will select l “ log T ` Op

?
log T q.

4.1 Regret Optimality for Gaussian Bandits with Pre-Determined Stopping Time

In Theorem. 1, we present the theoretical regret performance guarantee of the EOCP algorithm:
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Theorem 1 Let l “ logpT q ` Op
?
log T q and when T is large enough, the expected regret of the

EOCP algorithm in Algorithm. 1 with pre-determined stopping time can be upper-bounded by:

RegEOCP
µ pT q ď

ÿ

a:∆aą0

2 log T

∆a
` O

ˆ?
log T

∆min

˙

.

A direct asymptotic bound can be obtained from Theorem. 1, i.e.,

lim sup
TÑ8

RegEOCP
µ pT q

log T
ď

ÿ

a:∆aą0

2

∆a
.

Comparing it to Eq. (1), it is clear that EOCP is asymptotically regret optimal in Gaussian bandits.
The commitment time and confidence guarantees can be extracted from the setup of Algorithm. 1
itself and the proof of Theorem. 1. Recall that in Algorithm. 1, we pre-determined the length of
exploration Tc to be Op∆´2

lb lq. The following corollary characterizes these parts of theoretical
performance:

Corollary 1 Let l “ logpT q ` Op
?
log T q, the expected commitment time for EOCP in Algorithm. 1

is given by
SCCEOCP

µ pT q “ Op∆´2
lb log T q,

and the confidence level is OpT´1q.

The complete proofs of Theorem. 1 and Corollary. 1 are provided in the supplementary material. In
order to upper bound the cumulative regret of T rounds, we divide the total regret into the regret
accumulated in exploration and the regret accumulated in commitment.

Bounding Regret from Exploration: To bound the regret accumulated in exploration and since we
use a variant of UCB exploration, we follow the standard procedure of proofs for UCB algorithms,
e.g., proof of Theorem 8 from. [22]. Then, this procedure results in an order Oplq dominating regret
term, which is Oplog T q by the choice of our exploration function. Through carefully applying
any-time concentration inequalities, we are able to show that the constant in front of this dominating
regret term is exactly the constant we obtained in Theorem. 1.

Bounding Regret from Committing to the Wrong Action: As for the regret accumulated from
commitment, the key is to prove the OpT´1q confidence level upper bound presented in Corollary. 1.
We follow a procedure similar to the proof of Theorem 1 in [2] to utilize the adaptivity of UCB
exploration and the pessimistic LCB commitment. We first show that with high probability, the
number of pulls Ntpaq for any sub-optimal actions in the exploration phase is upper-bounded. This is
because after a certain number of pulls, the uncertainty bonus bt´1paq for any sub-optimal action will
be so small that the upper confidence bound UCBt´1paq cannot be larger than µa˚ , thus less than the
upper confidence bound of the optimal action. Therefore, sub-optimal actions will not be chosen in
future rounds. After our carefully designed Tc, we make sure that the optimal action has the largest
number of pulls NTcpaq among all actions, thus its bonus is so small so that its lower confidence
bound LCBTc

pa˚q is larger than the expectations µa of any sub-optimal action a, and thus larger than
the lower confidence bound of other actions. So with high probability, we will commit to the optimal
action. Then, the OpT´1q confidence level will provide us with a constant regret in commitment, and
the overall dominating regret comes from exploration.

Combining both bounds, we are able to show the regret performance upper bound in Theorem. 1.

4.2 Regret Optimality for Gaussian Bandits with Adaptive Stopping Time

We present the regret performance of EOCP-UG in Theorem. 2. Compared to Theorem. 1, EOCP-UG
has exactly the same regret performance guarantees as EOCP even without the knowledge of a lower
bound ∆lb on the minimum reward gap. This implies that EOCP-UG adapts to the reward gap.

Theorem 2 Let l “ logpT q ` Op
?
log T q and when T is large enough, the expected regret of the

EOCP-UG algorithm in Algorithm. 2 with adaptive stopping time is upper-bounded by:

RegEOCP-UG
µ pT q ď

ÿ

a:∆aą0

2 log T

∆a
` O

ˆ?
log T

∆min

˙

.
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We can also directly derive an asymptotic regret bound which shows that EOCP-UG is regret optimal
in Gaussian bandits:

lim sup
TÑ8

RegEOCP-UG
µ pT q

log T
ď

ÿ

a:∆aą0

2

∆a
.

With adaptive stopping, the sample complexity until the commitment is not a pre-determined value.
However, we can still extract similar guarantees along with the confidence level from the proof of
Theorem. 2. We present these results in the following corollary:

Corollary 2 Let l “ logpT q ` Op
?
log T q, the sample complexity until commitment for EOCP-UG

algorithm in Algorithm. 2 is upper-bounded by:

SCCEOCP-UG
µ pT q ď

ÿ

a:∆aą0

8 log2 T

∆2
a

` O

˜

log
3
2 T

∆2
min

¸

,

and the confidence level is upper bounded by OpT´1q.

Proof Roadmap: The complete proofs of Theorem. 2 and Corollary 2 are provided in the supplemen-
tary material. Compared to the proof of Theorem. 1, the major difference lies in bounding the regret
of commitment. Similarly, we are required to bound the probability of committing to a sub-optimal
action. We first show that when the agent stops exploration according to Line 2 of Algorithm. 2, the
action that has the maximum number of pulls is the optimal action with high probability. Then, we
show that under this event we will commit to the optimal action if we use LCB commitment.

Magic Choice of Exploration Function: Bounding the regret in both exploration and commitment
requires a delicate analysis with any time concentration inequalities. Our choice of exploration
function l plays an important role which manages the trade-off between low-regret exploration
and high-probability optimal action commitment. If the exploration function is too large, i.e., if
l “ 2 log T , the regret in exploration will not be optimal. If the exploration function is too small, i.e.,
if l “ log T , the probability of committing to the wrong action can not be bounded by OpT´1q. Our
magic choice of exploration function l achieves the best of both worlds.

Loss of SCC from Unknown Gap: Even though we have the same regret performance, the guarantee
for commitment time is Oplog2 T q which is worse than Oplog T q in the pre-determined setting. So,
is this order fundamental with adaptive stopping time? In the next section, we provide the answer by
investigating the theoretical limits of commitment time for asymptotic regret optimal algorithms.

4.3 Fundamental Limits of Sample Complexity until Commitment

In order to answer the question regarding the fundamental sample complexity until commitment
for regret optimal algorithms with both pre-determined and adaptive stopping times, we consider
a simplified Gaussian bandit model where there are only 2 arms. The reward gap between the two
actions is ∆, so ∆min “ ∆. From Eq. (1), it is clear that the optimal regret of any algorithm is
asymptotically 2∆´1 logpT q, so the set of all regret optimal algorithms is characterized by:

ΠRO “

#

Alg

ˇ

ˇ

ˇ

ˇ

ˇ

lim sup
TÑ8

RegAlgµ pT q

log T
ď

2

∆
and Pµpâ ‰ a˚q “ O

`

T´1
˘

+

.

Furthermore, for each regret optimal algorithm, we say it has c-logarithm regret violation if there
exists a constant c P p0, 1q (choose the minimum c if there exists multiple) such that the following
inequality is satisfied when T is large enough:

ˇ

ˇ

ˇ

ˇ

RegAlgµ pT q ´
2 logpT q

∆

ˇ

ˇ

ˇ

ˇ

“ Oplogc T q.

If an algorithm has c-logarithm regret violation, the largest additional lower order term in its finite-
time regret bound should be Oplogc T q. On the other hand, it also characterizes the convergence rate
of the regret to its asymptote. For example, the vanilla UCB algorithm has at most 1{2-logarithm
regret violation, and our EOCP and EOCP-UG algorithms both have at most 1{2-logarithm regret
violation [22, Theorem. 8]. We then provide the following theorem to characterize the fundamental
commitment time limits for algorithms in ΠRO:
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Theorem 3 (Information-Theoretic Limits of SCC) Consider a 2-armed Gaussian bandits, for
any asymptotically regret optimal algorithm Alg which has c-logarithm regret violation, in order to
guarantee OpT´1q confidence level, the sample complexity until commitment with pre-determined
stopping time is lower bounded by

Tc “ Ωp∆´2 logpT qq,

and with adaptive stopping time, the sample complexity until commitment is lower-bounded by:

EµrTcs “ Ωp∆´2 log2´c
pT qq.

Proof Roadmap: The proof is provided in the supplementary material. The proof idea relies on the
well-known “transportation” lemma [32, Lemma. 1] originally derived to prove the theoretical limits
of best arm identification algorithms. This lemma characterizes the expected number of pulls for each
action by hypothesis testing between the original bandit problem and another bandit instance with a
different optimal action. Then by finding a proper bandit instance and combining the lemma with
regret optimal algorithms, we will be able to prove Theorem. 3 for both settings.

Sample Optimality: It is shown by Corollary. 1 and Theorem. 3 together that our proposed EOCP
algorithm achieves the optimal commitment time with Oplog T q with pre-determined stopping time
if the reward gap ∆ is known a priori. However, with adaptive stopping time, our EOCP-UG
algorithm has 1{2-logarithm regret violation and Oplog2 T q commitment time which is larger than
the Oplog1.5 T q lower bound indicated by Theorem. 3. Even though EOCP-UG is not shown to be
exactly sample optimal, we conjure that the performance gap comes from our analysis techniques
which makes one of the bounds (maybe both) not tight. Whether EOCP-UG is indeed sample optimal,
and if not, how to design regret optimal algorithms with Oplog1.5 T q commitment time remains
open.

5 Regret Optimality for General Bandits

Even though EOCP is applicable in sub-Gaussian bandits, it is not regret optimal any more beyond
Gaussian bandits. This can be seen by comparing Theorem. 1 and the fundamental regret limit (1)
with Pinsker’s inequality, and it is clear that the lower bound is smaller than our upper bound
asymptotically beyond Gaussian bandits. To close this gap, we propose an improved algorithm called
KL-EOCP which is provably regret optimal in general bandits.

Natural Exponential Family: We assume the reward distributions of each action belong to a natural
exponential family, i.e., P “ tpνθqθPΘ : dνθ{dξ “ exppθx ´ bpθqqhpxqu, where Θ Ă R is the set
of all parameters θ such that the expectation µ is positive and bounded, i.e., µ P r0, 1s. ξ is some
reference measure on R and b : Θ Ñ R is a convex twice differentiable function. This distribution
νθ can also be parameterized by its expectation µ “ b1pθq, the derivative of bp¨q, and for every µ we
denote by νµ the unique distribution in P with expectation µ and by θµ its corresponding parameter.
Gaussian distribution with unit variance is an example of this family. Moreover, the Kullback-Leibler
divergence from νθ1 to νθ2 (with a little abuse of notation) can be expressed as [12]:

KLpµ1, µ2q “ KLpνθ1 , νθ2q “ bpθ2q ´ bpθ1q ´ b1pθ1qpθ2 ´ θ1q.

The set of exponential family bandit models ν “ pνθ1 , ¨ ¨ ¨ , νθAq can be characterized by the
expectations of the actions µ “ pµ1, ¨ ¨ ¨ , µAq. We assume for all λ P R, and θ P Θ the moment
generating function Mνθ

pλq “ Eνθ
rexppλW qs for the distribution νθ is well-defined and is finite.

Algorithm: Analog to ∆lb in Algorithm. 1, the KL-EOCP algorithm requires the knowledge of
a strictly positive lower bound KLlb on the “minimum KL divergence”, denoted as KLmin, which
captures the minimum reward distribution gap (distance) between the optimal action and any sub-
optimal action. Considering the asymmetricity of the KL divergence, we define KLmin as follows:

KLmin “ min
a‰a˚

min
␣

KLpµa, µa˚ q, 4KLpµ1
a, µaq

(

,

where µ1
a P pµa, µa˚ q such that 4KLpµ1

a, µa˚ q “ KLpµa, µa˚ q. The term 4KLpµ1
a, µaq reflects the

skew of KL divergence when the two distributions are switched. A simple lower bound to KLmin can
be easily computed given a lower bound ∆lb on the minimum reward gap ∆min with the expression
of the exponential family, while our KL-EOCP algorithm can operate with any lower bound KLlb.
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The KL-EOCP algorithm is summarized in Algorithm. 3. It designs the UCB and LCB bonuses based
on the KL divergence of the reward distributions for all actions. In general, these designs would lead
to smaller confidence intervals with the same OpT´1q concentration guarantees as first adopted in
the KL-UCB algorithm proposed in [12]. If the lower bound information KLlb is not known a priori,
we can combine Algorithm. 3 with the adaptive stopping time of EOCP-UG to deal with this setting.

Algorithm 3 KL-EOCP with Pre-Determined Stopping Time
Require: Exploration function l; Lower bound KLlb on the minimum KL divergence.

1: Let Tc “ 4Al
KL2

lb
` A be the length of the exploration phase.

2: Initialize by pulling each arm a once.
3: for t “ A ` 1 : Tc do
4: Set upper confidence bound:

UCBt´1paq “ argmax
µěr̄t´1paq

tNt´1paqKLpr̄t´1paq, µq ď lu .

5: Take action At “ argmaxa UCBt´1paq. // UCB Exploration
6: end for
7: Set lower confidence bound:

LCBTc
paq “ argmin

µďr̄Tc paq

tNTc
paqKLpr̄Tc

paq, µq ď lu .

8: For t P rTc ` 1, T s, commit to action â “ argmaxa LCBTcpaq. // LCB Commitment

Regret Optimality in General Bandits: The theoretical regret performance of the KL-EOCP is
summarized in the following Theorem. To the best of our knowledge, it is the first result achieving
asymptotic regret optimality in general bandit problems with commitment.

Theorem 4 Let l “ logpT q ` Op
?
log T q, when T is large enough and the reward distributions ν

of each action belong to the same natural exponential family, the expected regret of KL-EOCP in
Algorithm. 3 is upper-bounded by:

RegµpT q ď
ÿ

a:∆aą0

∆a log T

KLpµa, µ1q
` O

˜

log
3
4 T

KLmin

¸

.

Therefore, it is clear that we can derive an asymptotic upper bound as follows:

lim sup
TÑ8

RegµpT q

log T
ď

ÿ

a:∆aą0

∆a

KLpµa, µ1q
,

which exactly matches the regret limit in Eq. (1). The complete proof of Theorem. 4 is provided in
the supplementary materials. Even though the proof roadmap is similar to the proof of Theorem. 1,
the major difference comes from the use of a tighter concentration lemma modified from [12,
Theorem. 11] which captures the low probability event when the KL divergence of the empirical
mean is far away from its expectation. The sample complexity until commitment and confidence level
guarantees can also be extracted from the proof. Specifically, SCCKL-EOCP

µ pT q “ OpKL´1
lb log T q

and the confidence level is upper bounded by OpT´1q.

6 Numerical Experiments

In this section, we study the empirical performance of our proposed EOCP algorithm with variants
compared to existing algorithms in the literature, including BAI-ETC [22], UCB [10], KL-UCB [12],
and DETC [23] in both Gaussian and Bernoulli bandit settings. In this section, we only test the
algorithms on a two-armed bandit problem because some baselines are only applicable in two-armed
settings. The performance of our algorithms in bandit models with multiple arms is demonstrated in
Appendix. E. In the Gaussian setting, we test all the algorithms with distributions N pµi, 1q for arm

9
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Figure 1: Comparison of regret performance of EOCP with variants and existing algorithms in the
literature. The gap ∆ between the two arms is 0.5 and results are averaged over 105 iterations.

i “ 1, 2 with a total of 106 rounds, and in the Bernoulli bandit setting, we test the algorithms with
distribution Berpµiq for arm i “ 1, 2 with a total of 105 rounds. We set µ1 “ 0.7 and µ2 “ 0.2, so
the gap between the arms is ∆ “ 0.5. The results are averaged over 105 iterations and in Fig. 1.

In the Gaussian bandit setting, it shows that both BAI-ETC and DETC algorithms exhibit unsatisfac-
torily high regret. On the contrary, our proposed algorithms EOCP and EOCP-UG have lower final
regret even compared to the popular UCB algorithm, surprisingly. Even though our algorithms use a
larger exploration function than the vanilla UCB algorithm, and accumulate regret more quickly in
exploration, i.e., approximately the first 1000 rounds, it allows us to commit to the optimal action.
Our algorithms almost find the optimal action in all simulated traces which gives rise to the very
slowly-increasing behavior of regret in the commitment phase. This phenomenon coincides with
our theoretical analysis which shows that the regret in commitment is Op1q. However, the UCB
algorithm continues to explore sub-optimal actions, so its regret continues to grow when the EOCP
algorithm has already committed to the optimal action. Numerically, the EOCP algorithm reduces
20% of the final regret compared to UCB through early commitment, and we conjure that preventing
the “over-exploration” phenomenon of the UCB algorithm is behind the reason for such empirical
regret reduction. Comparing the commitment time of EOCP-UG and EOCP, we can see that both
algorithms stop exploration at approximately 1000 rounds. This means that not knowing the gap
information won’t harm the empirical sample complexity until commitment too much, which in
turn may imply that our theoretical analysis of commitment time upper bound in Corollary. 2 is not
tight enough. The same trend can be witnessed in the results of the Bernoulli bandits. However,
in Bernoulli bandits, KL-UCB and KL-EOCP algorithms have a much better regret performance
than other algorithms, which shows that knowledge of the reward distribution family improves the
performance significantly.

7 Conclusion

We studied ROBAI which intends to both minimize regret and commit to the optimal action. We
proposed EOCP with variants, which combine UCB exploration and LCB commitment with novel
stopping criteria in both pre-determined and adaptive settings. We showed that both EOCP and EOCP-
UG are regret asymptotic optimal in Gaussian bandits with Oplog T q and Oplog2 T q commitment
time respectively, almost matching the theoretical limits we derived. For general bandits, we proposed
KL-EOCP which is provably regret optimal. Numerical experiments confirmed the superiority of our
algorithms and revealed the “over-exploration” phenomenon of UCB algorithms.
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A Related Works

In this section, we provide a more detailed review of related works. We first review two classic
problem formulations of the multi-armed bandit model: the regret minimization problem and the
best arm identification problem. Then we review previous works on explore-then-commit algorithms
which takes commitment into account. Finally, we review the offline stochastic bandit literature
which motivated our choice of pessimistic principle in action identification.

A.1 Regret Minimization

The theoretical limits of regret minimization have been revealed by [13, 14], which shows that the
expected regret of any algorithm is lower bounded when horizon T approaches infinity:

lim inf
TÑ8

RegAlgµ pT q

log T
ě

ÿ

a:∆aą0

∆a

KLpνa, νa˚ q
,

where KLp¨, ¨q denotes the Kullback–Leibler divergence between two distributions. Based on the
asymptotic lower bound, we say an algorithm is asymptotically regret optimal if its regret performance
achieves the regret lower bound asymptotically. Two sets of algorithms prevail in the regret mini-
mization literature. One is the family of UCB algorithms [10, 12, 33], which reflects the principal of
optimism in action selection to encourage exploration. To be specific, the UCB algorithms will select
the action which has the largest upper confidence bound of reward estimation. This upper confidence
bound represents the highest possible expected reward given the samples collected from previous
rounds under a high probability event. Usually the additional bonus from the empirical mean to the
upper confidence bound for a specific action decreases as the number of pulls increases. Therefore,
actions which have not been tried frequently in previous rounds will have larger bonus. This trait
encourages exploration. By designing the bonus carefully, one can find the optimal trade-off between
exploration and exploitation. The other set of prevailing algorithms is the family of Thompson
Sampling Algorithms [1, 34, 11, 15, 35]. The TS algorithm assumes each action is associated with a
posterior distribution given the reward feedback from previous rounds. Then the agent will collect
one virtual sample from each posterior distribution and choose the action which has the largest virtual
sample. As the number of pulls grows, the posterior distribution will be more and more concentrated
around the expectation so the virtual sample will also be closer to its expectation. On the other
hand, the remaining randomness encourages exploration of other under-explored actions. However,
both algorithms do not commit to a single action because their action selection policies have to be
re-evaluated at each round based on new observations.

A.2 Best Arm Identification

The best arm identification algorithms consist of three components: an action sampling rule deciding
which action to choose at each round, a stopping rule deciding a time τ to stop collecting new
samples, and a decision rule which outputs a best action candidate â. We call an algorithm δ-PAC
if the probability of outputting a sub-optimal action is less than δ, i.e., Pµpâ ‰ 1q ď δ. Here, δ is
also called the confidence level. The performance of best arm identification algorithms is measured
by both the sample complexity until identifying the optimal action and the confidence level. The
theoretical limits for best arm identification algorithms are also well studied in [36, 32], which shows
that any δ-PAC algorithm would incur at least Oplog δ´1q sample complexity asymptotically. The
constant in front of the logarithmic term depends on the bandit instance, i.e., the reward expectation
and distribution of every action. Based on the this lower bound, the authors of [36] proposed the
Track and Stop (TAS) algorithm which proved to be asymptotic optimal if the distribution associated
with each action is from a single parameter natural exponential family. The TAS algorithm estimates
the expectation of each action and at the same time calculates the optimal proportion of pulls for
each action so that the optimal action is identifiable from the sub-optimal ones. Then, it designs a
feedback control dynamic to track this proportion, similar to the Max-weight dynamic in queueing
systems [37]. The stopping criterion of TAS is based on a generalized likelihood test. When the
optimal action is identifiable from sub-optimal ones, the optimal action candidate â is chosen to be
the action which has the largest empirical reward mean.
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A.3 Explore-Then-Commit Algorithms

A natural bridge between regret minimization and best arm identification problems, which also
takes into account action commitment, is the explore-then-commit algorithms [38, 22, 23, 39, 40,
41].Researchers have long been hoping that such algorithms will achieve the best of both worlds:
maintaining low regret and identifying the optimal action quickly. In these algorithms, a clear
separation of exploration phase and exploitation phase exists. At each round, the agent will only
make action selection decisions based on the samples collected from the exploration phase, and
commitment to a single action during the exploitation phase is required. No samples from the
exploitation phase can be utilized although the agent may determine the length of both phases. It
is clear that explore-then-commit algorithms can be easily designed from best arm identification
algorithms, i.e., one would first run the best arm identification algorithm in the exploration phase,
and then commit to the action â found by the algorithm. However, it is shown in [22] that these type
of BAI-ETC algorithms is essentially regret sub-optimal. To be specific, the regret lower bound of
such algorithms is asymptotically twice as large as the upper bound of optimal regret minimization
algorithms such as UCB and Thompson Sampling even with careful tuning. A recent work [23]
provides a double explore-then-commit algorithm called DETC which is shown to be asymptotically
regret optimal. But the algorithm itself is very complex and requires multiple stages of exploration
and exploitation. This trait makes its sample complexity to identify the optimal action large, i.e.,
Ωplog2 T q. Moreover, in empirical studies, the DETC algorithm incurs very large regret which is
no match for the vanilla UCB algorithm. Another work [24] proposes an exploration algorithm
with inflated UCB, which can be naturally adapted to an ETC algorithm. Even though the sample
complexity is order optimal, i.e., Oplog T q, the regret performance is essentially sub-optimal due to
the inflation of UCB bonus.

A.4 Offline Stochastic Bandits and Reinforcement Learning

Our action identification policy is inspired by the principle of pessimism widely adopted in offline
stochastic bandit problems [26, 27, 25] and reinforcement learning problems [28, 30, 29]. In offline
bandit problems, the agent is not allowed to interact with the environment at will. Instead, it is
provided with a training dataset which contains action and reward pairs collected from the same
bandit problem. Based on this dataset, the agent is asked to choose the optimal action. It is shown
in [25] that greedily selecting the action with largest empirical mean would fail to produce the optimal
action in some bandit problems. This failure results from the randomness of samples in the dataset
and the imbalanced number of samples for each action. Instead, choosing the action with largest lower
confidence bound to combat the imbalanced uncertainty between estimations of different actions
leads to better performance as justified in [27, 25]. Similar to the UCB algorithm, the penalty term
between the empirical mean and the lower confidence bound for each action decreases as the number
of pulls increases, so the action which has not been tried frequently will suffer large penalty. In this
way, the agent will avoid selecting an action which has large uncertainty to enhance stability. Our
proposed algorithm incorporates the idea of pessimism in action identification.

B Proofs of Main Results for EOCP and EOCP-UG

In this section, we provide the proofs of main results presented in Section. 4. Throughout the proof
section, we let Wa,i be the i-th sample from pulling arm a the i-th time. Let r̄a,s be the empirical
mean of arm a after it has been pulled s times. Before proving the theorems, we provide several
lemmas which gathers specific large deviation results useful in our analyses. Then we prove the regret
performance based on the concentration lemmas.

B.1 Concentration Inequalities

We first present two concentration lemmas which characterize the sum and mean of empirical
realizations of independent sub-Gaussian random variables as follows:
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Lemma 1 (Theorem 9.2 in [38]) Let W1,W2, ¨ ¨ ¨ ,WT be a sequence of independent σ-
subgaussian random variables with ErW1s “ 0. Then, for any δ ą 0, we have:

P

˜

Ds ď T,
s
ÿ

i“1

Wi ě δ

¸

ď exp

ˆ

´
δ2

2Tσ2

˙

. (2)

Lemma 2 (Lemma C.3 in [23]) Let T1 ď T2 ď T be two real numbers in R`. Let
W1,W2, ¨ ¨ ¨ ,WT be a sequence of identically and independently distributed random variable ac-
cording to a σ-subgaussian distribution with ErW1s “ 0. Then, for any δ ą 0, we have:

P
ˆ

DT1 ď s ď T2,

řs
i“1 Wi

s
ě δ

˙

ď exp

ˆ

´
T1δ

2

2σ2

˙

(3)

The proofs of aforementioned concentration lemmas can be found in the references respectively. Now
we present the concentration results for our design of confidence bonuses as follows:

Lemma 3 Let W1,W2, ¨ ¨ ¨ ,WT be identically and independently distributed 1-sub-Gaussian ran-
dom variables with ErW1s “ 0. Let T1 ď T2 ď T , then the following holds:

(a) if l ě 2, P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

ď
min tT2 ´ T1, el plog T2 ´ log T1q ` eu

expplq
;

(4a)

(b) if δ P p0,
?
3s, P

˜

Ds P rT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
` δ ď 0

¸

ď
4

δ2 exp

ˆ

´?
l ` δ

b

T1

2

¯2
˙ ;

(4b)

(c) if l ě
T1δ

2

2
,

T2
ÿ

s“T1`1

P

˜

řs
i“1 Wi

s
`

c

2l

s
ě δ

¸

ď
2l `

?
4πl ` 2

δ2
` 1 ´ T1. (4c)

The proof of the Lemma. 3 will be delayed to Sec. D.

B.2 Proof of Regret Optimality for EOCP with Pre-Determined Stopping Time

We prove the following Theorem which characterizes the finite-time performance of Algorithm. 1.
Theorem. 1 can be directly derived.

Theorem 5 If l “ logpT q ` 4
a

2 logpT q and T ě maxt16, A, 16l∆´2
lb u, the expected regret of the

EOCP algorithm in Algorithm. 1 with pre-determined stopping time is upper bounded by:

RegEOCP
µ pT q ď

ÿ

a:∆aą0

ˆ

2 log T

∆a
`

p8 `
?
20πq

?
log T

∆a
`

2

∆a
` ∆a

˙

` op1q.

Remark: The asymptotic regret upper bound is clear from Theorem.5 by letting T increases to
infinity, i.e.,

lim sup
TÑ8

RegEOCP
µ pT q

log T
ď lim sup

TÑ8

ÿ

a:∆aą0

ˆ

2

∆a
`

p8 `
?
20πq

∆a

?
log T

`
2

∆a log T
`

∆a

log T

˙

` op1q

“
ÿ

a:∆aą0

2

∆a
.

Proof. Without loss of generality, assume action 1 is the unique optimal action. From the regret
decomposition lemma [38, Lemma 4.5], we can decompose the regret of Algorithm. 1 to the number
of pulls for each sub-optimal arm as follows:

RegEOCP
µ pT q “

ÿ

a:∆aą0

∆aErNT paqs.

16



Then, the key to bound the total regret is to bound the number of pulls for each sub-optimal arms.
Since our EOCP algorithm has a clear separation of exploration and exploitation phases, so for any
sub-optimal action a, we can bound its pulls in different phases as follows:

ErNapT qs ď E rNapTcqs
looooomooooon

I1

`pT ´ TcqPpâ “ aq
looomooon

I2

,

where Tc is the end of exploration phase and â is the action that the algorithm commits to. Notice
that the bound on I2 gives the confidence level result provided in Corollary. 1.

Bounding I1: We first bound I1, which is similar to the proof of bounding the regret for the traditional
UCB algorithm [12, 10, 22]. We have:

I1 “ E

«

Tc
ÿ

t“1

1At“a

ff

“ 1 ` E

«

Tc
ÿ

t“A`1

1At“a1UCBt´1paqěµ1

ff

looooooooooooooooooomooooooooooooooooooon

A1

`E

«

Tc
ÿ

t“A`1

1At“a1UCBt´1paqăµ1

ff

looooooooooooooooooomooooooooooooooooooon

A2

.

Notice that At “ a indicates UCBt´1p1q ă UCBt´1paq due to the dynamic of UCB exploration, we
can bound the last term as:

A2 ď

Tc
ÿ

t“A`1

E
“

1UCBt´1p1qăµ1

‰

“

Tc
ÿ

t“A`1

P pUCBt´1p1q ă µ1q .

Event tUCBt´1p1q ă µ1u means that at round t, the mean estimation r̄t´1p1q of the optimal arm
from previous pulls is lower than µ1 ´ bt´1p1q, which incurs a large deviation, so we can bound this
event with a union over all rounds in the exploration phase:

tUCBt´1p1q ă µ1u Ă
␣

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

(

,

which doesn’t depend on round number t any more, so we have:
Tc
ÿ

t“A`1

P pUCBt´1p1q ă µ1q ď

Tc
ÿ

t“A`1

P
`

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

˘

“pTc ´ AqP
`

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

˘

“pTc ´ AqP

˜

Dt1 P rA, Tcq, r̄t1 p1q `

d

2l

Nt1 p1q
ă µ1

¸

It is worth-noting that if there is no pulls for arm 1 between a time interval, its empirical mean and
number of pulls will remain the same. So we have:

#

Dt1 P rA, Tcq, r̄t1 p1q `

d

2l

Nt1 p1q
ă µ1

+

Ă

#

Ds P r1, NTc
p1qq , r̄s,1 `

c

2l

s
ă µ1

+

Notice that NTc
p1q ď Tc ´ A ` 1, so we can bound the probability as follows:

P

˜

Dt1 P rA, Tcq, r̄t1 p1q `

d

2l

Nt1 p1q
ă µ1

¸

ďP

˜

Ds P r1, Tc ´ A ` 1q, r̄s,1 ´ µ1 `

c

2l

s
ă 0

¸

ďP

˜

Ds P r1, Tc ´ A ` 1q,

řs
i“1pW1,i ´ µ1q

i
`

c

2l

s
ă 0

¸

ď
Tc ´ A ` 1

expplq
,

where the last inequality uses Eq. (4a) of Lemma 3 and the fact that W1,i ´ µ1 is 1-sub-Gaussian
with zero mean. Notice that

?
log T ě log log T when T is large and we have:

expplq “ exp
´

log T ` 4
a

2 log T
¯

ě expplog T ` 4 log log T q “
1

T log4 T
.
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So putting the above bound back to the bound of A2, we have:

A2 ď
pTc ´ A ` 1q2

T log2 T
“

ˆ

8Aplog T`4
?
2 log Tq

∆2
lb

` 1

˙2

T log4 T
“ o

ˆ

1

T

˙

,

where the last inequality is due to the fact that when T ě 3,
?
log T ď log T . Next, we attempt to

bound the middle term A1 as follows:

A1 “ E

«

Tc
ÿ

t“A`1

1At“a1UCBt´1paqěµ1

ff

“E

«

Tc
ÿ

t“A`1

1At“a1r̄t´1paq`
b

2l
Nt´1paq

ěµ1

ff

Notice that the number of pulls Ntpaq will only increase by 1 every time there is new pull, i.e., when
At “ a. Otherwise, the term inside summation is 0. So instead of counting on the time step t, we can
count over the number of pulls over arm a as follows:

E

«

Tc
ÿ

t“A`1

1At“a1r̄t´1paq`
b

2l
Nt´1paq

ěµ1

ff

“E

»

–

NTc paq
ÿ

s“1

1
r̄s,a`

?
2l
s ěµ1

fi

fl

ď

Tc
ÿ

s“1

P

˜

r̄s,a ´ µa `

c

2l

s
ě ∆a

¸

,

where the last inequality is due to NTc
paq ď Tc. Then, by Eq. (4c) of Lemma. 3, we have:

Tc
ÿ

s“1

P

˜

r̄s,a ´ µa `

c

2l

s
ě ∆a

¸

“

Tc
ÿ

s“1

P

˜

řs
i“1pWa,i ´ µaq

i
`

c

2l

s
ě ∆a

¸

ď
2
`

log T ` 4
?
2 log T

˘

`

b

4π
`

log T ` 4
?
2 log T

˘

` 2

∆2
a

` 1

ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

`
2

∆2
a

` 1,

where the first inequality is due to the fact that Wa,i ´ µa is 1-sub-Gaussian with zero mean, and the
last inequality is due to

?
2 log T ď log T when T ě 9. Therefore, combining the bounds on A1 and

A2, we can bound I1 as follows:

I1 ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

`
2

∆2
a

` 1 ` o p1q .

Bounding I2: The bound on I2 gives the confidence level result provided in Corollary. 1. After the
exploration phase, recall that we select the arm with the largest lower confidence bound to commit to.
The idea of bounding I2 is very similar to the regret bound in [2] where since we use UCB to explore
in the exploration phase, the optimal arm should be pulled very often such that its bonus becomes
very small when exploration phase ends. Then selecting the arm with largest LCB will ensure we
select the optimal arm with high probability. This is because the LCB of the optimal arm is larger
than the true means of any sub-optimal arms, and the true means of sub-optimal arms are larger than
their respective LCB, both with high probability. We can first bound the probability of selecting a
sub-optimal arm a as:

P pâ “ aq ďP pLCBTc
paq ě LCBTc

p1qq

ďP
ˆ

LCBTc
paq ě LCBTc

p1q, NTc
p1q ą

8l

∆2
lb

˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

B1

`P
ˆ

NTc
p1q ď

8l

∆2
lb

˙

looooooooooomooooooooooon

B2

We first bound the term B2 which states that during the first exploration phase with UCB exploration,
the optimal arm is under-pulled, which means that one of the sub-optimal arms have been pulled with
larger number of times. Therefore, we have:

P
ˆ

NTc
p1q ď

8l

∆2
lb

˙

“ P

˜

ÿ

a:∆aą0

NTc
paq ą Tc ´

8l

∆2
lb

¸

.
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Recall that Tc “ 8Al
∆2

lb
` A, so we have:

P
ˆ

NTc
p1q ď

8l

∆2
lb

˙

“P

˜

ÿ

a:∆aą0

NTc
paq ą

8pA ´ 1ql

∆2
lb

` A

¸

ďP
ˆ

Da ą 1, NTc
paq ą

8l

∆2
lb

` 1

˙

.

Then by union bound, we have:

P
ˆ

Da ą 1, NTc
paq ą

8l

∆2
lb

` 1

˙

ď
ÿ

a:∆aą0

P
ˆ

NTc
paq ą

8l

∆2
lb

` 1

˙

.

Consider a fixed sub-optimal arm a, then for each probability inside the summation, we have:

P
ˆ

NTc
paq ą

8l

∆2
lb

` 1

˙

ďP
ˆ

Dt P rA ` 1, Tcs, Nt´1paq “

R

8l

∆2
lb

V

, At “ 2

˙

ďP
ˆ

Dt P rA ` 1, Tcs, Nt´1paq “

R

8l

∆2
lb

V

,UCBt´1p1q ď UCBt´1paq

˙

ďP
ˆ

Dt P rA ` 1, Tcs, Nt´1paq “

R

8l

∆2
lb

V

, µ1 ď UCBt´1paq

˙

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

B3

` P pDt P rA ` 1, Tcs,UCBt´1p1q ď µ1q
looooooooooooooooooooooomooooooooooooooooooooooon

B4

.

Notice that B4 can be bounded from concentration lemma. First, we switch the count from time step
t to the number of pulls for arm 1 since the empirical estimation r̄t´1p1q and count for pulls Nt´1p1q

won’t change unless there is a new pull. Then, we will apply Eq. (4a) to the probability as follows:

B4 “P

˜

Dt P rA ` 1, Tcs, r̄t´1p1q ´ µ1 `

d

2l

Nt´1p1q
ď 0

¸

ďP

˜

Ds P r1, Tc ´ A ` 1q, r̄s,1 ´ µ1 `

c

2l

s
ď 0

¸

ďP

˜

Ds P r1, Tc ´ A ` 1q,

řs
i“1pW1,i ´ µ1q

s
`

c

2l

s
ď 0

¸

ď
Tc ´ A

exp l
,

where the last inequality is due to the fact that W1,i ´ µ1 is 1-sub-Gaussian with zero mean. Similar
to the procedure of bounding I1, notice that expplq ě T log4 T , we have:

B4 ď
8A

`

log T ` 4
?
2 log T

˘

∆2
lb

1

T log4 T
“ o

ˆ

1

T

˙

.

On the other hand, let γ “

Q

8l
∆2

lb

U

, and we also change the count from time step t to the number of
pulls for arm a. Then, B3 can be expressed as follows:

B3 “P

˜

Dt P rA ` 1, Tc ´ 1s, Nt´1paq “ γ, µ1 ď r̄t´1paq `

d

2l

Nt´1paq

¸

“P

˜

r̄γ,a `

d

2l

γ
ą µ1

¸
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Notice that γ ě 8l
∆2

lb
ě 8l

∆2
a

, so we have
b

2l
γ ď

b

2l∆2
a

8l “ ∆a

2 . Then B3 can be bounded as follows:

B3 ď P
ˆ

r̄γ,a `
∆a

2
ą µ1

˙

“ P
ˆ

r̄γ,a ´ µa ą
∆a

2

˙

ď exp

ˆ

´
γ∆2

a

8

˙

ď
1

expplq
ď

1

T log4 T
,

where the first inequality uses Hoeffding’s inequality and the second inequality uses the lower bound
on γ mentioned above. The last inequality is due to the fact that expplq ě T log4 T . So combine B3

and B4 together, we can bound B2 as follows:

B2 ď
ÿ

a:∆aą0

pB3 ` B4q “ o

ˆ

1

T

˙

.

Next, we attempt to bound B1. Notice that B1 can also be bounded as follows:

B1 “P
ˆ

LCBTc
paq ě LCBTc

p1q, NTc
p1q ą

8l

∆2
lb

˙

ďP
ˆ

µa ě LCBTc
p1q, NTc

p1q ą
8l

∆2
lb

˙

loooooooooooooooooooooomoooooooooooooooooooooon

B5

`P pµa ď LCBTc
paqq

loooooooooomoooooooooon

B6

.

The term B6 can be expressed by counting the number of pulls of arm a as follows:

B6 “P

˜

µa ď r̄Tc
paq ´

d

2l

NTc
paq

¸

ďP

˜

Ds P r1, Tc ´ A ` 1s, µa ´ r̄s,a `

c

2l

s
ď 0

¸

“P

˜

Ds P r1, Tc ´ A ` 1s,

řs
i“1pµa ´ Wa,iq

s
`

c

2l

s
ď 0

¸

.

Notice that pµa ´ Wa,iq is 1-sub-Gaussian with zero mean, so we can apply concentration lemma
Eq. (4a) from Lemma. (3) as follows:

B6 ď
Tc ´ A ` 1

expplq
“

8A
`

log T ` 4
?
2 log T

˘

∆2
lb expplq

`
1

expplq
“ o

ˆ

1

T

˙

,

where the last inequality is due to log T ě
?
2 log T and expplq ě T log4 T when T ě 9. Similarly,

term B5 can be expressed as:

B5 “ P

˜

µa ě r̄Tc
p1q ´

d

2l

NTc
p1q

, NTc
p1q ą

8l

∆2
lb

¸

.

First notice that when NTc
p1q ą 8l

∆2
lb

, we have the bonus term bTc
p1q “

b

2l
NTc p1q

ď
∆lb

2 ď ∆a

2 .
Then we have:

B5 ď P
ˆ

µa ě r̄Tc
p1q ´

∆a

2
, NTc

p1q ą
8l

∆2
lb

˙

“ P
ˆ

µ1 ´ r̄Tc
p1q ě

∆a

2
, NTc

p1q ą
8l

∆2
lb

˙

Then it is equivalent to count over the number of pulls for arm 1:

B5 ďP
ˆ

Ds P

„

8l

∆2
lb

, T

ȷ

, µ1 ´ r̄s,1 ě
∆a

2

˙

“P
ˆ

Ds P

„

8l

∆2
lb

, T

ȷ

,

řs
i“1pµ1 ´ W1,iq

s
ě

∆a

2

˙

.

Then, by the maximal concentration Eq. (3) from Lemma. 2, we can bound B5 as follows:

P
ˆ

Ds P

„

8l

∆2
lb

, T

ȷ

,

řs
i“1pµ1 ´ W1,iq

s
ě

∆a

2

˙

ď exp

¨

˝´

8l
∆2

lb

`

∆a

2

˘2

2

˛

‚“
1

expplq
ď

1

T log4 T
.
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Therefore, collecting the bounds for B5 and B6, we have a bound for B1 as follows:

B1 ď B5 ` B6 “ o

ˆ

1

T

˙

.

And therefore from the bounds of B1 and B2, we can bound term I2 as follows:

I2 ď B1 ` B2 “ o

ˆ

1

T

˙

.

This means the the confidence of selecting the wrong action to commit to is opT´1q as indicated in
Corollary. 1. Finally, putting the bounds on I1 and I2 together, we have:

ErNapT qs ďI1 ` TI2

ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

`
2

∆2
a

` 1 ` o p1q .

Therefore, by the regret decomposition lemma, we can bound the total regret as follows:

RegµpT q ď
ÿ

a:∆aą0

ˆ

2 log T

∆a
`

p8 `
?
20πq

?
log T

∆a
`

2

∆a
` ∆a ` o p1q

˙

“
ÿ

a:∆aą0

ˆ

2 log T

∆a
`

p8 `
?
20πq

?
log T

∆a
`

2

∆a
` ∆a

˙

` op1q.

B.3 Proof of Regret Optimality for EOCP-UG with Adaptive Stopping Time

We prove the following theorem which characterizes the finite-time performance of Algorithm. 2.
Theorem. 2 can be derived directly.

Theorem 6 If l “ logpT q ` 4
a

2 logpT q and T ě maxt16, A, 16l∆´2
minu, the regret of EOCP-UG

algorithm in Algorithm. 2 with adaptive stopping time can be upper bounded as:

RegEOCP-UG
µ pT q ď

ÿ

a:∆aą0

ˆ

2 log T

∆a
`

p8 `
?
20πq

?
log T

∆a

˙

` Op1q.

Remark: The asymptotic regret upper bound is clear from Theorem.6 by letting T increases to
infinity, i.e.,

lim sup
TÑ8

RegEOCP-UG
µ pT q

log T
ď lim sup

TÑ8

ÿ

a:∆aą0

ˆ

2

∆a
`

p8 `
?
20πq

∆a

?
log T

˙

` Oplog´1
pT qq “

ÿ

a:∆aą0

2

∆a
.

Proof. Without loss of generality, let action 1 be the unique optimal action. The first step for proving
the regret performance is regret decomposition lemma [38, Lemma 4.5]. We also decompose the
regret of Algorithm. 2 into the number of pulls for each sub-optimal arm as follows:

RegµpT q “
ÿ

a:∆aą0

∆aErNT paqs.

Then, for a specific sub-optimal arm a, we bound the number of pulls. Since our EOCP-UG algorithm
has a clear separation of exploration and exploitation phases, we can bound the pulls in the two
phases respectively. However, the unique characteristic of unknown gap scenario is we don’t have
a fixed end time of exploration phase. Recall that Tc ď T is the stopping time that the exploration
phase ends and â is the arm we choose for commitment, so we can decompose the number of pulls
into two phases as:

ErNapT qs “ ErNapTcqs ` ErpT ´ Tcq1â“as ď ErNapTcqs
loooomoooon

I1

`T Ppâ “ aq
looomooon

I2

.

Notice that upper bound of I2 gives the confidence level result in Corollary. 2. We then bound
the two terms I1 and I2 separately. In order to simplify the proof, we first prove a lemma which
characterizes a high probability upper bound for the stopping time Tc. This lemma also proves the
sample complexity to commitment result in Corollary. 2. The proof of Lemma. 4 will be delayed.
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Lemma 4 If l “ logpT q ` 4
a

2 logpT q and T ě maxt16, A, 16l∆´2
minu, our stopping time Tc for

exploration of Algorithm. 2 is upper bounded with high probability:

P

˜

Tc ě
ÿ

a:∆aą0

8pl ` 1q2

∆2
a

` Apl ` 2q

¸

ď
10eA

T log2 T
.

Bounding I1: With the help of Lemma. 4, we have a high probability upper bound for the exploration
phase. We let T u

c “
ř

a:∆aą0
8pl`1q

2

∆2
a

` Apl ` 2q to be the high probability upper bound of our
stopping time to end the exploration phase. Notice that NapTcq ď T , we have:

I1 “ErNapTcq1TcěTu
c

s ` ErNapTcq1TcďTu
c

s ď TP pTc ě T u
c q ` ErNapTcq1TcďTu

c
s

ďErNapTcq1TcďTu
c

s
loooooooooomoooooooooon

I3

`
10eA

log2 T
.

Then, bounding I3 is similar to bounding I1 for Theorem. 5. We decompose I3 as follows:

I3 “E

«

1TcďTu
c

Tc
ÿ

t“1

1At“a

ff

“1 ` E

«

1TcďTu
c

Tc
ÿ

t“A`1

1At“a1UCBt´1paqěµ1

ff

looooooooooooooooooooooooomooooooooooooooooooooooooon

A1

`E

«

1TcďTu
c

Tc
ÿ

t“A`1

1At“a1UCBt´1paqăµ1

ff

looooooooooooooooooooooooomooooooooooooooooooooooooon

A2

,

In order to bound A1 and A2, we assume there is a virtual process that after the end time Tc of
exploration phase, it continues to select the arm with largest UCB and receive the corresponding
reward until time T u

c . This is only a virtual process used in our proof, while in reality our algorithm
will stop exploration after stopping time Tc. We will use E1 and P1 to denote the expectation and
probability over this virtual process. Then, we can bound A2 as follows:

A2 ďE

«

1TcďTu
c

Tc
ÿ

t“A`1

1UCBt´1p1qăµ1

ff

ď E1

»

–

Tu
c
ÿ

t“A`1

1UCBt´1p1qăµ1

fi

fl

“

Tu
c
ÿ

t“A`1

P1 pUCBt´1p1q ă µ1q .

where the first inequality is because At “ a indicates UCBt´1p1q ă UCBt´1paq due to the dynamic
of UCB exploration. The second inequality is because E and E1 are totally the same for the first Tc

time steps. This step also allows us to bound A2 over the events on a different probability measure
E1 and P1. Event tUCBt´1p1q ă µ1u means that at time step t, the mean estimation r̄t´1p1q of the
optimal arm from previous pulls is lower than µ1 ´ bt´1p1q, which incurs a large deviation, so we
can bound this event with a union over all time steps:

tUCBt´1p1q ă µ1u Ă
␣

Dt1 P rA, T u
c q,UCBt1 p1q ă µ1

(

,

which doesn’t depend on time step t any more, so we have:
Tu
c
ÿ

t“A`1

P1 pUCBt´1p1q ă µ1q ď

Tu
c
ÿ

t“A`1

P1
`

Dt1 P rA, T u
c q,UCBt1 p1q ă µ1

˘

“pT u
c ´ AqP1

`

Dt1 P rA, T u
c q,UCBt1 p1q ă µ1

˘

“pT u
c ´ AqP1

˜

Dt1 P rA, T u
c q, r̄t1 p1q `

d

2l

Nt1 p1q
ă µ1

¸

.

If there is no pulls for arm 1 in a time interval, the empirical mean and number of pulls will remain
the same. So instead of counting on the time steps, we can count the number of pulls for arm 1:

#

Dt1 P rA, T u
c q, r̄t1 p1q `

d

2l

Nt1 p1q
ă µ1

+

Ă

#

Ds P
“

1, NTu
c

paq
˘

, r̄s,1 `

c

2l

s
ă µ1

+

.
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Notice that NTu
c

paq ď T u
c ´ A ` 1, so we can bound the probability as follows:

P1

˜

Dt1 P rA, T u
c q, r̄t1 p1q `

d

2l

Nt1 p1q
ă µ1

¸

ďP1

˜

Ds P r1, T u
c ´ A ` 1q, r̄s,1 ´ µ1 `

c

2l

s
ă 0

¸

ďP1

˜

Ds P r1, T u
c ´ A ` 1q,

řs
i“1pW1,i ´ µ1q

i
`

c

2l

s
ă 0

¸

ď
T u
c ´ A

expplq
,

where the last inequality uses Eq. (4a) of Lemma 3 and the fact that W1,i ´ µ1 is 1-sub-Gaussian
with zero mean. Notice that expplq ě T log4 T , so putting the above bound back to the bound of A2,
we have:

A2 ď

´

ř

a:∆aą0
8l2

∆2
a

` Al ´ A
¯2

T log4 T
ď

´

ř

a:∆aą0
200 log2 T

∆2
a

` 5A log T
¯2

T log4 T
“ OpT´1q.

where the first inequality is due to the fact that when T ě 3,
?
log T ď log T . Next, we attempt to

bound A1 as follows:

A1 “ E

»

–1TcďTu
c

Tu
c
ÿ

t“A`1

1At“a1UCBt´1paqěµ1

fi

fl ďE1

»

–

Tu
c
ÿ

t“A`1

1At“a1r̄t´1paq`
b

2l
Nt´1paq

ěµ1

fi

fl ,

where the inequality is also due to the fact that the virtual and real processes are identical before time
Tc. Notice that the number of pulls Ntpaq will only increase by 1 every time there is new pull, i.e.,
when At “ a. Otherwise, the term inside summation is 0. So instead of counting on the time step t,
we can count over the number of pulls over arm a as follows:

E1

»

–

Tu
c
ÿ

t“A`1

1At“a1r̄t´1paq`
b

2l
Nt´1paq

ěµ1

fi

fl “E1

»

–

NTu
c

paq
ÿ

s“1

1
r̄s,a`

?
2l
s ěµ1

fi

fl

ď

Tu
c
ÿ

s“1

P1

˜

r̄s,a ´ µa `

c

2l

s
ě ∆a

¸

,

where the last inequality is due to NTu
c

paq ď T u
c . Then, by Eq. (4c) of Lemma. 3, we have:

Tu
c
ÿ

s“1

P1

˜

r̄s,a ´ µa `

c

2l

s
ě ∆a

¸

“

Tu
c
ÿ

s“1

P1

˜

řs
i“1pWa,i ´ µaq

i
`

c

2l

s
ě ∆a

¸

ď
2
`

log T ` 4
?
2 log T

˘

`

b

4π
`

log T ` 4
?
2 log T

˘

` 2

∆2
a

` 1

ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

`
2

∆2
a

` 1,

where the first inequality is due to the fact that Wa,i ´ µa is 1-sub-Gaussian with zero mean, and the
last inequality is due to

?
2 log T ď log T when T ě 9. Therefore, combining the bounds on A1 and

A2, we can bound I3 as follows:

I3 ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

`
2

∆2
a

` 1 ` OpT´1q.

Therefore, a similar bound can be established on I1 as follows:

I1 ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

`
2

∆2
a

` 1 `
10eA

log2 T
` OpT´1q.
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Bounding I2: Recall that our stopping criterion is when there exists an arm ã whose number of pulls
is significantly larger than other arms, i.e., NTcpãq ě lmaxa‰ã NTcpaq. Therefore, its bonus bTcpãq

should be very small compared to other arms. Also recall that we select the arm â with highest LCB
to commit to, so the proof follows two steps. First we will show that with high probability the arm
ã with most number of pulls is the best arm. Then we will show that under this circumstance, the
maximum LCB arm is also the best arm. Therefore, consider an arbitrary sub-optimal arm a:

P pã “ aq ď P pNTc
paq ě rlNTc

p1qs ` 1q .

Notice that if NTcpaq ě rlNTcp1qs ` 1 at the end time Tc, we must have pulled arm a at time step
Tc. This also means that the number of pulls NTc´1paq for arm a after time step Tc ´ 1 is exactly
rlNTcp1qs and and NTc´1p1q “ NTcp1q. It also means that arm a has the largest UCB. So we have:

P pNTcpaq ě rlNTcp1qs ` 1q

ďP pNTc´1paq “ rlNTc´1p1qs ,UCBTc´1paq ě UCBTc´1p1qq

ďP

˜

Dt ď Tc, Ntpaq “ rlNtp1qs , r̄tpaq `

d

2l

Ntpaq
ě r̄tp1q `

d

2l

Ntp1q

¸

Notice that we can separate the two random quantities with union bound as follows:
P pNTc

paq ě rlNTc
p1qs ` 1q

ďP

˜

Dt ď Tc, r̄tpaq ě µa `

d

2l

Ntpaq

¸

looooooooooooooooooooooomooooooooooooooooooooooon

B1

` P

˜

Dt ď Tc, Ntpaq “ rlNtp1qs , µa ` 2

d

2l

Ntpaq
ě r̄tp1q `

d

2l

Ntp1q

¸

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

B2

We first bound B1. Notice that we can switch from counting of time step t to count the number of
pulls for arm a. It is clear that Ntpaq ď Tc ď T when t ď Tc, so we have:

B1 ďP

˜

Ds ď T, r̄s,a ě µa `

c

2l

s

¸

“P

˜

Ds ď T,

řs
i“1pµa ´ Wa,iq

s
`

c

2l

s
ď 0

¸

ď
el log T ` e

exp l
,

where the last inequality uses Eq. (4a) of Lemma. 3. Also notice that expplq ě T log4 T , so we have:

B1 ď
10e log2 T ` e

T log4 T
“ o

ˆ

1

T

˙

.

Next, we bound the term B2, we can rearrange the terms inside B2 as follows:

B2 “ P

˜

Dt ď Tc, Ntpaq “ rlNtp1qs , r̄tp1q ´ µ1 `

ˆ

1 ´
2

?
l

˙

d

2l

Ntp1q
` ∆a ď 0

¸

.

Denote α “ 1 ´ 2?
l
, and switch the count from time step t to the number of pulls for arm 1, we can

bound B2 as follows:

B2 ďP

˜

Ds ď T, r̄s,1 ´ µ1 `

c

2α2l

s
` ∆a ď 0

¸

“P

˜

Ds ď T,

řs
i“1pW1,i ´ µ1q

s
`

c

2α2l

s
` ∆a ď 0

¸

ď
4

∆2
a exp pα2lq

.
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When T is large enough, we have α2l “ l ´ 4
?
l ` 4 ě log T ` 4, so we have:

B2 ď
4

∆2
aT

.

Therefore, combining B1 and B2 together, we can bound the probability as follows:

P pã “ aq ď P pNTcpaq ě rlNTcp1qs ` 1q ď B1 ` B2 ď O
ˆ

1

T

˙

.

Recall that arm 1 is the optimal arm. Therefore, by a union bound, we can characterize the probability
that of event tã ‰ 1u as follows:

P pã ‰ 1q ď
ÿ

a:∆aą0

P pã “ aq ď O
ˆ

1

T

˙

.

Next, we investigate the probability of choosing the wrong arm â to commit to. Recall that for the
arm which we commit to, we choose the one with the largest LCB. Consider any sub-optimal arm a,
if we wrongly choose the arm â “ a, it means its LCB should be larger than the LCB of the optimal
arm, which with high probability has the largest number of pulls. So, we have:

P pâ “ aq ď P pâ “ a, ã “ 1q ` P pã ‰ 1q ď P pLCBTc
paq ě LCBTc

p1q, ã “ 1q ` O
ˆ

1

T

˙

.

When ã “ 1, arm 1 has l times more pulls than arm a when the exploration phase stops, so we have:

P pLCBTc
paq ě LCBTc

p1q, ã “ 1q

ďP

˜

r̄Tcpaq ´

d

2l

NTcpaq
ě r̄Tcp1q ´

d

2l

NTcp1q
, NTcp1q ě lNTcpaq

¸

.

Similarly, we separate the two random variables as follows:

P pLCBTcpaq ě LCBTcp1q, ã “ 1q

ďP

˜

r̄Tc
paq ´

d

2l

NTc
paq

ě µ1 ´ 2

d

2l

NTc
p1q

, NTc
p1q ě lNTc

paq

¸

` P

˜

r̄Tc
p1q ď µ1 ´

d

2l

NTc
p1q

¸

ďP

˜

pµa ´ r̄Tcpaqq `

ˆ

1 ´
2

?
l

˙

d

2l

NTc
paq

` ∆a ď 0

¸

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

B3

`P

˜

r̄Tcp1q ď µ1 ´

d

2l

NTc
p1q

¸

loooooooooooooooooomoooooooooooooooooon

B4

.

For B4, notice that Tc is a random stopping time, so we bound the probability over all time step when
the number of pulls is larger than l as follows:

B4 ď P

˜

Ds P rl, T s, r̄s,1 ´ µ1 `

c

2l

s
ď 0

¸

“ P

˜

Ds P rl, T s,

řs
i“1pW1,i ´ µ1q

s
`

c

2l

s
ď 0

¸

.

Since W1,i ´ µ1 is 1-subgaussian, we can use Eq. (4a) from the concentration Lemma. 3 to bound
B4 as follows:

B4 ď P

˜

Ds P rl, T s,

řs
i“1pW1,i ´ µ1q

s
`

c

2l

s
ď 0

¸

ď
el log T ` e

exp l
“ o

ˆ

1

T

˙

,

where the last inequality is due to
?
2 log T ď log T when T ě 9 and expplq ě T log4 T . On the

other hand, bounding B3 is similar to the proof of probability upper bound regarding ã. recall that
α “

´

1 ´ 2?
l

¯

, and notice that Tc is a random variable, so we use a union over all possible arm pulls
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to bound the event on time step Tc as follows:

B3 ďP

˜

Ds ď T, pµa ´ r̄s,aq `

c

2α2l

s
` ∆a ď 0

¸

ďP

˜

Ds ď T,

řs
i“1pµa ´ Wa,iq

s
`

c

2α2l

s
` ∆a ď 0

¸

ď
4

∆2
a exp pα2lq

,

where the last inequality uses the second concentration inequality Eq. (4b) from Lemma. 3 and the
fact that µa ´ Wa,i is 1-subgaussian. Then when T is large enough, we have:

B3 ď
4

∆2
aT

.

Combining B3 and B4, we can bound the probability that we select the wrong arm as:

P pLCBTc
paq ě LCBTc

p1q, ã “ 1q ď B3 ` B4 ď
4

∆2
aT

` o

ˆ

1

T

˙

ď O
ˆ

1

T

˙

.

Therefore, we finally bound I2 as follows:

I2 “ Ppâ “ aq ď P pâ “ a, ã “ 1q ` P pã ‰ 1q “ O
ˆ

1

T

˙

.

Here, the bound on I2 shows that the confidence level of our algorithm is OpT´1q indicated in
Corollary. 2. Combining I1 and I2, we can bound ErNapT qs in finite time as follows:

ErNapT qs ď I1 ` TI2 ď
2 log T

∆2
a

`
p8 `

?
20πq

?
log T

∆2
a

` Op1q.

So by the regret decomposition lemma, we can bound the regret performance as:

RegEOCP-UG
µ pT q ď

ÿ

a:∆aą0

ˆ

2 log T

∆a
`

p8 `
?
20πq

?
log T

∆a

˙

` Op1q.

B.4 Proof of Lemma. 4 and Corollary. 2

Consider a specific sub-optimal arm a. We first show that it can only be pulled Oplog T q with high
probability during the exploration phase due to the dynamic of our exploration strategy, i.e., the UCB
exploration strategy. To be specific, we intend to show the following inequality:

P
ˆ

Dt ď Tc, Ntpaq ě
8l

∆2
a

` 1

˙

ď
10e

T log2 T
.

Since during the exploration phase, we select the arm with the largest UCB to explore, if there exists
a time t which the number of pulls for action a is larger than 8l

∆2
a

` 1, which means that there exists a

time t1 P rA, tq, where at time t1 ` 1 the number of pulls for previous rounds Nt1 paq is exactly 8l
∆2

a

and arm a has the largest UCB. Therefore, we can bound the probability as:

P
ˆ

Dt ď Tc, Ntpaq ě
8l

∆2
a

` 1

˙

ď P
ˆ

Dt1 ď t ď T,Nt1 paq “
8l

∆2
a

, a “ argmax
a1

UCBt1 pa1q

˙

.
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Therefore, the UCB of arm a should be larger than the UCB of the optimal arm 1, i.e., UCBt1 paq ě

UCBt1 p1q. So we can further derive an upper bound as follows:

P
ˆ

Dt1 ď t ď T,Nt1 paq “

R

8l

∆2
a

V

, a “ argmax
a1

UCBt1 pa1q

˙

ďP
ˆ

Dt1 ď T,Nt1 paq “

R

8l

∆2
a

V

,UCBt1 paq ě UCBt1 p1q

˙

“P

˜

Dt1 ď T,Nt1 paq “

R

8l

∆2
a

V

, r̄t1 paq `

d

2l

Nt1 paq
ě r̄t1 p1q `

d

2l

Nt1 p1q

¸

ďP

˜

Dt1 ď T, r̄R
8l
∆2

a

V

,a
`

∆a

2
ě r̄t1 p1q `

d

2l

Nt1 p1q

¸

.

Then, we can separate the two empirical means r̄R
8l
∆2

a

V

,a
and r̄t1 p1q with a union bound as follows:

P

˜

Dt1 ď T, r̄R
8l
∆2

a

V

,a
`

∆a

2
ě r̄t1 p1q `

d

2l

Nt1 p1q

¸

ďP

˜

Dt1 ď T, r̄t1 p1q `

d

2l

Nt1 p1q
ď µa ` ∆a

¸

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

A1

`P

˜

r̄R
8l
∆2

a

V

,a
ě µa `

∆a

2

¸

looooooooooooooomooooooooooooooon

A2

.

The term A2 can be easily bounded through Hoeffding’s inequality as:

A2 “ P

¨

˚

˚

˝

ř

R

8l
∆2

a

V

i“1 pWa,i ´ µaq
Q

8l
∆2

a

U ě
∆a

2

˛

‹

‹

‚

ď exp

ˆ

´

R

8l

∆2
a

V

∆2
a

8

˙

ď
1

expplq
,

where the first inequlity is due to the fact that Wa,i ´ µa is 1-subgaussian. For term A1, we notice
that the empirical estimation r̄t1 p1q and the counter Nt1 p1q will remain the same if there is no pull for
arm 1, so we can switch the count of time step t1 to the count of number of pulls for N 1

tp1q. To be
specific,

A1 ď P

˜

Ds ď T, r̄s,1 `

c

2l

s
ď µa ` ∆a

¸

“ P

˜

Ds ď T,

řs
i“1pW1,i ´ µ1q

s
`

c

2l

s
ď 0

¸

.

Since W1,i ´µ1 is 1-subgaussian, we can use the concentration result Eq. (4a) of Lemma. 3 to bound
A1 as follows:

P

˜

Ds ď T,

řs
i“1pW1,i ´ µ1q

s
`

c

2l

s
ď 0

¸

ď
el log T ` e

expplq
.

Therefore, we have can bound the probability of overpull for sub-optimal arm a as follows:

P
ˆ

Dt ď Tc, Ntpaq ě
8l

∆2
a

` 1

˙

ď A1 ` A2 ď
eplog T ` 4

?
2 log T q log T ` 2e

expplq
ď

10e

T log2 T
,

where the third inequality is due to log T ě
?
2 log T when T ě 9 and the last inequality is due to

expplq ě T log4 T . Recall that in Algorithm. 2, the exploration phase will stop if there exists an arm
ã whose pulls NTc

pãq at the stopping time have exceeds l times of all other arms, i.e.,

lmax
a‰ã

NTc
paq ` 2 ě NTc

pãq ą lmax
a‰ã

NTc
paq ` 1.
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So if Tc is larger than
ř

a:∆aą0
8pl`1q

2

∆2
a

`Apl ` 2q, it means that there exists at least one sub-optimal

arm a whose pulls NTc
paq is larger than 8l

∆2
a

` 1. So we have:

P

˜

Tc ě
ÿ

a:∆aą0

8pl ` 1q2

∆2
a

` Apl ` 2q

¸

ďP
ˆ

Da : ∆a ą 0, NTc
paq ě

8l

∆2
a

` 1

˙

ď
ÿ

a:∆aą0

P
ˆ

Dt ď Tc, Ntpaq ě
8l

∆2
a

` 1

˙

ď
10eA

T log2 T
,

where the second inequality, we use union bound over a. Then Corollary. 2 can be easily proved with:

SCCEOCP-UG
µ pT q “ErTcs

“E
„

Tc1Tcě
ř

a:∆aą0
8pl`1q2

∆2
a

`Apl`2q

ȷ

` E
„

Tc1Tcă
ř

a:∆aą0
8pl`1q2

∆2
a

`Apl`2q

ȷ

ďTP

˜

Tc ě
ÿ

a:∆aą0

8pl ` 1q2

∆2
a

` Apl ` 2q

¸

`
ÿ

a:∆aą0

8pl ` 1q2

∆2
a

` Apl ` 2q

ď
ÿ

a:∆aą0

8 log2 T ` 80 log
3
2 T ` 200 log T

∆2
a

` 6A log T `
10eA

log2 T
.

Therefore, taking T to infinity, we have:

lim sup
TÑ8

SCCEOCP-UG
µ pT q

log2 T
“

ÿ

a:∆aą0

8

∆2
a

.

B.5 Proof of Theorem. 3

We first prove the fundamental limits of sample complexity until commitment in the pre-determined
stopping time setting. Suppose the bandit problem (instance) is as follows: the reward expectation of
action 1 is µ1 and the reward expectation of action 2 is µ2. We assume µ1 ą µ2 and ∆ “ µ1 ´ µ2.
Consider another bandit instance with reward expectations λ1 and λ2 for the two actions respectively,
and λ1 ` ∆ ď λ2. By the “transportation” lemma [32, Lemma. 1] when T ě 10, we have for any
stopping time τ that:

EµrN1pτqsKLpµ1, λ1q ` EµrN2pτqsKLpµ2, λ2q ě log

ˆ

T

2.4

˙

.

Since under Gaussian bandit, the KL divergence is simply the squared norm, we have:

EµrN1pτqs
pµ1 ´ λ1q2

2
` EµrN2pτqs

pµ2 ´ λ2q2

2
ě log

ˆ

T

2.4

˙

.

Since the inequality holds for any λ1 and λ2 such that that λ1 ` ∆ ď λ2, we can minimize the LHS
to obtain tighter bounds. So minimizing the LHS over λ1 and λ2 gives:

λ1 “
µ1EµrN1pτqs ` pµ2 ´ ∆qEµrN2pτqs

EµrN1pτqs ` EµrN2pτqs
, λ2 “

pµ1 ` ∆qEµrN1pτqs ` µ2EµrN2pτqs

EµrN1pτqs ` EµrN2pτqs
.

So plug the optimization result into the “transportation” lemma, we have:

2∆2EµrN2pτqs2

pEµrN1pτqs ` EµrN2pτqsq
2 `

2∆2EµrN1pτqs2

pEµrN1pτqs ` EµrN2pτqsq
2 ě log

ˆ

T

2.4

˙

.

Therefore, rearranging the terms in the inequality, we can derive a lower bound on EµrN1pτqs as
follows:

EµrN1pτqs ě
2 log

`

T
2.4

˘

EµrN2pτqs

2∆2EµrN2pτqs ´ 2 log
`

T
2.4

˘ .
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Let τ “ Tc be the fixed length of exploration. Thus, we can derive the following lower bound on the
expectation of stopping time as follows:

EµrTcs “ EµrN1pTcqs ` EµrN2pTcqs ě
2∆2 pEµrN2pTcqsq

2

2∆2EµrN2pTcqs ´ 2 log
`

T
2.4

˘ .

According to our assumption, the algorithm has c-logarithm regret violation with OpT´1q confidence,
which means the the number of pulls for the sub-optimal action is upper and lower bounded when T
is large enough. So we have:

ˇ

ˇ

ˇ

ˇ

Eµ rN2pT qs ´
2 logpT q

∆2

ˇ

ˇ

ˇ

ˇ

“ Oplogc T q.

Recall that â is the action the algorithm chooses to commit to and action 1 is the optimal action in
instance µ, so we have E rN2pT qs ď Eµ rN2pTcqs ` TPµ pâ ‰ 1q. Since the algorithm has OpT´1q

confidence, so we have Pµ pâ ‰ 1q “ OpT´1q and Eµ rN2pT qs ď Eµ rN2pTcqs ` Op1q. So we can
lower bound the numerator as follows:

2∆2 pEµrN2pTcqsq
2

ě2∆2 pEµrN2pT qs ´ Op1qq
2

ě2∆2

ˆ

4

∆4
log2 T ´ Oplog1`c T q

˙

“
8

∆2
log2 T ´ Oplog1`c T q.

Notice that EµrN2pTcqs ď EµrN2pT qs.For the denominator, we can derive an upper bound similarly
as follows:

2∆2EµrN2pTcqs ´ 2 log

ˆ

T

2.4

˙

ď2∆2EµrN2pT qs ´ 2 log

ˆ

T

2.4

˙

ď2∆2 2

∆2
log T ` Oplogc T q ´ 2 log

ˆ

T

2.4

˙

ď2 log T ` Oplogc T q,

where the second inequality uses the fact that the algorithm has c-logarithm regret violation. So
combining both bounds in the numerator and the denominator, we have:

EµrTcs ě

8
∆2 log

2 T ´ Oplog1`c T q

2 log T ` Oplogc T q
“ Ω

ˆ

log T

∆2

˙

,

which concludes the proof for the pre-determined stopping time setting. In the adaptive stopping
time setting, we can use the same procedure to prove the lower bound of sample complexity until
commitment, so we also create another bandit instance with reward expectations λ1 and λ2. Unlike
in the pre-determined stopping time setting, now λ1 and λ2 satisfies λ1 ď λ2. We also use the
“transportation” lemma and optimize over λ1 and λ2 to get a lower bound for ErTcs as follows:

EµrTcs “ EµrN1pTcqs ` EµrN2pTcqs ě
∆2 pEµrN2pTcqsq

2

∆2EµrN2pTcqs ´ 2 log
`

T
2.4

˘ .

Similar to the proof of pre-determined stopping time setting, we utilize the fact that Eµ rN2pTcqs ď

Eµ rN2pT qs ď Eµ rN2pTcqs ` Op1q and the algorithm has c-logarithm regret violation to bound the
numerator and denominators separately. For the numerator, we have:

∆2 pEµrN2pTcqsq
2

ě∆2 pEµrN2pT qs ´ Op1qq
2

ě∆2

ˆ

4

∆4
log2 T ´ Oplog1`c T q

˙

“
4

∆2
log2 T ´ Oplog1`c T q.

For the denominator, we use the fact that the algorithm has c-logarithm regret violation:

∆2EµrN2pTcqs ´ 2 log

ˆ

T

2.4

˙

ď∆2 2

∆2
log T ` Oplogc T q ´ 2 log

ˆ

T

2.4

˙

ďOplogc T q.
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So combining both bounds in the numerator and the denominator, we have:

EµrTcs ě

4
∆2 log

2 T ´ Oplog1`c T q

Oplogc T q
“ Ω

ˆ

log2´c T

∆2

˙

.

C Proofs of Main Results for KL-EOCP

Now we are ready to prove the regret and sample complexity until commitment results for our
KL-EOCP Algorithms, i.e., Algorithm. 3. Without loss of generality, suppose action 1 is the unique
optimal action. Recall that for any time index t, UCBtpaq and LCBtpaq denotes be KL upper and
lower confidence bound of action a as:

UCBtpaq “ argmax
µěr̄tpaq

tNtpaqKLpr̄tpaq, µq ď lu , LCBtpaq “ argmin
µďr̄tpaq

tNtpaqKLpr̄tpaq, µq ď lu .

Throughout the proof section, we let Wa,i be the i-th sample from pulling arm a the i-th time. Recall
that Tc is the length of exploration phase. Let r̄a,s be the empirical mean of arm a after it has been
pulled s times. Moreover, we let:

UCBs,a “ argmax
µěr̄s,a

tsKLpr̄s,a, µq ď lu , LCBs,a “ argmin
µďr̄s,a

tsKLpr̄s,a, µq ď lu .

In order to incorporate this new definition of UCB and LCB, we need new sets of concentration
inequalities, which will be summarized in the next subsection. The proof will be delayed to Sec. D.

C.1 Concentration Inequalities for Natural Exponential Families

Since we no longer assume the distributions rν1, ¨ ¨ ¨ , νAs are subgaussian any more, the concentration
inequalities from Sec. B.1, especially Lemma. 3, no longer holds. Therefore, we need a set of new
concentrations specialized in the natural exponential family regime. To be specific, we want to bound
the probability that the KL divergence of empirical estimations and the true expectation is very large.
First, we provide a concentration lemma which is analogous to the Hoeffding’s inequality widely
used in the subgaussian scenario as follows:

Lemma 5 Let W1,W2, ¨ ¨ ¨ ,WT be identically and independently distributed random variables with
common expectation µ “ ErW1s and sampled from a distribution ν that belongs to a canonical
exponential family P . For any s ď T , Let Ss “

řs
i“1 Wi and µ̄s “ Ss

s denote the sum and the
empirical mean of the first s samples. For any δ ą 0, we have:

P pµ̄s ď µ, sKL pµ̄s, µq ě δq ď expp´δq, (5a)
P pµ̄s ě µ, sKL pµ̄s, µq ě δq ď expp´δq. (5b)

Based on Lemma. 5 we propose the following lemmas characterizing the any-time concentration
property of random variables.

Lemma 6 Let W1,W2, ¨ ¨ ¨ ,WT be identically and independently distributed random variables with
common expectation µ “ ErW1s and sampled from a distribution ν that belongs to a canonical
exponential family P . For any s ď T , Let Ss “

řs
i“1 Wi and µ̄s “ Ss

s denote the sum and the
empirical mean of the first s samples. Let T1 ď T2 ď T be two real numbers in R`. For any l ą 2,
the following holds:

P pDs P rT1, T2s, µ̄s ď µ, sKL pµ̄s, µq ě lq ďmin

"

T2 ´ T1 ` 1

expplq
,
el plog T2 ´ log T1q ` e

expplq

*

,

(6a)

P pDs P rT1, T2s, µ̄s ě µ, sKL pµ̄s, µq ě lq ďmin

"

T2 ´ T1 ` 1

expplq
,
el plog T2 ´ log T1q ` e

expplq

*

.

(6b)

Lemma 7 Let W1,W2, ¨ ¨ ¨ ,WT be identically and independently distributed random variables with
common expectation µ “ ErW1s and sampled from a distribution ν that belongs to a canonical
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exponential family P . For any s ď T , Let Ss “
řs

i“1 Wi and µ̄s “ Ss

s denote the sum and the
empirical mean of the first s samples. Let UCBs “ argmaxµěr̄s tsKLpµ̄s, µq ď lu be the upper
confidence bound for empirical mean. For any l ą 2, any T1 ď T , any µ1 ą µ, and any ε ą 0, the
following holds:

T1
ÿ

s“1

P
`

UCBs ě µ1
˘

ď
p1 ` εql

KLpµ, µ1q
`

β2pεq

T β1pεq
, (7)

where β1pεq “ Opε2q and β2pεq “ Opε´2q are constants.

C.2 Proof of Regret Optimality for KL-EOCP

In this section, we provide a complete proof of Theorem. 4. We prove the following Theorem which
characterizes the finite-time performance of Algorithm. 3, and Theorem. 4 can be derived directly.

Theorem 7 If l “ logpT q ` 4
a

2 logpT q and T ě maxt16, A, 8lKL´2
lb u, the regret of KL-EOCP

algorithm in Algorithm. 3 can be upper bounded as:

RegKL-EOCP
µ pT q ď

ÿ

a:∆aą0

˜

∆a log T

KLpµa, µ1q
`

10∆a log
3
4 T

KLpµa, µ1q

¸

` op1q.

Remark: The asymptotic result is clear from Theorem.7 by letting T increases to infinity, i.e.,

lim sup
TÑ8

RegKL-EOCP
µ pT q

log T
ď

ÿ

a:∆aą0

∆a

KLpµa, µ1q
.

Proof. Without loss of generality, let arm 1 be the unique best arm. From the regret decomposition
lemma [38, Lemma 4.5], we can decompose the regret of Algorithm. 3 to the number of pulls for
each sub-optimal arm as follows:

RegµpT q “
ÿ

a:∆aą0

∆aErNT paqs.

Then, the key to bound the total regret is to bound the number of pulls for each sub-optimal arms.
Since our KL-EOCP algorithm has a clear separation of exploration and exploitation phases, so for
any sub-optimal action a, we can bound its pulls in different phases as follows:

ErNapT qs “ E rNapTcqs
looooomooooon

I1

`pT ´ TcqPpâ “ aq
looomooon

I2

,

where recall that Tc is the end of exploration phase and â is the arm that the algorithm commits to
during exploitation phase.

Bounding I1: We first bound I1, which is similar to the proof of bounding the regret for the traditional
KL-UCB algorithm [12]. We have:

I1 “ E

«

Tc
ÿ

t“1

1At“a

ff

“ 1 ` E

«

Tc
ÿ

t“A`1

1At“a1UCBt´1paqěµ1

ff

looooooooooooooooooomooooooooooooooooooon

A1

`E

«

Tc
ÿ

t“A`1

1At“a1UCBt´1paqăµ1

ff

looooooooooooooooooomooooooooooooooooooon

A2

,

Notice that At “ a indicates UCBt´1p1q ă UCBt´1paq due to the dynamic of UCB exploration, we
can bound the last term as:

A2 ď

Tc
ÿ

t“A`1

E
“

1UCBt´1p1qăµ1

‰

“

Tc
ÿ

t“A`1

P pUCBt´1p1q ă µ1q

Event tUCBt´1p1q ă µ1u means that at time step t, the mean estimation r̄t´1p1q of the optimal arm
from previous pulls is lower than µ1 ´ bt´1p1q, which incurs a large deviation, so we can bound this
event with a union over all time steps:

tUCBt´1p1q ă µ1u Ă
␣

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

(

,
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which doesn’t depend on time step t any more, so we have:
Tc
ÿ

t“A`1

P pUCBt´1p1q ă µ1q ď

Tc
ÿ

t“A`1

P
`

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

˘

“pTc ´ AqP
`

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

˘

For two time steps Tc ă t2, if there is no pulls for arm 1 between them, then the term UCBt1 p1q will
remain the same through t1 P rTc, t2s. So instead of counting on the time steps, we can count the
number of pulls for arm 1 instead. We have:

␣

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

(

Ă tDs P r1, NTc
paqq ,UCBs,1 ă µ1u .

Notice that NTc
paq ď Tc ´ A ` 1, so we can bound the probability as follows:

P
`

Dt1 P rA, Tcq,UCBt1 p1q ă µ1

˘

ďP pDs P r1, Tc ´ A ` 1q,UCBs,1 ă µ1q

“P
ˆ

Ds P r1, Tc ´ A ` 1q, max
µěr̄s,1

"

KLpr̄s,1, µq ď
l

s

*

ă µ1

˙

.

Notice that for any s and under event tUCBs,1 ă µ1u, we have µ1 ě UCBs,1 ě r̄s,1. By definition
of UCBs,1, we also have KL pr̄s,1,UCBs,1q “ l

s . Therefore, we come to the conclusion that
KL pr̄s,1, µq ě l

s . using Eq. (6a) of Lemma 6, we have:

P
ˆ

Ds P r1, Tc ´ A ` 1q, max
µěr̄s,1

"

KLpr̄s,1, µq ď
l

s

*

ă µ1

˙

ďP pDs P r1, Tc ´ A ` 1q, sKL pr̄s,1, µq ě lq

ď
Tc ´ A

expplq
.

Using the fact that expplq ě T log4 T when T ě 16 and putting the above bound back to the bound
of A2, we have:

A2 ď
pTc ´ Aq2

T log4 T
“

ˆ

8Aplog T`4
?
2 log Tq

KL2
lb

˙2

T log2 T
“ o

ˆ

1

T

˙

,

where the last inequality is due to the fact that when T ě 3,
?
log T ď log T . Next, we attempt to

bound the middle term A1 as follows:

A1 “ E

«

Tc
ÿ

t“A`1

1At“a1UCBt´1paqěµ1

ff

“E

«

Tc
ÿ

t“A`1

1At“a1UCBNt´1paq,aěµ1

ff

Notice that the number of pulls Nt´1paq will only increase by 1 every time there is new pull, i.e.,
when At “ a. Otherwise, the term inside summation is 0. So instead of counting on the time step t,
we can count over the number of pulls over arm a as follows:

E

«

Tc
ÿ

t“A`1

1At“a1UCBNt´1paq,aěµ1

ff

“ E

»

–

NTc paq
ÿ

s“1

1UCBs,aěµ1

fi

fl ď

Tc
ÿ

s“1

P pUCBs,a ě µ1q ,

where the last inequality is due to NTc
paq ď Tc. Using Lemma. 7, we can bound the sum of

probabilities. Specifically, for any ε ą 0, there exists two constants β1pεq “ Opε2q and β2pεq “

Opε´2q such that:
Tc
ÿ

s“1

P pUCBs,a ě µ1q ď
p1 ` εql

KLpµa, µ1q
`

β2pεq

T β1pεq
.

Let ϵ “ log´ 1
4 T , and when T ě 16, we have log T ě

?
log T and 4

?
2 log T ď 5 log

3
4 T , so we

have:
Tc
ÿ

s“1

P pUCBs,a ě µ1q ď
log T

KLpµa, µ1q
`

10 log
3
4 T

KLpµa, µ1q
` op1q.
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Therefore, combining the bounds on A1 and A2, we can bound I1 as follows:

I1 ď
log T

KLpµa, µ1q
`

10 log
3
4 T

KLpµa, µ1q
` op1q.

Bounding I2: After the exploration phase, recall that we select the arm with largest LCB to commit
to. The idea of proof is very similar to the regret bound in [2] and our proof of Theorem. 5. We can
first bound the probability of selecting a sub-optimal arm a as:

P pâ “ aq ďP pLCBTcpaq ě LCBTcp1qq

“P
ˆ

LCBTcpaq ě LCBTcp1q, NTcp1q ą
4l

KLlb

˙

` P
ˆ

LCBTc
paq ě LCBTc

p1q, NTc
p1q ď

4l

KLlb

˙

ďP
ˆ

LCBTcpaq ě LCBTcp1q, NTcp1q ą
4l

KLlb

˙

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

B1

`P
ˆ

NTcp1q ď
4l

KLlb

˙

loooooooooooomoooooooooooon

B2

.

We first bound the term B2 which states that during the first exploration phase with UCB exploration,
the optimal arm is under-pulled, which means that one of the sub-optimal arms have been pulled with
larger number of times. Therefore, we have:

P
ˆ

NTc
p1q ď

4l

KLlb

˙

“ P

˜

ÿ

a:∆aą0

NTc
paq ą Tc ´

4l

KLlb

¸

.

Recall that Tc “ 4Al
KLlb

` A, so we have:

P
ˆ

NTc
p1q ď

4l

KLlb

˙

“P

˜

ÿ

a:∆aą0

NTc
paq ą

4pA ´ 1ql

KLlb
` A

¸

ďP
ˆ

Da ą 1, NTc
paq ą

4l

KLlb
` 1

˙

.

Then by union bound, we have:

P
ˆ

Da ą 1, NTcpaq ą
4l

KLlb
` 1

˙

ď
ÿ

a:∆aą0

P
ˆ

NTcpaq ą
4l

KLlb
` 1

˙

.

Consider a fixed sub-optimal arm a, then for each probability inside the summation, we have:

P
ˆ

NTcpaq ą
4l

KLlb
` 1

˙

ďP
ˆ

Dt P rA ` 1, Tcs, Nt´1paq “

R

4l

KLlb

V

, At “ a

˙

ďP
ˆ

Dt P rA ` 1, Tcs, Nt´1paq “

R

4l

KLlb

V

,UCBt´1p1q ď UCBt´1paq

˙

ďP
ˆ

Dt P rA ` 1, Tcs, Nt´1paq “

R

4l

KLlb

V

, µ1 ď UCBt´1paq

˙

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

B3

` P pDt P rA ` 1, Tcs,UCBt´1p1q ď µ1q
looooooooooooooooooooooomooooooooooooooooooooooon

B4

.

Notice that B4 can be bounded from concentration lemma. First, we switch the count from time step
t to the number of pulls for arm 1 since the empirical estimation r̄t´1p1q and count for pulls Nt´1p1q

won’t change unless there is a new pull. Then, we will apply Eq. (4a) to the probability as follows:
B4 ďP pDs P r1, Tc ´ A ` 1q,UCBs,1 ď µ1q

ďP pDs P r1, Tc ´ A ` 1q, r̄s,1 ď µ1, sKLpr̄s,1, µ1q ě lq

ď
Tc ´ A

exp l
,
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where the second inequality is because under event tUCBs,1 ď µ1u and according to the definition
of UCBs,1, we have r̄s,1 ď UCBs,1 ď µ1, and since sKLpr̄s,1,UCBs,1q “ l with µ1 ą UCBs,1, we
have sKLpr̄s,1, µ1q ě l. The last inequality uses Lemma. 6. Similar to the procedure of bounding I1,
notice that expplq ě T log4 T , we have:

B4 ď
4A

`

log T ` 4
?
2 log T

˘

KLlb

1

T log4 T
ď

20A

KLlbT log3 T
.

On the other hand, let γ “

Q

4l
KLlb

U

, and we also change the count from time step t to the number of
pulls for arm a. Then, B3 can be expressed as follows:

B3 “ P
`

Dt P rA ` 1, Tc ´ 1s, Nt´1paq “ γ, µ1 ď UCBNt´1paq,a

˘

“ P pµ1 ď UCBγ,aq .

For any pair of means x, y P r0, 1s, define KL`
px, yq “ KLpx, yq1xăy . Then, we have:

P pµ1 ď UCBγ,aq ď P
ˆ

KL`
pr̄γ,a, µ1q ď

l

γ

˙

.

Notice that γ “

Q

4l
KLlb

U

ě 4l
KLpµa,µ1q

, we can also bound B3 as follows:

B3 ď P
ˆ

KL`
pr̄γ,a, µ1q ď

KLpµa, µ1q

4

˙

.

Recall that µ1
a P pµa, µ1q such that KLpµ1

a, µ1q “
KLpµa,µ1q

4 , so we have r̄γ,a ě µ1
a under the event

that
!

KL`
pr̄γ,a, µ1q ď

KLpµa,µ1q

4

)

, and thus KLpr̄γ,a, µaq ě KLpµ1
a, µaq. By Lemma. 5, we have:

P
ˆ

KL`
pr̄γ,a, µ1q ď

KLpµa, µ1q

4

˙

ď P
`

KLpr̄γ,a, µaq ě KLpµ1
a, µaq

˘

ď expp´γKLpµ1
a, µaqq.

Notice that γKLprpγq, µaq ě
4lKLpµ1

a,µaq

KLlb
ě l by the definition of KLmin, we then have:

B3 ď expp´lq ď
1

T log4 T
.

The last inequality is due to the fact that expplq ě T log4 T . So combine B3 and B4 together, we
can bound B2 as follows:

B2 ď
ÿ

a:∆aą0

pB3 ` B4q ď A

ˆ

20A

KLlbT log3 T
`

1

T log4 T

˙

“ o

ˆ

1

T

˙

.

Next, we attempt to bound B1. Notice that B1 can also be bounded as follows:

B1 “P
ˆ

LCBTc
paq ě LCBTc

p1q, NTc
p1q ą

4l

KLlb

˙

ďP
ˆ

µa ě LCBTcp1q, NTcp1q ą
4l

KLlb

˙

looooooooooooooooooooooomooooooooooooooooooooooon

B5

`P pµa ď LCBTc
paqq

loooooooooomoooooooooon

B6

.

The term B6 can be expressed by counting the number of pulls of arm a as follows:

B6 ďP pDs P r1, Tc ´ A ` 1s, LCBs,a ě µaq

“P pDs P r1, Tc ´ A ` 1s, r̄s,a ě µa, sKL pr̄s,a, µaq ě lq

ď
Tc ´ A ` 1

expplq
,

where in the last inequality, we can apply Lemma. (6). Since log T ě
?
2 log T and expplq ě 1

T log4 T

when T ě 16, we have:

B6 ď
4A

`

log T ` 4
?
2 log T

˘

KLlbT log4 T
`

1

T log4 T
“ o

ˆ

1

T

˙

.
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For any pair of means x, y P r0, 1s, define KL´
px, yq “ KLpx, yq1xąy. Similarly, term B5 can be

expressed as:

B5 ďP
ˆ

Ds ą
4l

KLlb
, µa ě LCBs,1

˙

ďP
ˆ

Ds ą
4l

KLlb
, sKL´

pr̄s,1, µaq ď l

˙

ďP
ˆ

Ds ą
4l

KLlb
,KL´

pr̄s,1, µaq ď
KLpµa, µ1q

4

˙

.

Recall that µ1
a P pµa, µ1q satisfy KL pµ1

a, µaq “
KLpµa,µ1q

4 , so under event tKL´
pr̄s,1, µaq ď

KLpµa,µ1q

4 u we can conclude r̄s,1 ď µ1
a, which means KL pr̄s,1, µ1q ě KL pµ1

a, µ1q, so we have:

P
ˆ

Ds ą
4l

KLlb
,KL´

pr̄s,1, µaq ď
KLpµa, µ1q

4

˙

ďP
ˆ

Ds ą
4l

KLlb
, r̄s,1 ď µ1,KL pr̄s,1, µ1q ě KL

`

µ1
a, µ1

˘

˙

ďP
ˆ

Ds ą
4l

KLlb
, r̄s,1 ď µ1, sKL pr̄s,1, µ1q ě

4lKL pµ1
a, µ1q

KLlb

˙

ď
el log T ` e

exp
´

4lKLpµ1
a,µ1q

KLlb

¯ ,

where the last inequality comes from Lemma. 6. By the definition of KLmin, we know that
4lKLpµ1

a,µ1q
KLlb

ě l, so we have:

B5 ď
el log T ` e

expplq
ď

10e log2 T

T log4 T
“ o

ˆ

1

T

˙

.

Therefore, collecting the bounds for B5 and B6 and B2, we have a bound for I2 as follows:

I2 ď B1 ` B2 ď B5 ` B6 ` B2 “ o

ˆ

1

T

˙

.

Finally, putting the bounds on I1 and I2 together, we have:

ErNapT qs ď I1 ` TI2 ď
log T

KLpµa, µ1q
`

10 log
3
4 T

KLpµa, µ1q
` op1q.

Therefore, by the regret decomposition lemma, we can bound the total regret as follows:

RegKL-EOCP
µ pT q ď

ÿ

a:∆aą0

˜

∆a log T

KLpµa, µ1q
`

10∆a log
3
4 T

KLpµa, µ1q

¸

` op1q.

D Proof of Concentration Inequalities

In this section, we provide the proof of the concentration inequalities presented in previous sections.

D.1 Proof of Lemma. 3

The proof of Lemma. 3 relies on the maximal inequalities in Lemma. 1 and Lemma. 2, and the
famous Hoeffding’s inequality which we state here for the sake of completeness.

Lemma 8 (Hoeffding’s Inequality) Let pWiq
T
i“1 be i.i.d. σ-sub-Gaussian random variables with

ErW1s “ 0, we have:

P

˜

řT
i“1 Wi

T
ě δ

¸

ď exp

ˆ

´
Tδ2

2σ2

˙

.
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Eq. (4a) of Lemma. 3: We now prove Eq. (4a) of Lemma. 3. We will first base our proof on the
anytime concentration on union bound, which is tight only when T2 ´ T1 is relatively small. This
procedure will result in the first term in the minimum at the RHS. To prove a stronger result when
T2 ´ T1 is relatively large, we resort to the technique of "peeling device" which divide the time
horizon into exponential grids, where we will perform maximal inequality inside each grid and a
union bound over the grids. This will result in the second term in the minimum at the RHS. We first
perform union bound on s as follows:

P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

“P

˜

Ds P pT1, T2s,
s
ÿ

i“1

Wi `
?
2ls ď 0

¸

ď

T2
ÿ

j“T1`1

P

˜

s “ j,
s
ÿ

i“1

Wi `
?
2ls ď 0

¸

.

Then, we can bound each probability with Hoeffding’s concentration inequality as follows:

P

˜

s “ j,
s
ÿ

i“1

Wi `
?
2ls ď 0

¸

“ P

˜

j
ÿ

i“1

Wi `
a

2jl ď 0

¸

ď exp

ˆ

´
p
?
2jlq2

2j

˙

“
1

expplq
.

Therefore, summing up the probabilities, we will have:

P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

ď

T2
ÿ

j“T1`1

1

expplq
“

T2 ´ T1

expplq
. (8)

Next, we apply the peeling method to prove the second inequality. Take β ą 1 to be a constant. Let
M “ tlogβ

T2

T1
u, we apply peeling method on s and divide the time horizon over exponential grids

rT1, T1βs, rT1β, T1β
2s, ¨ ¨ ¨ , rT1β

M , T2s as follows:

P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

“P

˜

Ds P pT1, T2s,
s
ÿ

i“1

Wi `
?
2ls ď 0

¸

ď

M
ÿ

j“0

P

˜

Ds P rT1β
j , T1β

j`1s,
s
ÿ

i“1

Wi `
?
2ls ď 0

¸

.

Since at each grid, s ě T1β
j , so we can upper bound each probability as:

P

˜

Ds P rT1β
j , T1β

j`1s,
s
ÿ

i“1

Wi `
?
2ls ď 0

¸

ď P

˜

Ds P rT1β
j , T1β

j`1s,
s
ÿ

i“1

Wi `
a

2T1βj l ď 0

¸

.

Let β “ l
l´1 , then according to the anytime concentration inequality from Lemma. 1, we have:

P

˜

Ds P rT1β
j , T1β

j`1s,
s
ÿ

i“1

Wi `
a

2T1βj l ď 0

¸

ď exp

ˆ

´
2T1β

j l

2T1βj`1

˙

“ exp

ˆ

´
l

β

˙

“
e

expplq
.

Then, summing up the probabilities, we can bound the total probability as follows:

P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

ď
epM ` 1q

expplq
ď

e plog T2 ´ log T1q

log β expplq
`

e

exp l
,

where the last inequality is due to the definition of M “ tlogβ
T2

T1
u. Notice that when l ě 2,

log β “ log
´

l
l´1

¯

ě 1
l , so we can further upper bound the probability as:

P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

ď
el plog T2 ´ log T1q

expplq
`

e

exp l
. (9)
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Finally, combining the two bounds Eq. (8) and Eq. (9) together, we can prove the first result of
Lemma. 3 as follows:

P

˜

Ds P pT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
ď 0

¸

ď min

"

T2 ´ T1

expplq
,
el plog T2 ´ log T1q

expplq
`

e

exp l

*

.

Eq. (4b) of Lemma. 3: Next, we prove Eq. (4b) of Lemma. 3. Our result is only based on performing
union bound, but one can also modify the proof of Eq. (4a) with peeling trick to prove Eq. (4b).
However, the result from peeling trick is no better than simply performing union bound, at least not
order-wise better. So for simplicity, we apply union bound to the probability as follows:

P

˜

Ds P rT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
` δ ď 0

¸

“P

˜

Ds P rT1, T2s,
s
ÿ

i“1

Wi `
?
2ls ` δs ď 0

¸

ď

T2
ÿ

j“T1

P

˜

s “ j,
s
ÿ

i“1

Wi `
?
2ls ` δs ď 0

¸

“

T2
ÿ

j“T1

P

˜

j
ÿ

i“1

Wi `
a

2jl ` δj ď 0

¸

.

Then, we can apply Hoeffding’s inequality to upper bound each probability as follows:

P

˜

j
ÿ

i“1

Wi `
a

2jl ` δj ď 0

¸

ď exp

˜

´

`?
2jl ` δj

˘2

2j

¸

“ exp

ˆ

´
2jl ` 2

?
2jlδj ` δ2j2

2j

˙

ď
expp´ δ2

2 jq

exp
`

l ` δ
?
2T1l

˘ ,

where the last inequality is due to j ě T1. So summing up all the probabilities, we can bound the
anytime concentration as:

P

˜

Ds P rT1, T2s,

řs
i“1 Wi

s
`

c

2l

s
` δ ď 0

¸

ď

T2
ÿ

j“T1

expp´ δ2

2 jq

exp
`

l ` δ
?
2T1l

˘

ď
1

exp
`

l ` δ
?
2T1l

˘

expp´ δ2T1

2 q

1 ´ exp
`

´ δ2

2

˘

ď
4

δ2 exp

ˆ

´?
l ` δ

b

T1

2

¯2
˙ .

where the last step is due to 1 ´ e´ δ2

2 ě δ2

2 when δ P r0,
?
3s. Then we finish the proof of Eq. (4b)

of Lemma. 3.

Eq. (4c) of Lemma. 3: Finally, we prove Eq. (4a) of Lemma. 3 which bounds the summation of
probability for deviation events over the time horizon. Since l ě T1δ

2

2 , we define γ “ 2l
δ2 ě T1. Then,

we can bound the probabilities when s ď γ by 1 as follows:

T2
ÿ

s“T1`1

P

˜

řs
i“1 Wi

s
`

c

2l

s
ě δ

¸

ď γ ´ T1 `

T2
ÿ

s“rγs

P

˜

řs
i“1 Wi

s
`

c

2l

s
ě δ

¸

.

When s ě rγs, we have:
b

2l
s “ δ

a

γ
s . So, for each probability inside the summation, we have:

P

˜

řs
i“1 Wi

s
`

c

2l

s
ě δ

¸

“ P

˜

řs
i“1 Wi

s
ě δ ´

c

2l

s

¸

ď P
ˆřs

i“1 Wi

s
ě δ

ˆ

1 ´

c

γ

s

˙˙

.
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Then, we can bound the probability with Hoeffding’s inequality as follows:

P
ˆřs

i“1 Wi

s
ě δ

ˆ

1 ´

c

γ

s

˙˙

ď exp

˜

´
sδ2

2

ˆ

1 ´

c

γ

s

˙2
¸

“ exp

ˆ

´
δ2

2

`?
s ´

?
γ
˘2
˙

.

Notice that the upper bound function expp´ δ2

2 p
?
s ´

?
γq2q on the RHS is uni-modal when s ě γ.

If a function fpsq is uni-modal, then we can bound the summation
ř8

s“γ with the sum of maxs fpsq

and integral
ş8

γ
fpsqds. Therefore, putting the upper bound back to the summation, we have:

T2
ÿ

s“rγs

P

˜

řs
i“1 Wi

s
`

c

2l

s
ě δ

¸

ď

T2
ÿ

s“rγs

exp

ˆ

´
δ2

2

`?
s ´

?
γ
˘2
˙

ď

8
ÿ

s“rγs

exp

ˆ

´
δ2

2

`?
s ´

?
γ
˘2
˙

ď1 `

ż 8

γ

exp

ˆ

´
δ2

2

`?
s ´

?
γ
˘2
˙

ds

“1 `
2

δ2
`

?
2πγ

δ
.

So the whole term can be bounded by:
T2
ÿ

s“T1`1

P

˜

řs
i“1 Wi

s
`

c

2l

s
ě δ

¸

ď γ ´ T1 ` 1 `
2

δ2
`

?
2πγ

δ
“

2l `
?
4πl ` 2

δ2
` 1 ´ T1,

which completes the proof of Lemma. 3.

D.2 Proof of Lemma. 5

We only prove the inequality when µ̄s ď µ. The other inequality can be proved exactly the same
way. For every λ P R, let ϕµpλq “ logErexppλX1qs which is well-defined and finite by assumption.
Let Wλ

0 “ 1 and for s ě 1, we define Wλ
t “ exp pλSs ´ sϕµpλqq. We show that

`

Wλ
s

˘

sě1
is a

martingale with respect to the σ-field Fs “ σpW1, ¨ ¨ ¨ ,Wsq. In fact,
E
“

Wλ
s`1|Fs

‰

“E rexp pλSs ` λWs`1 ´ sϕµpλq ´ ϕµpλqq |Fss

“ exp pλSs ´ sϕµpλqqE rexp pλWs`1 ´ ϕµpλqq |Fss

“Wλ
s

E rexp pλWs`1qs

E exp rλX1s

“Wλ
s ,

where the second equality is because Ss is measurable w.r.t. Fs, and the third equality uses the fact
that Ws`1 is independent w.r.t. Fs. Th last equality is due to the i.i.d. nature of W1 and Ws`1. Let
x P r0, µs be such that KLpx, µq “ δ{s, and let λpxq “ θx ´ θµ. It is worth-noting that since θµ

is a monotonically non-decreasing function since its inverse function µ “ b1pθq is monotonically
non-decreasing. So we have λpxq ď 0 since x ď µ. Observe that:

µ̄s ď µ, KL pµ̄s, µq ě
δ

s
, and, x ď µ, KL px, µq “

δ

s
.

Then it holds that x ě µ̄s. Notice that for natural parameter exponential family, ϕµpλq “ bpλ `

θµq ´ bpθµq. Hence on the event tµ̄s ă µu X tsKL pµ̄s, µq ě δu, we have:

λpxqµ̄s ´ ϕµpλpxqq ě λpxqx ´ ϕµpλpxqq “ x pθx ´ θµq ´ bpθxq ` bpθµq “ KLpx, µq “
δ

s
,

where the first inequality is because λpxq ă 0, and the second last equality uses the expression of KL
divergence for natural exponential families. Putting everything together, we have:

P pµ̄s ď µ, sKL pµ̄s, µq ě δq ďP
ˆ

λpxqµ̄s ´ ϕµpλpxqq ě
δ

s

˙

“P
´

Wλpxq
s ě δ

¯

ďErWλpxq
s s expp´δq,
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where the last inequality uses Markov inequality. Since W
λpxq
s is a martingale, so we have:

P pµ̄s ď µ, sKL pµ̄s, µq ě δq ď ErW
λpxq

0 s expp´δq “ expp´δq.

D.3 Proof of Lemma 6

We only prove the inequality when µ̄s ď µ. The other inequality can be proved exactly the same
way. The proof of Lemma/ 6 partly resembles the Proof of Lemma. 5. However, to show an any-time
concentration bound, we need either the union bound or a peeling trick. We first apply union bound
as follows:

P pDs P pT1, T2s, µ̄s ď µ, sKL pµ̄s, µq ě lq ď

T2
ÿ

s“T1`1

P pµ̄s ď µ, sKL pµ̄s, µq ě lq

ďpT2 ´ T1q expp´lq,

which obtains the first term in the RHS of Lemma. 6. Next, we apply the peeling trick. For ev-
ery λ P R, let ϕµpλq “ logErexppλX1qs which is well-defined and finite by assumption. Let
Wλ

0 “ 1 and for s ě 1, we define Wλ
t “ exp pλSs ´ sϕµpλqq. Recall that

`

Wλ
s

˘

sě1
is a mar-

tingale with respect to the σ-field Fs “ σpW1, ¨ ¨ ¨ ,Wsq. Take β ą 1 to be a constant. Let
M “ tlogβ

T2

T1
u, we apply peeling method on s and divide the time horizon over exponential grids

rT1, T1βs, rT1β, T1β
2s, ¨ ¨ ¨ , rT1β

M , T2s as follows:

P pDs P pT1, T2s, µ̄s ď µ, sKL pµ̄s, µq ě lq ď

M
ÿ

i“0

P
`

Ds P rT1β
i, T1β

i`1s, µ̄s ď µ, sKL pµ̄s, µq ě l
˘

.

Let si “ T1β
i and let x ď µ such that sKLpx, µq “ l. let λpxq “ θx ´ θµ < 0. Then, we have

KLpx, µq “ λpxqx ´ ϕµpλpxqq. Consider z such that zi ă µ and KLpzi, µq “ l
si

, so we have when
s P rsi, si`1s

KLpµ̄s, µq ě
l

s
ě

l

si`1
“ KLpzi`1, µq

So we can conclude that µ̄s ď zi`1 Also, we have:

KLpzi`1, µq “
l

si`1
“

1

β

l

si
ě

1

β

l

s
.

Therefore, we have:

λpzi`1qµ̄s ´ ϕµpλpzi`1qq ě λpzi`1qzi`1 ´ ϕµpλpzi`1qq “ KLpzi`1, µq ě
l

βs

So we can bound each probability as:

P pDs P rzi, zi`1s, µ̄s ď µ, sKL pµ̄s, µq ě δq ďP
ˆ

λpzi`1qµ̄s ´ ϕµpλpzi`1qq ě
l

βs

˙

“P
ˆ

Wλpzi`1q
s ě exp

ˆ

l

β

˙˙

ďErWλpzi`1q
s s exp

ˆ

´
l

β

˙

,

where the last inequality uses Markov inequality. Since W
λpzi`1q
s is a martingale, so we have:

P pDs P rzi, zi`1s, µ̄s ď µ, sKL pµ̄s, µq ě δq ď ErW
λpzi`1q

0 s exp

ˆ

´
l

β

˙

“
e

expplq
,

where in the last step, we choose β “ l
l´1 . Then, summing up the probabilities, we can bound the

total probability as follows:

P pDs P pT1, T2s, µ̄s ď µ, sKL pµ̄s, µq ě lq ď

M
ÿ

j“0

e

expplq
“

epM ` 1q

expplq
ď

e plog T2 ´ log T1q

log β expplq
`

e

exp l
,
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where the last inequality is due to the definition of M “ tlogβ
T2

T1
u. Notice that when l ě 2,

log β “ log
´

l
l´1

¯

ě 1
l , so we can further upper bound the probability as:

P pDs P pT1, T2s, µ̄s ď µ, sKL pµ̄s, µq ě lq ď
el plog T2 ´ log T1q

expplq
`

e

exp l
. (10)

D.4 Proof of Lemma. 7

Our proof is based on the analysis of Theorem. 2 of [12]. For any pair of means x, y P r0, 1s, define
KL`

px, yq “ KLpx, yq1xăy. Then for a fixed s, under event tUCBs ě µ1u we have either µ1 ă µ̄s,
or µ1 ą µ̄s but sKLpµ̄s, µ

1q ď l. So in general we can conclude that sKL`
pµ̄s, µ

1q ď l. Then we can
bound the sum of probabilities as follows:

T1
ÿ

s“1

P
`

UCBs ě µ1
˘

ď

T1
ÿ

s“1

P
`

sKL`
pµ̄s, µ

1q ď l
˘

.

Define γ “
p1`εql

KL`pµ,µ1q
“

p1`εql
KLpµ,µ1q

, then if T1 ą γ, we can bound the first γ terms in the summation
with 1. If otherwise T1 ď γ, the whole summation is bounded by γ. So without loss with generality,
assume γ ă T1 and let ε ą 0 be a constant, we have:

T1
ÿ

s“1

P
`

sKL`
pµ̄s, µ

1q ď l
˘

ďγ `

T1
ÿ

s“rγs

P
`

sKL`
pµ̄s, µ

1q ď l
˘

ďγ `

T1
ÿ

s“rγs

P
`

γKL`
pµ̄s, µ

1q ď l
˘

“γ `

T1
ÿ

s“rγs

P
ˆ

KL`
pµ̄s, µ

1q ď
KLpµ, µ1q

1 ` ε

˙

where the second inequality is due to KL`
pµ̄s, µ

1q ą 0. For any s, let rpεq P pµ, µ1q such that
KLprpεq, µ1q “

KLpµ,µ1
q

1`ε . if KL`
pµ̄s, µ

1q ď
KLpµ,µ1

q

1`ε , we have µ̄s ě rpεq. Hence,

P
ˆ

KL`
pµ̄s, µ

1q ď
KLpµ, µ1q

1 ` ε

˙

ď P pµ̄s ě µ,KLpµ̄s, µq ě KLprpεq, µqq ď expp´sKLprpεq, µqq,

where the last inequality uses Lemma. 5. So we can bound the sum of probabilities as follows:

T1
ÿ

s“1

P
`

sKL`
pµ̄s, µ

1q ď l
˘

ď γ `

8
ÿ

s“rγs

expp´sKLprpεq, µqq ď γ `
expp´γKLprpεq, µqq

1 ´ expp´KLprpεq, µqq
.

Notice that expp´γKLprpεq, µqq “ exp
´

´l p1`εqKLprpεq,µq

KLpµ,µ1q

¯

ď T´β1pεq, where β1pεq “

p1`εqKLprpεq,µq

KLpµ,µ1q
. Let β2pεq “ 1

1´expp´KLprpεq,µqq
. It is easy to check that rpεq “ µ ` Opεq, so

we have β1pεq “ Opε2q and β2pεq “ Opε´2q. So we have:

T1
ÿ

s“1

P
`

UCBs ě µ1
˘

ď

T1
ÿ

s“1

P
`

sKL`
pµ̄s, µ

1q ď l
˘

ď
p1 ` εql

KLpµ, µ1q
`

β2pεq

T β1pεq
.

Remark: Let ε “ l´
1
4 , we have:

T1
ÿ

s“1

P
`

UCBs ě µ1
˘

ď
p1 ` εql

KLpµ, µ1q
`

β2pεq

T β1pεq
ď

l ` l
3
4

KLpµ, µ1q
` O

¨

˝

?
l

exp
´?

l
¯

˛

‚.
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Figure 2: Regret performance in bandit models with 4 arms.

E Numerical Experiments Beyond 2-Armed Bandits

In this section, we present numerical experiments based on bandits with more than two arms.
We consider a four armed bandit model with expected rewards r0.7, 0.2, 0.2, 0.2s. We study the
cumulative regret performance of all our proposed algorithms, i.e., EOCP in Algorithm. 1, EOCP-UG
in Algorithm. 2, and KL-EOCP in Algorithm. 3, with both Gaussian and Bernoulli rewards. Since
some baseline algorithms we chose in Section. 6 (e.g., DETC and BAI-ETC) does not directly
generalize to the multi-arm model, we replace them with DETC-K [23] and TAS-ETC respectively,
where the TAS-ETC algorithm first uses the famous Track and Stop [36] algorithm to identify the
best arm and commits to it for the rest of horizon. Additional to all other baselines we used in Sec. 6,
we also compare our algorithms to the Action-Elimination algorithm [42], which provably has both
Oplog T q regret and Oplog T q commitment time. We choose the reward of all sub-optimal arms to be
the same value so that BAI based algorithms can utilize a closed form expression to solve the optimal
arm pull fraction w˚ and does not need to solve a non-convex minimax problem. We choose ∆lb to
be 0.5 for EOCP and KL-EOCP, and the results are shown in Fig. 2 and averaged over 104 iterations.

In both Gaussian and Bernoulli bandits, we observe very similar trends compared to Fig. 1 in two-
armed models. the TAS-ETC algorithm and DETC-K algorithm incurs high regret over the total time
horizon due to their aggressive exploration at the beginning of the trials, similar to the performance
of BAI-ETC and DETC in 2-armed models. The Action Elimination algorithm incurs even larger
regret because of its almost uniform sampling rule at the beginning of the trials. It selects sub-optimal
actions even more often than BAI based algorithms and could not identify the optimal action as
quickly. On the other hand, our proposed algorithms take a more delicate exploration strategy and
result in lower regret, which indicates that the EOCP algorithm and its variants generalize well beyond
two-armed bandit models. The over-exploration phenomenon is also witnessed in this experiment the
UCB algorithm and the KL-UCB algorithm continues to explore sub-optimal actions even after the
EOCP algorithms have identified the best action. The regret of UCB algorithms continues to increase
during the whole time horizon, which shows that over-exploration is a common and fundamental
issue in optimistic algorithms. Preventing over-exploration will significantly boost the performance
of algorithms not only in bandits but also in other online decision-making problems.

The codes for numerical experiments can be found: https://github.com/thumichzqn/fastROBAI.
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