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Abstract

Generative modeling has recently undergone remarkable advancements, primarily
propelled by the transformative implications of Diffusion Probabilistic Models
(DPMs). The impressive capability of these models, however, often entails signif-
icant computational overhead during both training and inference. To tackle this
challenge, we present Diff-Pruning, an efficient compression method tailored for
learning lightweight diffusion models from pre-existing ones, without the need
for extensive re-training. The essence of Diff-Pruning is encapsulated in a Taylor
expansion over pruned timesteps, a process that disregards non-contributory dif-
fusion steps and ensembles informative gradients to identify important weights.
Our empirical assessment, undertaken across several datasets highlights two pri-
mary benefits of our proposed method: 1) Efficiency: it enables approximately
a 50% reduction in FLOPs at a mere 10% to 20% of the original training ex-
penditure; 2) Consistency: the pruned diffusion models inherently preserve gen-
erative behavior congruent with their pre-trained models. Code is available at
https://github.com/VainF/Diff-Pruning.

1 Introduction

Generative modeling has undergone significant advancements in the past few years, largely pro-
pelled by the advent of Diffusion Probabilistic Models (DPMs) [18, 41, 37]. These models have
derived numerous applications ranging from text-to-image generation [40], image editing [58], im-
age translation[45], and even discriminative tasks [2, 1]. The incredible power of DPMs, however,
often comes at the expense of considerable computational overhead during both training [49] and
inference [43]. This trade-off between performance and efficiency presents a critical challenge in the
broader application of these models, particularly in resource-constrained environments.

In the literature, huge efforts have been made to improve diffusion models, which primarily revolved
around three broad themes: improving model architectures [41, 39, 52], optimizing training meth-
ods [49, 11] and accelerating sampling [46, 43, 12]. As a result, a multitude of well-trained diffusion
models has been created in these valuable works, showcasing their potential for various applications
[48]. However, the notable challenge still remains: the absence of a general compression method that
enables the efficient reuse and customization of these pre-existing models without heavy re-training.
Overcoming this gap is of paramount importance to fully harness the power of pre-trained diffusion
models and facilitate their widespread application across different domains and tasks.

In this work, we demonstrate the remarkable effectiveness of structural pruning [23, 8, 26, 4] as a
method for compressing diffusion models, which offers a flexible trade-off between efficiency and
quality. Structural pruning is a classic technique that effectively reduces model sizes by eliminating
redundant parameters and sub-structures from networks. While it has been extensively studied in
discriminative tasks such as classification [16], detection [54], and segmentation [13], applying struc-
tural pruning techniques to Diffusion Probabilistic Models poses unique challenges that necessitate
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a rethinking of traditional pruning strategies. For example, the iterative nature of the generative
process in DPMs, the models’ sensitivity to small perturbations in different timesteps, and the intricate
interplay in the diffusion process collectively create a landscape where conventional pruning strategies
often fall short.

To this end, we introduce a novel approach called Diff-Pruning, explicitly tailored for the compression
of diffusion models. Our method is motivated by the observation in previous works [41, 52] that
different stages in the diffusion process contribute variably to the generated samples. At the heart of
our method lies a Taylor expansion over pruned timesteps, which deftly balances the image content,
details, and the negative impact of noisy diffusion steps during pruning. Initially, we show that
the objective of diffusion models at late timesteps (t → T ) prioritize the high-level content of the
generated images during pruning, while the early ones (t → 0) refine the images with finer details.
However, it is also observed that, when using Taylor expansion for pruning, the noisy stages with large
t can not provide informative gradients for importance estimation and can even harm the compressed
performance. Therefore, we propose to model the trade-off between contents, details, and noises as a
pruning problem of the diffusion timesteps, which leads to an efficient and flexible pruning algorithm
for diffusion models.

Through extensive empirical evaluations across diverse datasets, we demonstrate that our method
achieves substantial compression rates while preserving and in some cases even improving the
generative quality of the models. Our experiments also highlight two significant features of Diff-
Pruning: efficiency and consistency. For example, when applying our method to an off-the-shelf
diffusion model pre-trained on LSUN Church [57], we achieve an impressive compression rate
of 50% FLOPs, with only 10% of the training cost required by the original models, equating to
0.5 million steps compared to the 4.4 million steps of the pre-existing models. Furthermore, we
have thoroughly assessed the generative behavior of the compressed models both qualitatively and
quantitatively. Our evaluations demonstrate that the compressed model can effectively preserve a
similar generation behavior as the pre-trained model, meaning that when provided with the same
inputs, both models yield consistent outputs. Such consistency further reveals the practicality and
reliability of Diff-Pruning as a compression method for diffusion models.

In summary, this paper introduces Diff-Pruning as an efficient method for compressing Diffusion
Probabilistic Models, which is able to achieve compression with only 10% to 20% of the training
costs compared to pre-training. This work may serve as an initial baseline and provide a foundation
for future research aiming to enhance the quality and consistency of compressed diffusion models.

2 Ralted Works

Efficient Diffusion Models The existing methodologies principally address the efficiency issues
associated with diffusion models via three primary strategies: the refinement of network archi-
tectures [41, 52, 37], the enhancement of training procedures [11, 49], and the acceleration of
sampling [18, 27, 12]. Diffusion models typically employ U-Net models as denoisers, of which
the efficiency can be improved via the introduction of hierarchical designs [40] or by executing the
training within a novel latent space [41, 19, 25]. Recent studies also suggest integrating more efficient
layers or structures into the denoiser to bolster the performance of the U-Net model [52, 39], thereby
facilitating superior image quality learning during the training phase. Moreover, a considerable
number of studies concentrate on amplifying the training efficiency of diffusion models, with some
demonstrating that the diffusion training can be expedited by modulating the weights allocated to
distinct timesteps [43, 11]. The training efficiency can also be advanced by learning diffusion models
at the patch level [49]. In addition, some approaches underscore the efficiency of sampling, which
typically does not necessitate the retraining of diffusion models [27]. In this area, numerous studies
aim to diminish the required steps through methods such as early stopping [34] or distillation [43].

Network Pruning In recent years, the field of network acceleration [59, 3, 20, 53, 51, 29, 30]
has seen notable progress through the deployment of network pruning techniques [31, 16, 33, 23,
14, 5, 15]. The taxonomy of pruning methodologies typically bifurcates into two main categories:
structural pruning [23, 6, 56, 26, 56] and unstructured pruning [38, 7, 44, 22]. The distinguishing
trait of structural pruning is its ability to physically eliminate parameters and substructures from
networks, while unstructured pruning essentially masks parameters by zeroing them out [8, 4].
However, the preponderance of network pruning research is primarily focused on discriminative

2



tasks, particularly classification tasks [16]. A limited number of studies have ventured into examining
the effectiveness of pruning in generative tasks, such as GAN compression [24, 47]. Moreover, the
application of structural pruning techniques to Diffusion Probabilistic Models introduces unique
challenges that demand a reevaluation of conventional pruning strategies. In this work, we introduce
the first dedicated method explicitly designed for pruning diffusion models, which may serve as a
useful baseline for future works.

3 Diffusion Model Objectives

Given a data distribution q(x), diffusion models aim to model a generative distribution pθ(x) to
approximate q(x), taking the form

pθ(x) =

∫
pθ(x0:T )dx1:T , where pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (1)

And x1, ...,xT refer to the latent variables, which contribute to the joint distribution pθ(x0:T ) with
learned Gaussian transitions pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). Diffusion Models in-
volve two opposite processes: a forward (diffusion) process q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI)

that adds noises to the xt−1, based on a pre-defined variance schedule β1:T ; and a reverse process
q(xt−1|xt) which "denoises" the observation xt to get xt−1. Using the notation αt = 1− βt and
ᾱt =

∏t
s=1 αs, DDPMs [18] trains a noise predictor with the objective:

L(θ) := Et,x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
(2)

where ϵ is a random noise drawn from a fixed Gaussian distribution and ϵθ refers to a learned noise
predictor, which is usually an U-Net autoencoder [42] in practice. After training, synthetic images x0

can be sampled through an iterative process from a noise xT ∼ N (0,1) with the formular:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (3)

where z ∼ N (0, I) for steps t > 1 and z = 0 for t = 1. In this work, we aim to craft a lightweight
ϵθ′ by removing redundant parameters of ϵθ, which are expected to produce similar x0 while the
same xT are presented.

4 Structrual Pruning for Diffusion Models

Given the parameter θ of a pre-trained diffusion model, our goal is to craft a lightweight θ′ by
removing sub-structures from the network following existing paradigms [35, 8]. Without loss
of generality, we assume that the parameter θ is a simple 2-D matrix, where each sub-structure
θi = [θi0, θi1, ..., θiK ] is a row vector that contains K scalar parameters. Structural pruning aims to
find a sparse parameter matrix θ′ that maximally preserves the original performance. Thus, a natural
choice is to optimize the loss disruption caused by pruning:

min
θ′

|L(θ′)− L(θ)|, s.t. ∥θ′∥0 ≤ s (4)

The term |θ′|0 denotes the L-0 norm of the parameters, which counts the number of non-zero row
vectors, and s represents the sparsity of the pruned model. Nevertheless, due to the iterative nature
intrinsic to diffusion models, the training objective, denoted by L, can be perceived as a composition
of T interconnected tasks: {L1,L2, ...,LT }. Each task affects and depends on the others, thereby
posing a new challenge distinct from traditional pruning problems, which primarily concentrate on
optimizing a single objective. In light of the pruning objective as defined in Equation 4, we initially
delve into the individual contributions of each loss component, Lt in pruning, and subsequently
propose a tailored method, Diff-Pruning, designed for diffusion models pruning.

Taylor Expansion at Lt Initially, we need to model the contribution of Lt for structural pruning.
This work leverages Taylor expansion [35] on Lt to linearly approximate the loss disruption:

Lt(θ
′) = Lt(θ) +∇Lt(θ)(θ

′ − θ) +O(∥θ′ − θ∥2)
⇒ Lt(θ

′)− Lt(θ) = ∇Lt(θ)(θ
′ − θ) +O(∥θ′ − θ∥2)

(5)
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Figure 1: Diff-Pruning leverages Taylor expansion at pruned timesteps to estimate the importance
of weights, where early steps focus on local details like edges and color and later ones pay more
attention to contents such as object and shape. We propose a simple thresholding method to trade off
these factors with a binary weight αt ∈ {0, 1}, leading to a practical algorithm for diffusion models.
The generated images produced by 5%-pruned DDPMs (without post-training) are illustrated.

Taylor expansion offers a robust framework for network pruning, as it can estimate the loss disruption
using first-order gradients. To evaluate the importance of an individual weight θik, we can simply set
θ′

ik = 0 in Equation 5, which results in the following importance criterion:

It(θik,x) = |Lt(θ|θik=0)− Lt(θ)|
= |(θi0 − θi0) · ∇θi0

+ · · ·+ (0− θik) · ∇θik
+ · · ·+ (θiK − θiK) · ∇θiK

|
= |θik · ∇θik

Lt(θ,x)|
(6)

where ∇θik
refer to ∇θik

Lt(θ,x). In structural pruning, we aim to remove the entire vector θ′
i

concurrently. The standard Taylor expansion for multiple variables, as described in the literature [9],
advocates using |

∑
k θik · ∇θik

Lt(θ,x)| for importance estimation. This method exclusively
takes into account the loss difference between the initial state θ and the final states θ′. However,
considering the iterative nature of diffusion models, even minor fluctuations in loss can influence
the final generation results. To this end, we propose to aggregate the influence of removing each
parameter as the final importance. This modification models cumulative loss disturbance induced by
each θik’s removal and leads to a slightly different score function for structural pruning:

It(θi,x) =
∑
k

|Lt(θ|θik=0)− Lt(θ)| =
∑
k

|θik · ∇θik
Lt(θ,x)| (7)

In the following sections, we utilize Equation 7 as the importance function to identify non-critical
parameters in diffusion models.

The Contribution of Lt. With the Taylor expansion framework, we further explore the contribution
of different loss terms {L1, ...,LT } during pruning. We consider the functional error δt = ϵθ′(x, t)−
ϵθ(x, t) which represents the prediction error for the same inputs at time step t. The reverse process
allows us to exam the effects δt→0 on the generated images x0 by iteratively applying the Equation 3
starting from ϵθ′(x, t) = ϵθ(x, t) + δt. At the t− 1 step, it leads to the error δt−1 derived as:

δt−1 =

[
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz

]
−

[
1√
αt

(
xt −

βt√
1− ᾱt

(ϵθ(xt, t) + δt)

)
+ σtz

]
=

1√
αt

βt√
1ᾱt

δt

(8)

This error has a direct impact on the subsequent input, given by x′
t−1 = xt−1 + δt−1. By checking

Equation 3, we can observe that these perturbed inputs can further trigger a chained effect through
both 1√

αt−1
x′
t−1 and − 1√

αt−1

βt−1√
1−ᾱt−1

ϵθ′(x′
t−1, t−1). In the first term, the distortion progressively

amplifies by a factor 1√
αt−1

> 1, which means that this error will be enhanced throughout the
generation process. Regarding the second term, pruning affects both the functionality parameterized
by θ′ and the inputs x′

t−1, which contributes to the final results in a nonlinear and more complicated
manner, resulting in a more substantial disturbance on the generated images.

4



Algorithm 1 Diff-Pruning

Input: A pretrained diffusion model θ, a dataset X , a threshold T and a pruning ratio p%
Output: The pruned diffusion model θ′

1: Lmax = 0
2: x = mini-batch(X);
3: ϵ ∼ N (0, 1)
4: ▷ Accumulating gradients over partial steps with the threshold T
5: for t in [0, 1, 2, ..., T ] do:
6: Lt = ∥ϵ− ϵθ(

√
ᾱtx+

√
1− ᾱtϵ, t)∥2; ▷ Equation 2

7: Lmax = max(Lmax,Lt)
8: if Lt/Lmax ≤ T then
9: break; ▷ The threshold in Equation 10

10: end if
11: ∇θik

Lt(θ, x) = back-propagation(Lt(θ, x))
12: end for
13: ▷ Estimating the importance of sub-structure θi with the accumulated t-step gradients
14: I(θi, x) =

∑
k |θik ·

∑t
s=0 ∇θik

Ls(θ, x)| ▷ Equation 10
15: ▷ Pruning and finetuning
16: Remove p% channels in each layer to obtain θ′.
17: Finetune the pruned model θ′ on X
18: return θ′

As a result, prediction errors occurring at larger t tend to have a larger impact on the images due to
the chain effect, which might change the global content of generated images. Conversely, smaller t
values focus on refining the images with relatively small modifications. These findings align with our
empirical examination using Taylor expansion as illustrated in Figure 1, as well as the observation in
previous works [18, 52], which shows that diffusion models tend to generate object-level information
at larger t values and fine-tune the features at smaller ones. To this end, we model the pruning problem
as a weighted trade-off between contents and details by introducing αt, which acts as a weighting
variable for different timesteps t. Nevertheless, unconstrained reweighting can be highly inefficient,
as it entails exploring a large parameter space for αt and requires at least T forward-backward passes
for Taylor expansion. This results in a vast sampling space and can lead to inaccuracies in the
linear approximation. To address this issue, we simplify the re-weighting strategy by treating it as a
“pruning problem”, where αt takes the value of either 0 or 1 for all steps, allowing us to only leverage
partial steps for pruning. The general importance metric is modeled as the following.

I(θi,x) =
∑
k

∣∣∣∣∣θik ·
∑
t

αt∇θik
Lt(θ,x)

∣∣∣∣∣ , s.t. αt ∈ {0, 1} (9)

Taylor Score over Pruned Timesteps. In Equation 9, we try to remove some “unimportant”
timesteps in the diffusion process so as to enable an efficient and stable approximation for partial
steps. Our empirical results, as will be discussed in the experiments, indicate two key findings. Firstly,
we note that the timesteps responsible for generating content are not exclusively found towards the
end of the diffusion process (t → T ). Instead, there are numerous noisy and redundant timesteps
that contribute minorly to the overall generation, which is similar to the observations in the related
work [34]. Secondly, we discovered that employing the full-step objective can sometimes yield
suboptimal results compared to using a partial objective. We attribute this negative impact to the
presence of converged gradients in the noisy steps (t → T ). Taylor approximation in Equation 5
comprises both first-order gradients and higher-order terms. When the loss Lt converges, the loss
curve is predominantly influenced by the higher-order terms rather than the first-order gradients we
utilize. Our experiments on several datasets and diffusion models show that the loss term Lt rapidly
approaches 0 as t → T . For example in Figure 5, the relative loss Lt

Lmax
of a pre-trained diffusion

model for CIFAR-10 decreases to 0.05 when t = 250. Consequently, a full Taylor expansion can
accumulate a considerable amount of noisy gradients from these converged or unimportant steps,
resulting in an inaccurate estimation of weight importance.
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Considering the significant impact of larger timesteps, it is necessary to incorporate them for im-
portance estimation. To address this problem, Equation 9 naturally provides a simple and practical
thresholding strategy for pruning. To achieve this, we introduce a threshold parameter T based on
the relative loss Lt

Lmax
. Those timesteps with a relative loss below this threshold, i.e., Lt

Lmax
< T ,

are considered uninformative and are disregarded by setting αt = 0, which yields the finalized
importance score:

I(θi,x) =
∑
k

∣∣∣∣∣∣∣θik ·
∑

{t| Lt
Lmax

>T }

∇θik
Lt(θ,x)

∣∣∣∣∣∣∣ (10)

In practice, we need to select an appropriately large value for T to strike a well-balanced preservation
of details and content, while also avoiding uninformative gradients from noisy loss terms. The full
algorithm is summarized in Alg. 1.

5 Experiments

5.1 Settings

Datasets and Models The efficacy of Diff-Pruning is empirically validated across six diverse
datasets, including CIFAR-10 (32×32)[21], CelebA-HQ (64×64)[32], LSUN Church (256×256),
LSUN Bedroom (256×256) [57] and ImageNet-1K (256×256). We focus on two popular DPMs in
our experiments, i.e., Denoising Diffusion Probability Models (DDPMs) [18] and Latent Diffusion
Models (LDMs) [41]. For the sake of reproducibility, we utilize off-the-shelf DPMs from [18] and
[41] as pre-trained models and prune these models in a one-shot fashion[23].

Evaluation Metrics In this paper, we concentrate primarily on three types of metrics: 1) Efficiency
metrics, which include the number of parameters (#Params) and Multiply-Add Accumulation (MACs);
2) Quality metric, namely the Frechet Inception Distance (FID) [17]; and 3) Consistency metric,
represented by Structural Similarity (SSIM) [50]. Unlike previous generative tasks that lacked
reference images, we employ the SSIM index to evaluate the similarity between images generated by
pre-trained models and pruned models, given identical noise inputs. We deplpy a 250-step DDIM
sampler [46] for ImageNet and a 100-step DDIM sampler for other experiments.

5.2 An Simple Benchmark for Diffusion Pruning

Scratch Training v.s. Pruning. Table 1 shows our results on CIFAR-10 and CelebA-HQ. The
first baseline method that piques our interest is scratch training. Numerous studies on network
pruning [10] suggest that training a compact network from scratch can be a formidable competitor.
To ensure a fair comparison, we create randomly initialized networks with the same architecture as
the pruned ones for scratch training. Our results reveal that scratch training demands relatively more
steps to reach convergence. This suggests that training lightweight models from scratch may not
be an efficient and economical approach, given its training cost is comparable to that of pre-trained
models. Conversely, we observe that all pruning methods are able to converge within approximately
100K steps and outperform scratch training in terms of FID and SSIM scores. Thus, pruning emerges
as a potent technique for compressing pre-trained Diffusion Models.

Pruning Criteria. A significant aspect of network pruning is the formulation of pruning criteria,
which serve to identify superfluous parameters within networks. Due to the absence of dedicated
work on Diffusion model pruning, we adapted three basic pruning methods from discriminative tasks:
random pruning, magnitude-based pruning [16], and Taylor-based pruning [36], which we refer to
as Random, Magnitude, and Taylor respectively in subsequent sections. For a given parameter θ,
Random assigns importance scores derived from a uniform distribution to each θi randomly, denoted
as I(θ) ∼ U(0, 1). This results in a straightforward baseline devoid of any prior or bias, and has
been shown to be a competitive baseline for pruning [28]. Magnitude subscribes to the “smaller-norm-
less-informative” hypothesis [23, 55], modelling the weight importance as I(θ) = |θ|. In contrast,
Taylor is a data-driven criterion that measures importance as I(θ, x) = |θ · ∇θL(x,θ)|, which aims
to minimize loss change as discussed in our method. As shown in 1, an intriguing phenomenon is
that these three baseline methods do not maintain a consistent ranking on these two datasets. For
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CIFAR-10 32 × 32 (100 DDIM steps)
Method #Params ↓ MACs ↓ FID ↓ SSIM ↑ Train Steps ↓
Pretrained 35.7M 6.1G 4.19 1.000 800K

Scratch Training

19.8M 3.4G

9.88 0.887 100K
Scratch Training 5.68 0.905 500K
Scratch Training 5.39 0.905 800K
Random Pruning 5.62 0.926 100K
Magnitude Pruning 5.48 0.929 100K
Taylor Pruning 5.56 0.928 100K

Ours (T = 0.00) 5.49 0.932 100K
Ours (T = 0.02) 5.44 0.931 100K
Ours (T = 0.05)

19.8M 3.4G
5.29 0.932 100K

CelebA-HQ 64 × 64 (100 DDIM steps)
Method #Params MACs FID SSIM Train Steps

Pretrained 78.7M 23.9G 6.48 1.000 500K

Scratch Training

43.7M 13.3G

7.08 0.833 100K
Scratch Training 6.73 0.867 300K
Scratch Training 6.71 0.869 500K
Random Pruning 6.70 0.874 100K
Magnitude Pruning 7.08 0.870 100K
Taylor Pruning 6.64 0.880 100K

Ours (T = 0.00) 6.24 0.885 100K
Ours (T = 0.02) 6.45 0.878 100K
Ours (T = 0.05)

43.7M 13.3G
6.52 0.878 100K

Table 1: Diffusion pruning on CIFAR-10 and CelebA. We leverage Frechet Inception Distance (FID)
and Structural Similarity (SSIM) to estimate the quality and similarity of generated samples under
the same random seed. A larger SSIM score means more consistent generation.

instance, while Magnitude achieves the best FID performance among the three on CIFAR-10, it
performs poorly on CelebA datasets. In contrast, our method delivers stable improvements over
baseline methods, demonstrating superior performance on both datasets. Remarkably, our method
even surpasses the pre-trained model on CelebA-HQ, with only 100K optimizations. Nonetheless,
performance degradation is observed on CIFAR-10, which can be attributed to its more complex
scene and a larger number of categories.

5.3 Pruning at Higher Resolutions

DDPMs on LSUN To further validate the efficiency and effectiveness of our proposed Diff-
Pruning, we perform pruning experiments on two 256×256 scene datasets, LSUN Church, and LSUN
Bedroom [57]. The pre-trained models from [18] require around 2.4M and 4.4M training steps, which
can be quite time-consuming in practice. We demonstrate that Diff-Pruning can compress these
pre-existing models using only 10% of the standard training resources. We report the number of
parameters, MACs, and FID scores in Table 2, and compare the pruned methods to the pre-trained
ones as well as those trained from scratch. Results show that the pruned model converges with a
passable FID score in 10% of the standard steps, while a model trained from scratch is still severely
under-fitted. Nevertheless, we also discover that compressing a model trained on large-scale datasets,
such as LSUN Bedroom, which contains 300K images, proves to be quite challenging with a very
limited number of training steps. We show that, in the supplementary materials, the FID scores can
be further improved with more training steps. Moreover, we also visualize the generated images
in Figure 2 and report the single-image SSIM score to measure the similarity of generated images.
By nature, the pruned models can preserve similar generation capabilities since they inherit most
parameters from the pre-trained models.

Conditional LDMs on ImageNet Table 3 and Figure 3 illustrate the pruning results of LDM
pre-trained on ImageNet-1K. An LDM consists of an encoder, a decoder, and a U-Net model. Around
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SSIM = 0.814 SSIM = 0.861 SSIM = 0.817

SSIM = 0.792 SSIM = 0.821 SSIM = 0.952

SSIM = 0.878 SSIM = 0.876 SSIM = 0.907

SSIM = 0.912 SSIM = 0.907 SSIM = 0.881

Figure 2: Generated images of the pre-trained models [18] (left) and the pruned models (right) on
LSUN Church and LSUN Bedroom. SSIM measures the similarity between generated images.

LSUN-Church 256 × 256 (DDIM 100 Steps) LSUN-Bedroom 256 × 256 (DDIM 100 Steps)
Method #Params MACs FID Steps Method #Params MACs FID Steps
Pretrained 113.7M 248.7G 10.6 4.4M Pretrained 113.7M 248.7G 6.9 2.4M
Scratch Training 63.2M 138.8G 40.2 0.5M Scratch Training 63.2M 138.8G 50.3 0.2M
Ours (T = 0.01) 63.2M 138.8G 13.9 0.5M Ours (T = 0.01) 63.2M 138.8G 18.6 0.2M

Table 2: Pruning diffusion models on LSUN Church and LSUN Bedroom.

400M parameters come from the U-Net architecture and only 55M from the autoencoder. Therefore,
we mainly focus on the pruning of the U-Net model. We used the threshold T = 0.1 to ignore
those converged layers and make the pruning process more efficient. With T = 0.1, only 534 steps
participate in the pruning process. After importance estimation, we apply a pre-defined channel
sparsity of 30% to all layers, leading to a lightweight U-Net with 189.43M parameters. Finally, we
finetune the pruned model for only 4 epochs with the official training script, with a scaled learning
rate of 0.1× lrbase.

5.4 Ablation Study

Pruned Timesteps. First, we conduct an empirical study evaluating the partial Taylor expansion
over pruned timesteps. This approach prioritizes steps with larger gradients and strives to preserve
as much content and detail as possible, thereby enabling more accurate and efficient pruning. The
impacts of timestep pruning are demonstrated in Figure 5. We seek to prune a pre-trained diffusion
model over a range of steps, spanning from 50 to 1000, after which we utilize the SSIM metric to
gauge the distortion induced by pruning. In diffusion models, earlier steps (t → 0) usually present
larger gradients compared to the later ones (t → T ) [41]. This inherently leads to gradients that have
reached a convergence when t is large. In the CIFAR-10 dataset, we find that the optimal SSIM score
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Figure 3: Images sampled from the pruned conditional LDM on ImageNet-1K-256

Method #Params ↓ MACs ↓ FID ↓ IS ↑ Train Steps ↓
Pretrained LDM 400.92M 99.80G 3.60 247.67 2000K

Scratch Training
189.43M 52.71G

51.45 25.69 100K
Taylor Pruning 11.18 138.97 100K
Ours (T = 0.1) 9.16 201.81 100K

Table 3: Compressing conditional Latent Diffusion Models on ImageNet-1K (256 × 256)

Pruning Ratios
Ratio #Params MACs FID ↓ SSIM ↑
0% 35.7M 6.1G 4.19 1.000
16% 27.5M 5.1G 4.62 0.942
44% 19.8M 3.4G 5.29 0.932
56% 14.3M 2.7G 6.36 0.922
70% 8.6M 1.5G 9.33 0.909

Table 4: Pruning with different ratios

Thresholding
Threshold Steps FID ↓ SSIM ↑
T = 0.00 1000 5.49 0.932
T = 0.01 707 5.41 0.932
T = 0.02 433 5.44 0.931
T = 0.05 244 5.29 0.932
T = 0.10 127 5.31 0.931

Table 5: Pruning with different threshold T

can be attained at around 250 steps, and adding more steps can slightly deteriorate the quality of
the synthetic images. This primarily stems from the inaccuracy of the first-order Taylor expansion
at converged points, where the gradient no longer provides useful information and can even distort
informative gradients through accumulation. However, we observe that the situation differs slightly
with the CelebA dataset, where more steps can be beneficial for importance estimation.

Pruning Ratios. Table 4 presents the #Params, MACs, FID, and SSIM scores of models subjected
to various pruning ratios based on MACs. Notably, our findings reveal that, unlike CNNs employed
in discriminative models, diffusion models exhibit a significant sensitivity to changes in model size.
Even a modest pruning ratio of 16% leads to a noticeable degradation in FID score (4.19 → 4.62).
In classification tasks, a perturbation in loss does not necessarily impact the final accuracy; it may
only undermine prediction confidence while leaving classification accuracy unaffected. However, in
generative models, the FID score is very sensitive, making it more susceptible to domain shift.

Thresholding. In addition, we conducted experiments to investigate the impact of the thresholding
parameter T . Setting T = 0 corresponds to a full Taylor expansion at all steps, while T > 0 denotes
pruning of certain timesteps during importance estimation. The quantitative findings presented in
Table 5 align with the SSIM results depicted in Figure 5. Notably, Diff-Pruning attains optimal
performance when the quality of generated images reaches its peak. For datasets such as CIFAR-10,
we observed that a 200-step Taylor expansion is sufficient to achieve satisfactory results. Besides,
using a full Taylor expansion, in this case, can be detrimental, as it accumulates noisy gradients over
approximately 700 steps, which obscures the correct gradient information from earlier steps.
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w/o Pruning
SSIM = 1.000

Random
SSIM = 0.744

Magnitude
SSIM = 0.391

Taylor
SSIM = 0.758

Ours
SSIM = 0.905

Ours (𝓣=0)
SSIM = 0.857

Figure 4: Generated images of 5%-pruned models using different important criteria. We report the
SSIM of batched images without post-training.
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Figure 5: The SSIM of models pruned with different numbers of timesteps. For CIFAR-10, most of
the late timesteps can be pruned safely. For CelebA-HQ, using more steps is consistently beneficial.

Visualization of Different Importance Criteria. Figure 4 visualizes the images generated by
pruned models using different pruning criteria, including the proposed method with T = 0 (w/o
timestep pruning) and T > 0. The SSIM scores of the generated samples are reported for a
quantitative comparison. The Diff-Pruning method with T > 0 achieves superior visual quality, with
an SSIM score of 0.905 after pruning. It is observed that employing more timesteps in our method
could have a negative impact, leading to greater distortion in both textures and contents.

6 Conclusion

This work introduces Diff-Pruning, a dedicated method for compressing diffusion models. It utilizes
Taylor expansion over pruned timesteps to identify and remove non-critical parameters. The proposed
approach is capable of crafting lightweight yet consistent models from pre-trained ones, incurring
only about 10% to 20% of the cost compared to pre-training. This work may set an initial baseline
for future research that aims at improving both the generation quality and the consistency of pruned
diffusion models.
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