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Abstract

Scaling laws have been recently employed to derive compute-optimal model size2

(number of parameters) for a given compute duration. We advance and refine such3

methods to infer compute-optimal model shapes, such as width and depth, and4

successfully implement this in vision transformers. Our shape-optimized vision5

transformer, SoViT, achieves results competitive with models that exceed twice its6

size, despite being pre-trained with an equivalent amount of compute. For example,7

SoViT-400m/14 achieves 90.3% fine-tuning accuracy on ILSRCV2012, surpassing8

the much larger ViT-g/14 and approaching ViT-G/14 under identical settings, with9

also less than half the inference cost. We conduct a thorough evaluation across10

multiple tasks, such as image classification, captioning, VQA and zero-shot transfer,11

demonstrating the effectiveness of our model across a broad range of domains and12

identifying limitations. Overall, our findings challenge the prevailing approach of13

blindly scaling up vision models and pave a path for a more informed scaling.14

1 Introduction15

The de-facto approach for improving performance of vision and language models today is scale:16

large models are trained on more data for longer [59, 38, 21, 16, 74, 20, 10, 13]. Empirically, it17

has been observed that the benefit of scale often follows a predictable power law in which the18

performance f(x) (e.g. error rate or log-perplexity) satisfies f(x) ∼ βx−c + ε∞ for some β, c > 019

as one varies the scaling dimension x (e.g. data or model size), if the remaining dimensions are not20

bottlenecks [29, 34, 24, 23, 3, 1]. Here, ε∞ is the irreducible loss.21

However, the simple power-law relation becomes more complicated when compute is considered. In22

this case, power laws are observed only along the compute-optimal frontier. Otherwise, scaling up23

the model size for a fixed compute budget can deteriorate performance (see [34, 30] and Figure 4).24

Since one often has a fixed compute budget in mind (e.g. available hardware and time), one should25

pick the model size that maximizes performance subject to the compute budget constraint, which26

may imply not training until convergence. Indeed, this approach was used successfully in the recent27

Chinchilla [30] that outperformed its predecessor Gopher [50] despite being 4× smaller in size.28

Unfortunately, in both [34] and [30] among others, the “size” of a model is equated with its parameter29

count, with no special consideration for model “shape dimensions”, such as “depth” or “width”.30

The rationale behind this choice follows from the surprising observation that the transformer shape31

had little impact on its scaling behavior in language modeling (LM) when performance is measured32

upstream (e.g. using log-perplexity) [34, 27, 28]. Nevertheless, follow-up analysis suggests that33

shape plays a pivotal role in other domains, such as in machine translation [42] and also in language34

?Significant technical contributions.
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Figure 1: Predicted efficiency frontier (depth, width, MLP dimension, and parameter count) in
SoViT. In large models, optimal shapes follow a similar trajectory in both image classification and
multimodal tasks (see Section 4) although they can be different in small models (see Figure 3).

modeling for downstream performance [61], with recent works even advocating for extreme aspect35

ratios, such as a single wide attention layer [9].36

In vision, in particular, much earlier works using convolutional neural networks (CNNs) pointed37

out that the parameter count is indeed a poor predictor of performance. For example, scaling all38

dimensions [59, 38, 4] in ResNets [26] is more effective than scaling a single dimension such as39

depth alone. In addition, scaling width [73] is often more effective than depth, especially for small40

models [31, 53, 69]. Hence, optimizing the “shape” of transformers seems worthwhile.41

In this work, we present SoViT: a shape-optimized vision transformer [21] that matches the per-42

formance of much larger models despite being pre-trained with equal compute. It is derived from43

a recipe we introduce for optimizing the shape of neural architectures, such as their depth and44

width. A principled approach for scaling multiple dimensions is advantageous because although one45

can scale dimensions via brute-force search, this requires extensive computation and often remains46

sub-optimal [59]. Our recipe allows us to extrapolate without having to conduct an extensive set47

of experiments. For example, after only 115 experments, we identify a scaling strategy in ViT for48

all three dimensions: width (internal representation), depth, and MLP size. For comparison, [30]49

requires over 400 experiments to optimize a single dimension (the parameter count) alone.50

One major finding is that small vision models can perform on par with larger ones with the same51

compute if we optimize their shape. In language, recent works have demonstrated the value of52

scaled-down architectures, such as the Chinchilla model [30] discussed earlier — a 70B parameter53

model that outperforms the 280B-parameter Gopher [50] and 175B-parameter GPT3 [10] — as54

well as LLaMA with its 13B parameter variant outperforming GPT3 on most benchmarks [64]. By55

introducing SoViT, we establish this phenomenon in vision as well.56

Figure 1 summarizes how the various shape dimensions are scaled in SoViT (see Section 3 for57

derivation). The MLP dimension is scaled faster than depth, which in turn is scaled faster than width.58

When summarized by their parameter count (rightmost plot), compute-optimal ViTs are smaller59

than was previously used. With this scaling strategy, we find the shape of a ViT for the compute-60

equivalent of ViT-g/14 [74] pretrained on 16B JFT images [58]. We call this 2.5× smaller model61

SoViT-400m/14. It achieves 90.3% fine-tuning accuracy on ILSRCV2012 [19] and 82.2% zero-shot62

accuracy in the locked-image text tuning (LiT) setup [75]. We further evaluate SoViT-400m/14 on63

captioning, VQA and panoptic segmentation and highlight some results in Figure 2.64

Statement of Contribution. In summary, our contribution is to:65

• Introduce a new method for optimizing the shape of neural networks, such as their depth66

and width. Our technique expands and improves previous methods by optimizing multiple67

shape dimensions jointly while requiring significantly fewer experiments.68

• Demonstrate the effectiveness of scaled-down architectures in vision. We optimize ViT for69

the compute-equivalent of ViT-g/14, leading to a smaller, faster model of equal quality.70

• Present new qualitative insights for scaling vision transformations, such as on how to scale71

individual shape dimensions and how optimal ViT shapes vary across domains.72

2



MAE-WSP  CoSwinH ViT-g SwinV2-G SoViT ViT-G
89

90

91

89.7

90.1 90.2 90.2 90.3 90.4

INet-top@1

ViT-L SoViT ViT-g
79

81

83 INet-0-shot

ViT-L SoViT ViT-g
63

66

69

72 ObjectNet

ViT-L SoViT ViT-g
120

123

126

129 COCO-CIDEr

0 400 800

ViT-L
SoViT
ViT-g

# Params (M)    

0 200 400

ViT-L
SoViT
ViT-g

GFLOPs / Img  

0 500 1000

ViT-L
SoViT
ViT-g # Imgs / core / s 

Figure 2: Optimizing for the compute-equivalent of ViT-g/14 results in the 2.5× smaller SoViT-
400m/14 model achieves equivalent results across a wide range of benchmarks. Our model performs
exceptionally well on the competitive ImageNet (ILSRCV2012) benchmark in comparison with
significantly larger models from the recent literature [56, 72, 44, 74].

• Conduct extensive evaluation across tasks like image classification, image captioning, VQA,73

zero-shot classification and panoptic segmentation, identifying both gains and limitations.74

2 Related Work75

Optimizing training for compute has received a significant amount of attention in recent years, partly76

due to the financial and environmental costs of training large models [47, 50]. However, conflicting77

results are sometimes reported. For example, in language modeling, [34] argues that the model78

size should be scaled faster than the data size, implying it is compute optimal to “undertrain” large79

models. Similar conclusions are found in [42]. On the other hand, [30] argues that the model size80

should be scaled uniformly with the data size, and highlights that transformers were not trained long81

enough, leading to some recent efforts [64] “overtraining” their models instead. Our analysis for ViT82

in Section 4 agrees partially with the latter result.83

Scaling the size of vision transformers has led to remarkable results achieving, for instance, 90.4%84

top-1 accuracy on ImageNet (ILSRCV2012) with 2 billion parameters [74] and 90.9% top-1 accuracy85

with 4 billion parameters [12]. When scaled to 22 billion parameters, ViT exhibits state-of-the-art86

alignment to human visual perception in terms of shape/texture bias, among other findings [18].87

Despite the clear benefit of scale, there has been little investigation into optimally scaling the shape of88

ViTs. [61] suggest preferentially increasing depth before scaling other dimensions uniformly. For ViT,89

however, they only consider small ViT-S and ViT-B models and the reported accuracy improvement90

comes with an increase in FLOPs of up to ×4, making it difficult to draw conclusions about the91

suggested shape’s quality. In contrast [9] recommend scaling width over depth, but the authors do not92

observe any improvement when applying their strategy to ViT.93

Our analysis draws inspiration from “compound scaling” in MobileNet [31] and EfficientNet [59],94

while differing in significant ways. EfficientNet uses an exhaustive grid search to determine the95

optimal architecture for a fixed increase in compute (e.g. ×2). Afterwards, each dimension is scaled96

up by the same ratio with every subsequent increase in compute. In contrast, we expand scaling laws97

to simultaneously account for model size and compute beyond the efficient frontier and leverage98

them to derive the optimal scaling exponents for each dimension separately, as outlined in Section 3.99

Throughout our analysis, we use downstream metrics, e.g. ImageNet 10-shot error, when measur-100

ing performance instead of upstream metrics. This follows recent reports arguing that upstream101

performance may not reflect downstream performance in language and vision [60, 74].102

We use GFLOPs as a proxy for compute since it is hardware-agnostic and correlates well with actual103

wall-clock core-hours (see Figure 4). However, GFLOPs can have limitations [4, 17] and may not be104

a perfect predictor for the metric of interest (e.g. core hours) in all model and hardware types. Note105

that we focus on scaling the shape of the architecture, not on improving its training protocol, which106

can be similarly beneficial [4, 62, 57, 63].107

3 Scaling Strategy108

Notation. We begin with a formal description of the problem. We represent a neural architecture as109

a tuple x = (x1,x2, . . . ,xD) ∈ ND containing D shape dimensions, such as width, depth and MLP110
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Figure 3: A grid sweep over multiple ViT shapes pretrained on 600M JFT examples highlights the
important role of shape. The two architectures marked in blue and red are compute-optimal for
image classification and image-to-text tasks (captioning/VQA), respectively. For captioning/VQA,
we average log-perplexity scores (see Section 4.2). In small models, an optimal shape in one domain
is not necessarily optimal in others.

size. We denote compute such as GFLOPs by t. We designate f : ND × R+ → R a performance111

metric of interest, such as downstream ImageNet 10-shot error rate. Specifically, f(x, t) results from112

(pre)-training an architecture x for a fixed compute budget t. We always assume that f corresponds113

to a loss, meaning lower values are better.114

The goal of optimizing shape for fixed compute t is to identify x? (depending on t) such that:115

f(x?, t)− inf
x∈ND

f(x, t) ≤ ε, (1)

for some small tolerance ε > 0. Due to modeling assumptions, approximations, and the finite possible116

number of experiments conducted, we cannot hope for ε = 0 and have to tolerate a small excess loss.117

Single Dimension. As demonstrated in Figure 3, the shape of a pretrained vision transformer has an118

impact on its downstream performance. To determine an optimal shape scaling strategy, we begin by119

considering both compute t and a single shape dimension xk for k ∈ [D], such as depth. In prior120

works, optimizing a single dimension xk for compute involves running a large number of experiments121

in order to identify the Pareto optimal frontier, from which power laws on xk or t are derived [34, 30].122

Since this is expensive, we propose the following joint functional form instead:123

fk(xk, t) ∼ αkx
−ak

k + (βkx
bk
k + ξk) t−c + εk, (2)

where αk, akβk, bk, c, ξk, εk > 0. Here, fk focuses on the dimension k alone and assumes that all124

other shape dimensions j 6= k are sufficiently large such that they do not constitute a bottleneck.125

We also assume that data is unlimited so that there is no risk of overfitting. Our argument for this126

particular functional form is six-fold:127

I. If compute is unbounded, we recover the familiar power law relation on model size fk(xk) ∼128

αkx
−ak

k + εk [29, 2, 33, 34].129

II. For any fixed model size, the relation above reduces to the power law fk(t) ∼ At−c +B,130

whereA = βkx
bk
k +ξk andB = αkx

−ak

k +εk. Since the model size is fixed, t is proportional131

to the size of the data. Such data scaling laws have been demonstrated extensively in various132

domains [1–3, 24, 29, 34, 54, 74].133

III. For fixed compute, the relation w.r.t. xk is non-monotone, quasiconvex (see Appendix A),134

in agreement with empirical measurements [34, 30]. See IsoFlop curves in Figure 4.135

IV. Arguments for power law behavior using space partitioning suggest that the exponent c is136

independent of the shape dimension. In particular, c = Θ(1/d), where d is the intrinsic137

dimension of the data manifold [2, 33, 54]. From this, we conclude that assuming the138

functional form in (2) for every shape dimension separately cannot lead to any contradictions139

since this assumption is satisfied by the decomposable loss:140

f(x, t) =
∑
k

αkx
−ak

k +
∑
k

βkx
bk
k t−c + ξt−c + ε∞, (3)

for some constants ξ, ε∞ > 0.141

V. When optimizing the shape dimension xk for fixed compute t, the optimal value x?
k is:142

x?
k =

(
αk ak t

c

βkbk

) 1
bk+ak

= O (tsk) , where: sk =
c

bk + ak
. (4)
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Recall that the scaling exponent sk in (4) is positive because ak, bk, c > 0. Using the rela-143

tion (4), we rearrange the terms in Eq. (2), and obtain the scaling law for model performance144

along the compute-optimal frontier (Appendix A):145

fk(xk, t) = Fx−ak

k +Gt−c + εk, (in the compute-optimal frontier) (5)

for some constants F and G, which is a sum of power law terms involving the model146

size and compute. Indeed, this decomposition has been demonstrated to hold within the147

compute-optimal frontier by [34] and [30].148

VI. Eq. (2) fits empirical measurements and extrapolates accurately as well, see Figure 4.149

Multiple Dimensions. Next, we expand upon the previous approach by incorporating multiple150

dimensions. To reiterate, our method involves both a functional form (2) and a novel procedure.151

Our procedure significantly decreases the number of large-scale experiments required to identify152

compute-optimal architectures, by an order of magnitude compared to prior work [30].153

Star Sweep – Conducting a brute-force grid search to estimate scaling parameters across all di-154

mensions is expensive, since it requires O(2D) experiments to cover the search space. Instead,155

we demonstrate that a “star sweep” is sufficient: (1) starting from a large model x(c) (the star156

center), we vary a single dimension k ∈ [D] at a time in an exponentially-spaced grid, such that157

all values are much smaller than x
(c)
k . In our experiments, for instance, we optimize three shape158

parameters: width, depth, and MLP dim. Our star center is x(c) = (1968, 40, 6144); i.e. has width159

1968, depth 40, and MLP dim 6144. When varying MLP dim in the star sweep, we use the grid160

(1088, 1360, 1728, 2160, 2592, 3072), corresponding to about 20% increase in each step, while161

fixing width to 1968 and depth to 40. We do this to ensure that other dimensions do not form a162

bottleneck when estimating the parameters in (2). This gives us the scaling exponents sk in (4).163

Grid Sweep – The second stage is a grid sweep for small models trained for short compute. The cost164

of running this grid sweep is negligible. Its goal is to identify a single architecture x(0) that lies in165

the Pareto optimal frontier for small compute as illustrated in Figure 3. This is important since a166

suboptimal x(0) can significantly skew results [4]. Our grid sweep identifies x(0) to be (608, 10, 928),167

the blue star in Figure 3. The advantage of this step is to absorb the leading coefficients in x?
k = O(tsk)168

in (4) so that the star sweep focuses on estimating the exponents sk alone. We demonstrate in Figure 5169

that the scaling exponents sk are robust to the choice of the evaluation metric f .170

Scaling. Finally, we scale all dimensions jointly. Starting from the small compute-optimal archi-171

tecture x(0) and the amount of compute t(0) it is optimal for, suppose we increase compute by a172

factor τ > 1 (i.e. the new compute is τ t(0)). By treating this increment τ as a sequence of D smaller173

increments of size τ 1/D each, an increase in compute by a factor of τ is accompanied by an increase174

in every shape dimension k by a factor of τ sk/D, respectively.175
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4 Shape-optimized ViT176

We implement the scaling strategy in Section 3 in vision transformers [21] pretrained on JFT-3B,177

a proprietary dataset with about 30k classes and around 3 billion examples [74], using the Adam178

optimizer [36]. As mentioned in Section 3, we focus on optimizing three shape dimensions: width179

(size of internal representation), depth and MLP dim (hidden dimension). Following [38, 21, 74],180

we remove near-duplicate examples between upstream JFT-3B data and all the downstream train and181

test sets. Appendix B contains the full set of hyper-parameters used in the experiments, including full182

details about the star and grid sweeps described in Section 3. We fix the patch size in our analysis to183

14× 14, but study “flexifying” to arbitrary sequence lengths following [6] in Section 5.5.184

As an evaluation metric f , we consider two domains: (1) image classification, with ImageNet linear185

10-shot error rate as the metric, and (2) image-to-text LiT-decoding following [7]. In the latter case,186

the evaluation metric f is an average of four perplexity scores: COCO captioning, optical character187

recognition (OCR), and question answering (VQAv2 and GQA). Refer to [7] for details about the188

LiT-decoder setup. By considering such distinct domains, our goal is to identify similarities and189

differences (if any) in how to optimally scale the shape of vision transformers (ViT).190

4.1 Image Classification191

We use the aforementioned star center x(c) = (1968, 40, 6144) as our starting point. To esti-192

mate the scaling exponents sk in (4) for each dimension separately, we vary width in the grid193

(608, 768, 928, 1088, 1328, 1648), depth in the grid (8, 10, 12, 16, 20, 24), and MLP dim in the194

grid (1088, 1360, 1728, 2160, 2592, 3072). As discussed in Section 3, we use an exponential spac-195

ing with all values being much smaller than in the star center x(c). Following [21], we evaluate196

quality using few-shot linear transfer by using pre-trained models to extract features and fitting a197

linear regression head mapping them to the one-hot encoding of the target labels.198

The individual scaling exponents we find are sdepth ≈ 0.45, swidth ≈ 0.22, and sMLP ≈ 0.6. Impor-199

tantly, these exponents are quite robust to the choice of the metric. As shown in Figure 5, changing200

the metric from ImageNet 10-shot to either 5-shot or 25-shot can change the best-fit estimate of201

the other exponents ak, bk, ck in (2) but the scaling exponent sk is relatively unchanged, since it202

is formed as a ratio over other exponents. In addition, the data scaling exponent c appears to be203

independent of the choice of the shape dimension. As mentioned earlier, this is consistent with space204

partitioning arguments for power law scaling [2, 33, 54].205

The estimated scaling exponents sk point to the following picture:206

I. MLP dimension should be scaled faster than depth, and depth faster than width. An easy-to-207

remember rule of thumb could be: MLP ≈ Θ(Depth1.5) and Depth ≈ Θ(Width1.5).208

II. The size of ViT, as quantified by its parameter count, is scaled more slowly than the allocated209

compute. More precisely, for every increment in compute by a factor of 10, the parameter210

count of the optimized model shape increases by a factor of ≈ 7.211

III. As demonstrated in Figure 1, small ViT models can match the performance of much larger212

ones when their shape and training duration are jointly optimized for the available compute.213

We validate these predictions by optimizing the shape of ViT for the compute-equivalent of ViT-g/14214

when the latter is pretrained on 16 billion JFT-3B examples as done in [74]. The resulting model,215
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SoViT-400m/14, is significantly smaller and faster, yet equally competitive. It has a width of 1152,216

depth 27, and MLP dim 4304. Fine-tuning it on ImageNet results in a 90.3% top-1 accuracy, see217

Figure 2. Section 5 presents various other evaluations.218

In Figure 6, we also optimize the shape of ViT for the compute-equivalent of ViT-B/14 pretrained on219

4 billion examples of JFT-3B using Imagenet 10-shot error rate as an evaluation metric, resulting in220

SoViT-150m/14. As shown in Figure 6, optimizing the shape of ViT leads to a significant improvement221

in performance, from 76.6% in ViT-B/14 to 78.5% in SoViT-150m/14 when both are trained for the222

same amount of compute. We also vary the optimized shape by decreasing/increasing one dimension223

at a time and retraining the corresponding model while keeping the total compute fixed. As shown in224

Figure 6, small deviations from the predicted optimal shape can lead to a notable drop in performance,225

especially for width since it has the smallest scaling exponent (see Figure 5). We also include in226

Figure 6 (LEFT) a comparison with a model, denoted B-150m, which has the same shape as ViT-B/14227

but the same size as SoViT-150m/14. This confirms that while optimizing the model size improves228

performance, optimizing the shape improves it even further.229

Importantly, the model shapes in Figure 6 bear no resemblance to those observed during the star230

or grid sweeps. To recall, the star sweep is centered around an architecture x(c) whose shape231

dimensions are significantly larger than in ViT-B/14, whereas the grid sweep pretrains models that are232

substantially smaller and for only 600M examples. The ability of our strategy to accurately identify a233

near-optimal model shape within this context underscores its robust extrapolation capability.234

4.2 Multitask Decoder235

Besides image classification, there has been a significant interest in multimodal applications, mostly236

fueled by the convergence across language and vision on the transformer architecture [67, 21]. In237

particular, an encoder-decoder transformer with an autoregressive decoder is a popular choice because238

it allows reusing pretrained image encoders. We repeat the analysis conducted in Section 4.1 to239

optimize the shape of the image encoder, while fixing the decoder architecture to two layers as was240

used in [7]. Further details are provided in Appendix C. As an evaluation metric f , we use the241

average of four perplexity scores: COCO captioning [43, 11], OCR [45], VQAv2 [25] and GQA [32],242

without normalization since they share a similar scale. For the learning rate and weight decay243

hyper-parameters, we conduct a sweep where we vary the learning rate in {10−3, 3× 10−4, 10−4}244

and the weight decay in {3 × 10−4, 10−4, 3 × 10−5}. We pick the largest learning rate and the245

corresponding weight decay that result in a stable training run (i.e. smooth training loss curve and246

gradient norms) for both the largest and smallest image encoder architectures. From this, a learning247

rate of 3× 10−4 and a weight decay of 10−4 are selected.248

Using this analysis, the derived scaling exponents are approximately 0.25, 0.49 and 0.62 for width,249

depth and MLP size, respectively. Hence, whereas the optimal shape dimensions in small architec-250

tures can be quite different between image classification and multitask decoding, as shown in Figure251

3, the scaling exponents are nearly identical, so the same scaling recipe is used in both domains.252

5 Evaluations253

Overview. We now evaluate SoViT-400M in various contexts to verify whether it broadly matches254

ViT-g/14’s performance, or only in the ILSRCV2012 10-shot metric it was optimized for. The255
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settings we cover are few-shot, frozen linear probes on ImageNet, zero-shot transfer, image-language256

multitasking including captioning, OCR, and question answering, as well as panoptic segmentation.257

In each of these settings, we compare SoViT-400m/14 to ViT-L/16 and a ViT-g/14, all trained on the258

JFT-3B dataset as in [74].259

Compute. Experiments are executed on Tensor Processing Units (TPU). SoViT-400m/14 is pre-260

trained on 40 billion examples, which amounts to 9T GFLOPs and 155K TPUv3 core-hours. ViT-g/14261

was pretrained on 16 billion examples, corresponding to 9T GFLOPs and 210K TPUv3 core-hours.262

Thus, while GFLOPs are matched, ViT-g/14 was trained for 35% longer in terms of wall-clock time.263

5.1 Image Classification264

We verify classification performance in three common and widely useful setups: full fine-tuning,265

linear probes on the frozen model, and few-shot linear classification.266

Table 1: ImageNet fine-tuning. The top shows models trained in the same controlled setting, and the
bottom a representative set of large well-performing models. SoViT compares favorably. Contrary to
common practice, we use a held-out 2% of Train to select hyper-parameters. Selecting them on Val
would increase all scores. FLOPs according to XLA; PyTorch reports MACs.

Model Pretraining
Size ImageNet variant

Input Params FLOPs Val [52] ReaL [5] v2 [51]

SoViT-400m/14 JFT-3B 2242 428 M 221 G 88.9 90.3 80.7

ViT-L/16 [74] JFT-3B 3842 303 M 383 G 88.5 90.4 80.4
SoViT-400m/14 JFT-3B 3842 428 M 672 G 90.0 90.9 83.2

ViT-g/14 [74] JFT-3B 5182 1011 M 3208 G 90.2 90.9 -
SoViT-400m/14 JFT-3B 5182 428 M 1374 G 90.3 91.0 83.4
ViT-G/14 [74] JFT-3B 5182 1882 M 5668 G 90.4 90.8 83.3

SwinV2-G [44] IN-21k + 70M 6402 3000 M ? 90.2 - 84.0
CoAtNet-6 [16] JFT-3B 5122 1470 M 1521 G 90.4 - -
MAE→WSP [56] IG-3B 5182 1890 M 5679 G 89.7 90.9 83.0
CoCa [71] JFT-3B + ALIGN-1.8B 5762 2100 M ? 91.0 - -

Fine-tuning on ImageNet. Pre-trained image encoders are most commonly [15] evaluated by fine-267

tuning them on the ILSVRC2012 classification task. The detailed fine-tuning settings are provided in268

Appendix E. One important aspect is to increase image resolution [65] as a way of further increasing269

the capacity of the pre-trained model during fine-tuning [38]. Table 1 shows the performance of270

SoViT-400m/14 in comparison with ViT-L/16, ViT-g/14 fine-tuned at various resolutions, along271

with a few more representative models from the literature. The results confirm that SoViT-400m/14272

achieves the goal of matching ViT-g/14 while being significantly smaller.273

Table 2: Linear ILSVRC2012 probes.

Val ReaL v2 -R -A Obj

L/16 86.7 90.0 78.5 88.9 67.8 63.5
SoViT 88.2 90.3 80.6 89.0 76.4 68.7
g/14 88.4 90.2 80.8 90.3 76.6 67.7

Linear probing on ImageNet. The quality of the pre-274

trained representation learned by the model is often more275

directly assessed by performing linear probes, meaning276

learning a linear classifier on top of unmodified, frozen277

output features from the model. We present results of this278

evaluation in Table 2, including robustness evaluations279

of the learned probe. SoViT-400m/14 is generally on par280

with ViT-g/14 despite its smaller output width.281

Broad few-shot linear transfer. We follow [21, 74] and282

evaluate a closed-form linear regression probe for 10-shot283

classification across a wide range of tasks in Table 3.284
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Table 3: SoViT-400m/14 performs competitively with ViT-g/14 in 10-shot classification.

INet
[19]

CIFAR100
[41]

Pets
[46]

Birds
[68]

Caltech
[22]

Cars
[40]

Colorectal
[35]

DTD
[14]

UC
[70]

ViT-L/16 81.5 82.2 97.0 97.1 89.9 93.8 79.4 72.0 96.3
SoViT-400m/14 84.1 86.7 97.6 88.8 91.3 93.6 81.5 72.5 97.7
ViT-g/14 84.0 87.2 97.4 88.5 89.3 93.9 78.9 74.1 98.2

Table 4: Summary of multitask decoding and zero-shot transfer results, see Sections 5.2 & 5.3.

Model
ImgNet OCR-VQA [45] GQA [32] VQAv2 [25] COCO Capt. [11]

Zero-shot Acc [%] Log-PPL Acc [%] Log-PPL Acc [%] Log-PPL CIDEr Log-PPL

ViT-L/16 79.9 48.3 17.9 55.3 24.9 66.4 20.9 120 28.7
SoViT-400M 82.2 52.9 15.3 56.0 23.9 67.7 20.9 125 28.1
ViT-g/14 82.4 52.5 15.9 58.0 22.5 68.8 21.5 126 27.9

5.2 Contrastive image-text tuning285

Next, we follow the locked-image text tuning (LiT) recipe [75] on the WebLI dataset [12] to add286

zero-shot classification abilities to the pre-trained ViT-L/16, SoViT-400m/14 and ViT-g/14 image287

encoders. In this setup, a new text encoder is trained using the contrastive image-text matching288

objective [49]. See Appendix D for details. Table 4 (second column) shows that SoViT-400m/14 is289

competitive with ViT-g/14, and substantially better than ViT-L/16.290

5.3 Multitask Decoding291

We also evaluate the three pretrained ViT models in multitask decoding as described in Section 4.2,292

where we follow the setup studied in [7]. We fix the decoder architecture to two layers since it was293

found to perform well [7]. For evaluation, we report COCO CIDEr, OCR, VQAv2 and GQA accuracy294

and log-perplexity. Results are summarized in Table 4. SoViT-400M performs on par with ViT-g/14.295

5.4 Panoptic Segmentation296

Additionally, we evaluate SoViT-400m/14 on panoptic segmentation [37], which is a challenging297

dense scene understating task by closely following the setup in UViM [39]. At a high level, UViM298

panoptic segmentation model consists of a visual image encoder and a decoder which maps the image299

representation to an intermediate code. The code is later decoded to the panoptic segmentation mask300

using a fixed VQVAE [66] model, which was pretrained on panoptic masks [39]. In our experiments301

we initialize UViM’s image encoder with ViT-L/16, SoViT-400m/14 and ViT-g/14.302
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Figure 7: Flexification of SoViT-
400m/14 (abbr. So/14). See Section 5.5.

Following [39], we train the UViM model using the COCO303

panoptic dataset (with 512 × 512 input resolution) and304

report the PQ metric. We achieve 43.5, 43.7 and 44.8305

PQ points for ViT-L/16, SoViT-400m/14 and ViT-g/14306

respectively. Our results indicate that dense segmentation307

tasks can be a limitation of the proposed optimal model308

shape, and a different model shape might be derived in309

this domain. We leave this investigation for future work.310

5.5 Flexifying SoViT-400M311

Finally, since we do not include the patch size (sequence312

length) as part of the shape optimization, we verify that313

this is not a limitation by flexifying [6] SoViT-400m/14314

on ILSVRC2012 for 300 epochs. The performance of315

the resulting FlexiSoViT-400m is shown in Fig 7 as green316
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curve when varying the patch-size at inference time. A few reference ViT models from Table 1 and317

[74] are added, confirming that SoViT-400m maintains a clear advantage.318

6 Conclusion319

In conclusion, we introduce an efficient method for optimizing the shape of neural architectures and320

successfully apply it to vision transformers. Our analysis demonstrates that smaller models, trained321

at their optimal architecture shape for the right amount of compute, can match much larger models.322
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A Scaling Laws Analysis520

In this appendix, we present proofs of two claims in the paper. First, we show that (2) is quasiconvex521

on its first argument xk. Second, we derive (5).522

A.1 Quasiconvexity Proof523

We assume throughout the proof that ak, bk are strictly positive, otherwise fk(xk, t) is a monotone524

function on its first argument and the statement holds trivially.525

To establish the quasiconvexity of fk(xk, t) in (2), we observe that:526

∂fk
∂xk

= −αkakx
−(1+ak)
k + βkbkt

−cxbk−1 .
= −Ax−(1+ak)

k +Bxbk−1.

Setting the derivative to zero gives the unique solution in R+:527

x̂ =

(
A

B

) 1
ak+bk

.

At the limit xk →∞, the term involving x−ak

k vanishes and we have the asymptotic relation:528

fk(xk, t) ∼ βkt−cxbk ,

which is an increasing function since bk > 0. Since x̂ is the only point in R+ where ∂fk/∂xk = 0,529

we conclude that f(xk, t) is monotone increasing for all xk ≥ x̂.530

Similarly, when xk → 0+, we have:531

fk(xk, t) ∼ αkx
−ak

k ,

which is monotone decreasing. Therefore, f ′(xk, t) ≤ 0 for all xk ≤ x̂. Combining both results532

implies that fk(x, t) is monotone decreasing in the domain x ∈ (0, x̂) and is monotone increasing in533

the domain x ∈ (x̂,∞).534

A function f(y) is said to be quasi-convex if for any y1 and y2 in its domain and any λ ∈ [0, 1], one535

has [8]:536

f(λy1 + (1− λ)y2) ≤ max {f(y1), f(y2)} . (6)
Suppose for the purpose of obtaining a contradiction that fk(xk, t) is not quasiconvex on its first537

argument. Then, there exists two points y1, y2 ∈ R+ and λ ∈ [0, 1] such that the above condition538

is violated. Let ŷ = λy1 + (1− λ)y2. But, then, by the mean-value theorem, there must exist two539

points c1 ∈ [y1, ŷ] and c2 ∈ [ŷ, y2] where:540

f ′k(c1) =
f(ŷ)− f(y1)

ŷ − y1
≥ 0

f ′k(c2) =
f(y2)− f(ŷ)

y2 − ŷ
≤ 0,

with c2 > c1. This implies that c1 ≥ x̂ and c2 ≤ x̂, which is a contradiction. Therefore, fk(xk, t) is541

quasi-convex on its first argument.542

A.2 Derivation of (5)543

Rearranging the expression in (4), we have:544 (
βkbk
αkak

)
(x?

k)
bk+ak = tc

From this and (2), we obtain:545

fk(x?
k, t) = αk(x?

k)−ak + βk(x?
k)bk

(
αkak

βkbk (x?
k)bk+ak

)
+ ξkt

−c + εk,

where we plugged in the last expression. Simplifying yields (5) for some constants F,G ≥ 0.546
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B Shape Optimization547

B.1 Hyper-parameters548

Table 5: Common hyper-parameters settings for both star and grid sweeps.

Image Resolution 224 × 224
Batch size 128
Preprocessing Rescale(-1, 1)
Augmentation InceptionCrop, Left-Right Flip

Optimizer AdaFactor [55]
Gradient Clipping 1.0
Learning Rate 8e-4
Label Smoothing 0
Weight Decay 0.03 × 8e-4
Schedule Reverse SQRT, 10K Warmup steps, 50K Cooldown steps

Table 5 provides the set of hyperparameters used in the star and grid sweeps. We use a small batch549

size of 128 here in order to train multiple models in parallel on small hardware topologies.550

B.2 Star Sweep551

In the star sweep, we use the center x(c) = (1968, 40, 6144) as our starting point. To esti-552

mate the scaling exponents sk in (4) for each dimension separately, we vary width in the grid553

(608, 768, 928, 1088, 1328, 1648), depth in the grid (8, 10, 12, 16, 20, 24), and MLP dim in the554

grid (1088, 1360, 1728, 2160, 2592, 3072). We train each model on 500K, 1M, and 2M steps. We555

always fix the patch size to 14× 14 and the number of attention heads to 16.556

B.3 Grid Sweep557

In the grid sweep, we pretrain each architecture on 600M examples. We use the cross-product of:558

1. width: 416, 512, 608, 768559

2. depth: 6, 8, 10, 12560

3. MLP Size: 768, 928, 1088, 1360561
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C Multitask Decoding Setup562

Table 6: Multi-task decoding Hyperparameter Settings.

Image Resolution 224 × 224
Batch size 512
Preprocessing Rescale(-1, 1), ResizeSmall(256), CentralCrop(224)
Augmentation InceptionCrop(224), Left-Right Flip

Optimizer AdaFactor [55]
Epochs 50
Gradient Clipping 1.0
Label Smoothing 0.1
Learning Rate 3e-4
Weight Decay 1e-4
Schedule Cosine, 10% Warmup period

Vocabulary Size 32k
Encoder Dropout Rate 0
Decoder Dropout Rate 0.1

Table 6 summarizes the hyperparameter settings for the multitask decoding setup in Section 4.2 and563

Section 5.3. We always fix the decoder to 2 layers since it generally performs well [7].564
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D LiT Training Setup565

Table 7: Locked-image text tuning (LiT) Hyperparameter Settings.

Image Resolution 224 × 224
Batch size 32K
Preprocessing Rescale(-1, 1)
Augmentation None

Optimizer AdaFactor [55]
Total Examples 900M
Gradient Clipping 1.0
Learning Rate 1e-3
Weight Decay 1e-4
Schedule Cosine, 20% Warmup period

Vocabulary Size 32k
Bias Init -10
Temperature Init 10
Internal Representation 1,152

Table 7 summarizes the hyperparameter settings for the locked-image text turning (LiT) setup, which566

is used to report zero-shot classification accuracy in Table 4. We use a large batch size of 32K in this567

setup because it improves the performance of contrastive training [48].568
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Table 8: ImageNet fine-tuning settings. Settings in the first section vary with resolution, settings in
the middle section were explored, and settings in the last section are unexplored good defaults.

Full model fine-tuning

224 px 384 px 518 px

Learning rate decay 0.85 0.9 0.9
Random augment - 2,10 2,10
Mixup - 0.2 0.2

Training duration 50 k steps (20 epochs)
Learning rate 0.03
Polyak averaging (EMA) -

Optimizer SGD with 0.9 Momentum
Gradient clipping 1.0
Weight decay -
Batch size 512
Learning rate schedule Cosine with 500 steps linear warmup
Image crop inception_crop (RandomResize)
Random flip Horizontal
Loss Sigmoid cross-entropy [5]
Head init kernel=0, bias=-6.9
Train and minival splits train[:98%] and train[98%:]

E Transfer to ImageNet-1k569

E.1 Full model fine-tuning570

Table 8 lists the settings for the ImageNet-1k fine-tuning results presented in Table 1 in the main571

paper. The only three settings which differ across resolutions are learningrate decay, random augment572

and mixup strenghts. We did explore various learningrates, training durations (mostly shorter) as well573

as Polyak averaging, although the same setting shown in the table appears to be best across the board.574

Finally, we list various other settings which we did not explore. We simply used good default values575

from experience.576

E.2 Linear probe on frozen encoder577

We take the image representation at the pre-logits, i.e. the 1152-dimensional vector that comes578

out of the MAP-head and feeds right into the linear classification layer. For each of ViT-L/16,579

SoViT-400m/14 and ViT-g/14, we perform a grid-search over the following settings, and select580

the best-performing model on minival (2% of train) to be reported in Table 2: Augmentation:581

resize(256)|random_crop(224) vs. inception_crop(224), learning rate: 0.001, 0.0003,582

0.0001, epochs: 1, 3, 10, weight decay: 0.0001, None. It should be noted that we keep various583

other settings to “known good defaults” based on prior explorations with similar models (i.e. plain584

ViTs). Table 9 summarizes key settings.585
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Table 9: ImageNet linear probing settings. Settings in the first section were grid-searched for each
model, settings in the last section are unexplored good defaults.

Linear probe at 224 px

ViT-L/16 SoViT-400m/14 ViT-g/14

Learning rate 0.001 0.0003 0.001
Weight decay 0.0001 - -
Training duration 24.7 k steps (10 epochs)
Image crop resize(256)|random_crop(224)

Random augment -
Mixup 0.1
Learning rate decay -
Polyak averaging (EMA) -
Optimizer SGD with 0.9 Momentum
Gradient clipping -
Batch size 512
Learning rate schedule Cosine with 10% linear warmup
Random flip Horizontal
Loss Sigmoid cross-entropy [5]
Head init kernel=0, bias=-6.9
Train and minival splits train[:99%] and train[99%:]
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