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In this document, we provide supplementary materials that we cannot fit into the main manuscript
due to the page limit. It includes detailed explanations, visualization results, and several quantitative
experiments.

1 Sub-groups in U-Net Denoiser

This section provides further insights into the coupled structures present in U-Net, which function
as denoisers in diffusion models. In the context of structural pruning, it is crucial to prune layers
with interdependencies simultaneously to avoid any potential structural issues [3]. To address these
dependencies within U-Net, we leverage the use of DepGraph [1], which effectively handles most
of the interdependencies. However, we encountered new challenges in the pruning process when
GroupNorm [4] was introduced. GroupNorm divides the feature maps into N groups, enforcing the
constraint that all groups must have the same size. Consequently, this gives rise to N independent
pruning problems, each operating independently of the others. To tackle this, we perform pruning on
these N groups separately, thereby facilitating the pruning of denoisers.
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Figure 1: GroupNorm [4] imposes a structural constraint where all groups must be of the same size.
As a result, this leads to N independent sub-groups, which must be pruned simultaneously. Different
groups are visually highlighted by different colors.

2 The Accumulative Loss Disturbance

Taylor expansion approximates the loss function L(θ) as a linear function of θ when first-order
gradients are used. In structural pruning, a vector θi that contains several parameters will be removed.
We discussed two slightly different importance criteria: the standard Taylor expansion for multiple
variables,

It(θik,x) = |
∑
k

θik · ∇θik
Lt(θ,x)| (1)

and the accumulative variant:

It(θik,x) =
∑
k

|θik · ∇θik
Lt(θ,x)| (2)
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CIFAR-10 32 × 32 (100 DDIM steps)
Method #Params ↓ MACs ↓ FID ↓ SSIM ↑ Train Steps ↓
Pretrained 35.7M 6.1G 4.19 1.000 800K

Scratch Training
19.8M 3.4G

9.88 0.887 100K
Scratch Training 5.68 0.905 500K
Scratch Training 5.39 0.905 800K

Ours-100K 5.29 0.932 100K
Ours-300K 5.13 0.930 300K
Ours-500K 5.12 0.931 500K
Ours-100K + KD

19.8M 3.4G

5.09 0.939 100K

Table 1: Finetuning pruned models with more training steps. The finetuning performance can be
boosted with knowledge distillation, which not only improves the FID score but also makes the
generated images more consistent.

LSUN-Bedroom 256 × 256 (DDIM 100 Steps)
Method #Params MACs FID Steps
Pretrained 113.7M 248.7G 6.9 2.4M
Scratch Training 46.5M 100.7G 50.3 0.2M
Ours-0.2M 46.5M 100.7G 18.6 0.2M
Ours-0.8M 46.5M 100.7G 17.9 0.8M

Table 2: Diffusion models pruning on LSUN Bedroom.

Note that the only difference lies in the position of the summation. It is important to note that Taylor
expansion works only for slight changes of θ′

i. Thus, setting a whole vector θ′
i that contains several

parameters to zero can cause significant violates this requirement. Furthermore, Equation 3 will
accidentally produce zero disturbance when∑

k

θik · ∇θik
Lt(θ,x) = 0, and θik · ∇θik

Lt(θ,x) ̸= 0 (3)

even though the removal of each parameter will harm the performance. To remedy the above issues,
we use Equation 2 to estimate the cumulative loss disturbance caused by removing single parameters.
The results of the proposed method with T = 0, as illustrated in the main paper, show that this
improved importance (FID=5.49) works better than the standard Taylor expansion (FID=5.56).

3 Improving the Performance of Pruned DPMs

More training steps. To enhance pruned models, a straightforward approach is to scale up the
finetuning process by increasing the number of steps. The results of our experiments are presented in
Table 1. It is easy to observe that our model achieves convergence rapidly. Extending the training
of the pruned model to 300K steps yields a slight improvement in FID, yet further increasing the
number of steps does not yield significant advantages. Similarly, we also increase the training steps
on LSUN-Bedroom from 0.2M to 0.8M. The dataset size of LSUN Bedroom is 44.48GB, which is
much larger than the 2.36GB church dataset. It is quite challenging to compress diffusion models
trained on LSUN-Bedroom due to the limited capacity of pruned models and the huge data size. With
more training steps, the FID score reported in Table 2 can be improved from 18.6 to 17.9.

Knowledge Distillation. We conducted further investigations to explore the effectiveness of knowl-
edge distillation in enhancing pruning techniques. In this context, we propose a straightforward
optimization objective to train pruned models:

L(θ′) := Et,x0,ϵ

[
∥ϵθ′(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
(4)

Where θp represents the pruned parameters, our optimization objective aims to align the predictions
of the pruned models with those of the pre-trained models. The effectiveness of this objective is
demonstrated in Table 1, where it is observed that knowledge distillation significantly enhances the
quality and consistency of the generated images.
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4 Speed Up

Table 3 profiles the pre-trained and the pruned models on a single A5000, with a batch size of 1. We
repeat the experiments 50 times and report the average results.

Method #Params ↓ MACs ↓ Inference Mem ↓ Train Mem. ↓ Inference FPS ↑ Train FPS ↑
Pretrained LDM 400.92M 99.80G 11.03GB 14.64GB 12.87 4.26
Pruned LDM 189.43M 52.71G 9.58GB 11.95GB 19.83 6.37

Pretrained DDPM 113.7M 248.7G 3.35GB 5.59GB 28.66 9.07
Pruned DDPM 46.5M 100.7G 2.43GB 4.13GB 32.92 11.02

Table 3: The efficiency of pre-trained and pruned models

5 Training Details

5.1 Pruning pipeline

We follow a one-shot pipeline [3] to build an initial benchmark for diffusion model pruning:

• Importance Estimation: Importance estimation is performed in the group level [1]. We estimate
the importance of weights directly on the pre-trained models, without any iterative strategies.

• Pruning: When unimportant parameters are identified, we physically remove those parameters
to reduce model size. This is different from adding a mask to parameters, which only zeroes
parameters.

• Finetuning: We follow the same training process as DDPMs [2]. After finetuning, we directly
report the performance of the last checkpoint.

5.2 Hyper-parameters

The table summarizes the hyper-parameters employed in network pruning for diffusion models. It
encompasses datasets such as CIFAR-10, CelebA-HQ, LSUN Church, and LSUN Bedroom, along
with their respective image sizes. The hyper-parameters include pruning ratio (44%), learning rate
(2e-4 or 2e-5), batch size (32, 96, or 128), and training steps (100K, 0.2M, or 0.5M). We set the
weight decay to 0 for all datasets. These hyper-parameter values follows the training protocols of
pre-trained models [2], except that we only finetune the pruned models for much less steps.

Dataset Img Size Hyper-parameters

Pruning Ratio Lr Batch Stepf/Stepp

CIFAR-10 32 44% (6.1G → 3.4G) 2e-4 128 12.5% (100K/800K)
CelebA-HQ 64 44% (23.9G → 13.3G) 2e-4 96 20.0% (100K/500K)
LSUN Church 256 44% (248.7G → 138.8G) 2e-5 32 11.3% (0.5M/4.4M)
LSUN Bedroom 256 44% (88G → 138.8G) 2e-5 32 8.33% (0.2M/2.4M)
ImageNet 256 47% (99.8G → 52.7G) 2e-7 128 5.00% (0.1M/2M)

Table 4: Hyper-parameters for our experiments. Stepf and Stepp refer to the number of steps for
finetuning and pre-training respectively.

6 Visualization of Generated Images

In Figure 2 and 3, we visualize more images sampled from pre-trained models and pruned models.
And in Figure 4, we also provide some failure cases with visual distortion or inconsistent contents.
However, we find that our generated images still preserve similar contents to that from pre-trained
models.
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Figure 2: Church images sampled from pre-trained models (left) and pruned models (right).
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Figure 3: Bedroom images sampled from pre-trained models (left) and pruned models (right).
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Figure 4: Failure cases sampled from pre-trained models (left) and pruned models (right).
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