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Abstract

In human-AI collaboration systems for critical applications, in order to ensure
minimal error, users should set an operating point based on model confidence
to determine when the decision should be delegated to human experts. Samples
for which model confidence is lower than the operating point would be manually
analysed by experts to avoid mistakes. Such systems can become truly useful
only if they consider two aspects: models should be confident only for samples
for which they are accurate, and the number of samples delegated to experts
should be minimized. The latter aspect is especially crucial for applications where
available expert time is limited and expensive, such as healthcare. The trade-off
between the model accuracy and the number of samples delegated to experts can
be represented by a curve that is similar to an ROC curve, which we refer to as
confidence operating characteristic (COC) curve. In this paper, we argue that deep
neural networks should be trained by taking into account both accuracy and expert
load and, to that end, propose a new complementary loss function for classification
that maximizes the area under this COC curve. This promotes simultaneously the
increase in network accuracy and the reduction in number of samples delegated to
humans. We perform experiments on multiple computer vision and medical image
datasets for classification. Our results demonstrate that the proposed loss improves
classification accuracy and delegates less number of decisions to experts, achieves
better out-of-distribution samples detection and on par calibration performance
compared to existing loss functions.1

1 Introduction

Artificial intelligence (AI) systems based on deep neural networks have achieved state-of-the-art
results by reaching or even surpassing human-level performance in many predictive tasks [6; 33; 2; 36].
Despite the great potential of neural networks for automation, there are pitfalls when using them
in a fully automated setting, especially pertinent for safety-critical applications, such as healthcare
[17; 32; 34]. Human-AI collaboration aims at remedying such issues by keeping humans in the loop
and building systems that take advantage of both [29]. An example of such human-AI collaboration
is hate speech detection for social media [3], where neural networks could reduce the load of manual
analysis of contents required by humans. Healthcare is another relevant application [5; 22], . For

1Code is available at: https://github.com/salusanga/aucoc_loss.
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example, a neural network trained to predict whether a lesion is benign or malignant should leave the
decision to human doctors if it is likely to make an error [15]. The doctors’ domain knowledge and
experience could be exploited to assess such, possibly, ambiguous cases and avoid mistakes.

A simple way of building collaboration between a network and a human expert is delegating the
decisions to the expert when the network’s confidence score for a prediction is lower than a threshold,
which we refer to as “operating point". It is clear that the choice of the operating point can only be
done through a trade-off between the network performance on the automatically analysed samples,
i.e., the number of errors expected by the algorithm, and the number of delegated samples, i.e.,
experts’ workload. The latter is crucial especially for applications where expert time is limited and
expensive. For example, in medical imaging, the interpretation of more complex data requires clinical
expertise and the number of available experts is limited, especially in low income countries [17].
Hence, predictive models that can analyse a large portion of the samples at high accuracy and identify
the few samples that should be delegated to human experts would naturally be more useful with
respect to this trade-off.

It is possible to evaluate the performance of a predictive model taking simultaneously into account
the accuracy and the number of samples that requires manual assessment from a human expert with a
performance curve reminiscent of Receiver Operating Characteristic (ROC) curves, as illustrated in
Fig. 1a. We will refer to this performance curve as Confidence Operating Characteristics (COC) as it
is similar to the ROC curve. A COC curve plots for a varying threshold on algorithm confidence, i.e.,
operating point, the accuracy of a model on the samples on which the algorithm is more confident than
the threshold versus the number of samples remaining below the threshold. The former corresponds
to the accuracy of the model on automatically analysed samples while the latter corresponds to the
amount of data delegated to the human expert for analysis. In an ROC curve a balance is sought after
between Sensitivity and Specificity of a predictive model, while a COC curve can be used by domain
experts, such as doctors, to identify the most suitable balance between the accuracy on the samples
that are automatically analysed and the amount of data delegated to be re-examined by a human for
the specific task. Variations of this curve have been used to evaluate the performance of automated
industrial systems [7].

In this paper, we focus on the trade-off between model accuracy and the amount of samples delegated
to domain experts based on operating points on model confidence. Specifically, our goal is to obtain
better trade-off conditions to improve the interaction between the AI and the human expert. To this
end, we propose a new loss function for multi-class classification, that takes into account both of
the aspects by maximizing the area under COC (AUCOC) curve. This enforces the simultaneous
increase in neural network accuracy on the samples not analysed by the expert and the reduction in
human workload. To the best of our knowledge, this is the first paper to include the optimization
of such curve during the training of a neural network, formulating it in a differentiable way. We
perform experiments on two computer vision and three medical image datasets for multi-class
class classification. We compare the proposed complementary AUCOC loss with the conventional
loss functions for training neural networks as well as network calibration methods. The results
demonstrate that our loss function complements other losses and improved both accuracy and
AUCOC. Additionally, we evaluate network calibration and out-of-distribution (OOD) samples
detection performance of networks trained with different losses. The proposed approach was also able
to consistently achieve better OOD samples detection and on par network calibration performance.

2 Related Work

For the performance analysis of human-AI collaborative systems, confidence operating characteristics
(COC) curves can be employed, which plot network accuracy on accepted samples against manual
workload of a human expert, e.g as in [7]. While such curves have been used, to the best of our
knowledge, we present the first work that defines a differentiable loss based on COC curve, in order
to optimize neural networks to take into account simultaneously accuracy and experts’ load for a
human-AI collaborative system. Thus, there is no direct literature with which we can compare.

The underlying assumption in deciding which sample to delegate to human expert based on a threshold
on confidence scores is that these scores provided by deep learning models indicate how much the
predictions are likely to be correct or incorrect. However, the final softmax layer of a network does
not necessarily provide real probabilities of correct class assignments. In fact, modern deep neural
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networks that achieve state-of-the-art results are known to be overconfident even in their wrong
predictions. This leads to networks that are not well-calibrated, i.e., the confidence scores do not
properly indicate the likelihood of the correctness of the predictions [8]. Network calibration methods
mitigate this problem by calibrating the output confidence scores of the model, making the above
mentioned assumption hold true. Thus, we believe that the literature on network calibration methods
is the closest to our setting because they also aim at improving the interaction between human and
AI, by enforcing correlation between network confidence and accuracy, so that confidence can be
used to separate samples where networks’ predictions are not reliable and should be delegated to
human experts. Calibration methods aim to get models that are highly accurate in the samples they
are confident, but not the problem of minimising the number of samples delegated to human experts,
contrary to the loss proposed here.

Guo et al. [8] defines the calibration error as the difference in expectation between accuracy and
confidence in each confidence bin. One category of calibration methods augments or replaces the
conventional training losses with another loss to explicitly encourage reducing the calibration error.
Kumar et al. [21] propose the MMCE loss by replacing the bins with kernels to obtain a continuous
distribution and a differentiable measure of calibration. Karandikar et al. [16] propose two losses for
calibration, called Soft-AvUC and Soft-ECE, by replacing the hard confidence thresholding in AvUC
[18] and binning in ECE [8] with smooth functions, respectively. All these three functions are used
as a secondary loss along with conventional losses such as cross-entropy. Mukhoti et al. [26] find
that Focal Loss (FL) [23] provides inherently more calibrated models, even if it was not originally
designed for this, as it adds implicit weight regularisation. The authors further propose Adaptive
Focal Loss (AdaFL) with a sample-dependent schedule for the choice of the hyperparameter γ. The
second category of methods are post-hoc calibration approaches, which rescale model predictions
after training. Platt scaling [31] and histogram binning [40] fall into this class. Temperature scaling
(TS) [8] is the most popular approach of this group. TS scales the logits of a neural network, dividing
them by a positive scalar, such that they do not saturate after the subsequent softmax activation. TS
can be used as a complementary method and it does not affect model accuracy, while significantly
improving calibration. A recent work by Gupta et al. [9] fits a spline function to the empirical
cumulative distribution to re-calibrate post-hoc the network outputs. They also present a binning-free
calibration measure inspired by the Kolmogorov-Smirnov (KS) statistical test. Lin et al. [24] propose
a Kernel-based method on the penultimate-layer latent embedding using a calibration set.

3 Methods

In this section, we illustrate in detail the Confidence Operating Characteristics (COC) curve. Then,
we describe the proposed complementary cost function to train neural networks for classification: the
area under COC (AUCOC) loss (AUCOCLoss).

3.1 Notation

Let D = ⟨(xn, yn)⟩Nn=1 denote a dataset composed of N samples from a joint distribution D(X ,Y),
where xn ∈ X and yn ∈ Y = {1, 2, ...,K} are the input data and the corresponding class label,
respectively. Let fθ(y|x) be the probability distribution predicted by a classification neural network
f parameterized by θ for an input x. For each data point xn, ŷn = argmaxy∈Yfθ(y|xn) denotes
the predicted class label, associated to a correctness score cn = 1(ŷn = yn) and to a confidence
score rn = maxy∈Yfθ(y|xn), where rn ∈ [0, 1] and 1(.) is an indicator function. r = [r1, ...rN ]
represents the vector containing all the predicted confidences for a set of data points, e.g., a batch.
p(r) denotes the probability distribution over r values (confidence space). We assume a human-AI
collaboration system where samples with confidence r lower than a threshold r0 would be delegated
to a human expert for assessment.

3.2 Confidence Operating Characteristics (COC) curve

Our first goal is to introduce an appropriate evaluation method to assess the trade-off between a
neural network’s prediction accuracy and the number of samples that requires manual analysis from a
domain expert. We focus on the COC curve, as it provides practitioners with flexibility in the choice
of the operating point, similarly to the ROC curve.
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3.2.1 x-y axes of the COC curve

To construct the COC curve, first, we define a sliding threshold r0 over the space of predicted
confidences r. Then, for each threshold r0, we calculate the portion of samples that are delegated to
human expert and the accuracy of the network on the remaining samples for the threshold r0, which
form the x-axis and y-axis of a COC curve, respectively. These axes are formulated as follows

x− axis : τ0 = p(r < r0) =

∫ r0

0

p(r)dr, y − axis : E[c|r ≥ r0] (1)

For each threshold level r0, τ0 represents the portion of samples whose confidence is lower than that
threshold, i.e., the amount of the samples that are delegated to the expert. E[c|r ≥ r0] corresponds to
the expected value of the correctness score c for all the samples for which the network’s confidence is
equal or larger than r0, i.e., accuracy among the samples for which network prediction will be used.
This expected value, i.e., y-axis, can be computed as

E[c|r ≥ r0] =
1

1− τ0

∫ 1

r0

E[c|r]p(r)dr. (2)

We provide the derivation of Eq. 2 in the Appendix A.

3.2.2 Area under COC curve

Like the area under ROC curve, area under COC curve (AUCOC) is a global indicator of the
performance of a system. Higher AUCOC indicates lower number of samples delegated to human
experts or/and higher accuracy for the samples that are not delegated to human experts but analysed
only by the network. Lower AUCOC on the other hand, indicates higher number of delegations
to human experts or/and lower accuracy on the samples analysed only by the network. Further
explaination is reported in Appendix I. It can be computed by integrating the COC curve over the
whole range of τ0 ∈ [0, 1]:

AUCOC =

∫ 1

0

E[c|r ≥ r0]dτ0 =

∫ 1

0

{∫ 1

r0

E[c|r]p(r)dr
}

dτ0
1− τ0

(3)

Further details are provided in Section 3.5

3.3 AUCOCLoss: Maximizing AUCOC for training neural networks

As mentioned, in human-AI collaboration systems, higher AUCOC means a better model. Therefore,
in this section we introduce a new loss function called AUCOCLoss that maximizes AUCOC for
training classification neural networks.

AUCOC’s explicit maximization would enforce the reduction of the number of samples delegated to
human expert while maintaining the accuracy level on the samples assessed only by the algorithm
(i.e., keeping E[c|r ≥ r0] constant) and/or the improvement in the prediction accuracy of the samples
analysed only by the algorithm while maintaining a particular amount of data to be delegated to the
human (i.e., keeping τ0 constant), as illustrated in Figure 1a.

We define our loss function to maximize AUCOC as
AUCOCLoss = − log(AUCOC). (4)

We use the negative logarithm as AUCOC lies in the interval [0, 1], which corresponds to AUCOCLoss
∈ [0, inf] which is suitable for minimizing cost functions. The dependence of AUCOC on the network
parameters may not be obvious from the formulation given in Eq. 3. Indeed, this dependence is
hidden in how p(r) and E[c|r] are estimated as we show next.

3.3.1 Kernel density estimation for AUCOC

We need to formulate AUCOC in a differentiable way in order for it to be incorporated in a cost
function for the training of a neural network. For this purpose, we use kernel density estimation
(KDE) on confidence predictions rn for training samples to estimate p(r) used in Eq. 3

p(r) ≈ 1

N

N∑
n=1

K(r − rn) (5)
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where K is a Gaussian kernel and we choose its bandwidth using Scott’s rule of thumb [35]. Then,
the other terms in Eq. 3, namely E[c|r]p(r) and τ0, are estimated as

E[c|r]p(r) ≈ 1

N

N∑
n=1

cnK(r − rn), τ0 ≈ 1

N

∫ r0

0

N∑
n=1

K(r − rn)dr. (6)

Note that rn = maxy∈Y fθ(y|xn), from where the dependency of AUCOC on θ stems. Further, note
that τ0 is the x-axis of the COC curve. The AUCOC is defined by integrating over the τ0 values, and
therefore τ0 should not depend on the network parameters, i.e., its derivative with respect to θ should
be equal to zero. We can write the derivative using Leibniz integral rule as follows:

dτ0
dθ

=

∫ r0

0

dp(r)

dθ
dr + p(r0)

dr0
dθ

= 0 (7)

Then, the constraint that τ0 should not depend on θ can be enforced explicitly by deriving the
derivative dr0/dθ from Eq. 7 as follows:

dr0
dθ

= −
∫ r0
0

dp(r)
dθ dr

p(r0)
(8)

where p(r) is implemented as in Eq. 5. Derivations are provided in the Appendix.

(a) (b)

Figure 1: (a) shows how to improve AUCOC, 1) increasing the accuracy of the network and/or
2) decreasing the amount of data to be analysed by the domain expert. The pink curve has higher
AUCOC than the blue one. (b) illustrates a toy example where two models have the same accuracy,
ECE with 5 bins and KS. However, they have different AUCOC values due to different ordering of
correctly and incorrectly classified samples according to the assigned confidence by the network.

3.4 Toy example: added value by AUCOC

In this section, we demonstrate the added value of assessing the performance of a predictive model
using COC curve and AUCOC through a toy example. We particularly compare with the widely used
expected calibration error (ECE) [8], a binning-free calibration metric called Kolmogorov-Smirnov
(KS) [9] and classification accuracy.

Assume we have two classification models fθ1 and fθ2 and they yield confidence scores and predic-
tions for 5 samples as shown in Figure 1b. The green circles denote the predicted confidences for
correctly classified samples, while the red crosses the confidences of the misclassified ones.

ECE: ECE divides the confidence space into bins, computes the difference between the average
accuracy and confidence for each bin, and returns the average of the differences as final measure
of calibration error. If we divide the confidence space into 5-bins, as indicated with the gray dotted
lines in the confidence spaces of fθ1 and fθ2 , ECEs computed for the both models will be identical.
Furthermore, a similar situation can be constructed for any number of bins.
KS: KS is a binning-free metric, so it is less prone to binning errors than ECE. However, one can
prove that there exist some confidence configurations for which the two models also report the same
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KS, in spite of it being a binning-free metric. This happens, for example, if the confidence values are
(from left to right): 0.45, 0.55, 0.65, 0.70, 0.75.
Accuracy: These models have equal classification accuracy, 3/5 for both.

Therefore, looking at these three performance metrics, it is not possible to choose one model over the
other since fθ1 and fθ2 perform identically.

AUCOC: On the contrary, the AUCOC is larger for fθ1 than for fθ2 , as shown in Figure 1b. The
difference in AUCOC is due to the different ranking of correctly and incorrectly classified samples
with respect to confidence values. It does not depend on a particular binning nor exact confidence
values, but only on the ranking. By looking at the AUCOC results, one would prefer fθ1 compared to
fθ2 . Indeed, fθ1 is a better model than fθ2 because it achieves either equal or better accuracy than
fθ2 , for the same amount of data to be manually examined. Changing point of view, fθ1 delegates
either equal or lower number of samples to experts for the same accuracy level.
Comparison of AUCOC and calibration: As also demonstrated with the toy example, AUCOC
and calibration assess different aspects of a model. The former is a rank-based metric with respect to
the ordering of the predictive confidences of correctly and incorrectly classified samples. The latter
instead assess the consistency between the accuracy of the network and the predictive confidences,
i.e. it is sensitive to the numerical values of the confidences themselves.

3.5 Implementation Details

Construction of the COC curve, thresholds r0 and operating points: To provide flexibility in
the selection of COC operating points, we need to cover the entire range [0, 1] of τ0 values. As a
consequence, the thresholds r0 need to span the confidence range of the predictions rn of the neural
network. A natural choice for such thresholds is employing the predictions rn themselves. This
spares us from exploring the confidence space with arbitrarily fine-grained levels. First, we sort the
confidences r of the whole dataset (or batch) in ascending order. Each predicted confidence is then
selected as threshold level r0 for the vector r, corresponding to a certain τ0 (x-value). Subsequently,
E[c|r ≥ r0] (y-value) is computed. Note that setting the threshold to each rn in the sorted array
corresponds to going through τ0 = [1/N, 2/N, . . . , (N − 1)/N, 1] for N samples one by one in
order.

Modelling correctness: Instead of using E[c|r]p(r) ≈ 1
N

∑N
n=1 cnK(∥r − rn∥) as given in Eq. 6,

we approximate it as E[c|r]p(r) ≈ 1
N

∑N
n=1 r

∗K(∥r−rn∥) where r∗n = fθ(yn|xn) is the confidence
of the correct class for a sample n. The main reason is that the gradient of the misclassified samples
becomes zero because cn is zero when a sample xn is not classified correctly. To deal with this
issue we replace the correctness score cn, which can be either 0 or 1, with r∗n which can take
continuous values between 0 and 1, following Yin et al. [39]. With this new approximation, we can
back-propagate through misclassified samples and we found that this leads to better results.

Use as secondary loss: We observed in our experiments that using AUCOCLoss alone to train a
network leads to very slow convergence with the existing optimization techniques. We believe this is
due to the fact that the AUCOCLoss is a −log(

∑
n zn) with zn ∈ [0, 1]. Optimization of such a form

with gradient descent is slow because the contribution of increasing low zn’s to the loss function is
small. In contrast, cross-entropy is a −

∑
n log zn, where contribution of increasing low zn’s to the

loss is much larger, hence gradient-based optimization is faster. One can in theory create an upper
bound to AUCOC loss by pulling the log inside the sum, as we show in the Appendix. However,
when zn ∈ [0, 1] this upper bound is very loose and minimizing the upper bound not necessarily
correspond to minimizing the AUCOC loss, hence does not maximize AUCOC. On the contrary,
when AUCOCLoss is complements a primary cost that is faster to optimize, such as cross-entropy, it
is improves over the primary loss and lead to the desired improved AUCOC while preserving the
accuracy. This is obtained within the same amount of epochs and without ad-hoc fine-tuning the
training hyper-parameters for the secondary loss.

4 Experiments

In this section, we present our experimental evaluations on multi-class image classification tasks. We
performed experiments on five datasets. We experimented with CIFAR100 [19] and Tiny-ImageNet, a
subset of ImageNet [4], following the literature on network calibration. Further, we used two publicly
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available medical imaging datasets, DermaMNIST and RetinaMNIST [38], since medical imaging
is an application area where expert time is limited and expensive. Due to space reasons we report
results on a third medical dataset, TissueMNIST [38], in Appendix D, as well as information about
the datasets in Appendix C.

Loss functions: We compared AUCOCLoss (referred to as AUCOCL in the tables) with different
loss functions, most of which are designed to improve calibration performance while preserving
accuracy: cross-entropy (CE), focal-loss (FL) [23], adaptive focal-loss (AdaFL) [26], maximum mean
calibration error loss (MMCE) [21], soft binning calibration objective (S-ECE) and soft accuracy
versus uncertainty calibration (S-AvUC) [16]. We optimized MMCE, S-ECE, and S-AvUC losses
jointly with a primary loss for which we used either CE or FL, consistently with the literature [21; 16].
The same is done for AUCOCLoss, applying KDE batch-wise during the training.

Evaluation metrics: To evaluate the performance of the methods, we used classification accuracy
and AUCOC. Classification accuracy is simply the ratio between the number of correct samples over
the total number of samples, and AUCOC is computed using Eq. 3. We also report some examples of
operating points of COC curve - given a certain accuracy, we show the corresponding expert load (τ0
@acc), i.e., percentage of samples that need to be analyzed manually, on the COC curves.

Since we compared AUCOCLoss mostly with losses for network calibration, we also assessed the
calibration performance of the networks, even though calibration is not a direct goal of this work. To
this end, we used the following metrics: the widely employed equal-mass expected calibration error
(ECE) [28] with 15 bins, the binning-free Brier score [1] and Kolmogorov-Smirnov (KS) score [9]
and the class-wise ECE (cwECE) [20]. The evaluation is carried out post temperature scaling (TS)
[8], as it has been proved to be always beneficial for calibration.

Hyperparameters: In addition to the common hyperparameters for all losses, selected as specified
in Appendix C, there are also specific ones that need to be tuned for some of them. In this case, we
used the best hyperparameter settings reported in the original papers. In cases where the original
paper did not report the specific values, we carried out cross-validation and selected the setup that
provided the best performance on the validation set. We also selected the weighting factor for
AUCOCLoss in the same way. We found that optimal weighting values for AUCOCLoss all fell
between 1 and 10. We found empirically that models check-pointed using ECE provided very poor
results. Networks check-pointed using either accuracy or AUCOC provided comparable outcome
with respect to accuracy, therefore we reported results on AUCOC as they provided the best overall
performance.

OOD experiments: We evaluate the out-of-distribution (OOD) samples detection performance of
all methods since OOD detection is crucial for a reliable AI system and it is a common experiment
in the network calibration literature. The commonly used experimental setting in this literature is
using CIFAR100-C [12] (we report results for CIFAR100 with Gaussian noise in the main paper and
the average over all the perturbations in the Appendix) and SVHN [27] as OOD datasets, while the
network is trained on CIFAR100 (in-distribution). We evaluated the OOD detection performance of
all methods using Area Under the Receiver Operating Characteristics (AUROC) curve, with MSP
[13], ODIN [14], MaxLogit [11] and EBM [25].

Class imbalance experiments: Finally, in Appendix E we report results for accuracy and AUCOC on
imbalanced datasets, being class imbalance present in many domains, such as medical imaging. We
report results on the widely used Long-Tailed CIFAR100 (CIFAR100-LT) [37; 42] with controllable
degrees of data imbalance ratio to control the distribution of training set. We trained with three levels
of imbalance ratio, namely 100, 50, 10.

Further details on hyper-parameter settings are provided in the the Appendix.

5 Results

First, we report the results for accuracy and COC-related metrics. Then, we report results for
calibration, even though this is not an explicit goal of this work. Bold results indicate the methods
that performed best for each metric, underlined results are the second best. ↑ means the higher the
better for a metric, while ↓ the lower the better. The experiments results are averaged over three runs.
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Table 1: Test results on the natural datasets CIFAR100 and Tiny-Imagenet. We report AUCOC,
accuracy for both, τ0 at 90% and 95% accuracy for CIFAR100 and τ0 at 65% and 75% accuracy for
Tiny-ImageNet, as the initial accuracy is also lower. In bold the best result for each metric, underlined
the second best. AUCOCL improves, to varying degrees, the baselines in all metrics.

Dataset CIFAR100 Tiny-ImageNet

τ0 ↓ @ acc. τ0 ↓ @ acc.
Loss funct. AUCOC ↑ Acc. ↑ 90% 95% AUCOC ↑ Acc. ↑ 65% 75%

CE 91,43 75,71 29,03 44,61 72,56 47,39 39,88 56,29
FL (γ=3) 93,91 77,83 24,71 40,48 73,12 47,71 38,40 55,08
AdaFL53 93,89 77,64 25,08 40,74 73,19 47,81 38,56 55,20
CE+MMCE 92,42 75,35 30,01 44,71 72,47 47,11 39,94 56,70
FL+MMCE 93,90 77,78 25,62 40,90 73,51 48,03 37,83 55,15
CE+S-AvUC 93,99 77,65 24,62 45,00 72,92 47,89 38,28 54,91
FL+ S-AvUC 93,97 77,64 25,97 40,82 74,30 48,69 35,83 53,21
CE+S-ECE 93,88 77,57 24,76 40,14 72,94 47,65 38,81 55,84
FL+S-ECE 93,41 76,69 28,13 43,29 72,61 47,40 39,94 56,71

CE+AUCOCL 94,49 78,94 21,60 36,73 74,56 49,10 34,78 52,01
FL+AUCOCL 94,18 78,31 23,50 36,68 74,30 49,19 34,85 53,15

Table 2: Test results on the medical datasets DermaMNIST and RetinaMNIST. We report AUCOC,
accuracy for both, τ0 at 90% and 95% accuracy for DermaMNIST and τ0 at 65% and 75% accuracy
for RetinaMNIST, as the initial accuracy is also lower. In bold the best result for each metric,
underlined the second best. AUCOCL improves, to varying degrees, the baselines in all metrics.

Dataset DermaMNIST RetinaMNIST

τ0 ↓ @ acc. τ0 ↓ @ acc.
Loss funct. AUCOC ↑ Acc. ↑ 90% 95% AUCOC ↑ Acc. ↑ 65% 75%

CE 89,84 71,59 43,51 56,21 71,45 52,10 39,53 68,58
FL (γ=3) 90,50 72,64 40,63 53,90 68,57 52,25 44,25 58,25
AdaFL53 90,11 73,10 40,78 55,86 68,85 48,58 48,67 62,00
CE+MMCE 89,71 70,99 45,82 58,07 69,18 48,50 42,92 69,13
FL+MMCE 89,34 71,72 46,81 59,10 67,08 50,33 47,50 78,91
CE+S-AvUC 89,67 71,51 43,04 57,09 68,15 51,42 42,71 62,29
FL+ S-AvUC 89,42 71,04 45,47 58,69 66,80 52,00 45,58 70,54
CE+S-ECE 89,54 71,46 43,48 57,82 71,40 52,05 39,45 55,83
FL+S-ECE 90,22 72,62 40,95 57,46 70,49 51,33 42,42 79,91

CE+AUCOCL 90,87 74,30 39,01 52,70 72,47 53,10 38,33 53,81
FL+AUCOCL 91,35 74,80 37,30 53,90 72,31 53,58 39,42 56,12

In Tables 1, 2 we present our results based on accuracy and AUCOC. The results for TissueMNIST
can be found in the Appendix. We observed that complementing CE and FL with our loss, i.e.,
CE+AUCOCL and FL+AUCOCL, they were consistently better than the other losses in all experi-
ments. To evaluate the significance of the accuracy and AUCOC results, we performed permutation
test [30] between the best AUCOCLoss and the best baseline with 1000 rounds. In all the cases
it provided a p score « 1%, therefore the differences in the models are steadily significant. The
advantage of our model was even more apparent in amount of expert loads corresponding to specific
accuracy levels. In particular, we measured the percentage of samples delegated to expert (τ0) at 90%
and 95% accuracy for CIFAR100, DermaMNIST and TissueMNIST, and at 65% and 75% accuracy
for Tiny-Imagenet and RetinaMNIST (as the initial accuracy is also much lower on these datasets).
In all the experiments, to varying degrees, AUCOCLoss provided lower delegated samples than the
baselines. Noticeably, while some of the baselines may be close to the results of AUCOCLoss for
certain metrics, none of them were consistently close to AUCOCLoss across all the datasets. For
example, when looking at the last two columns for CIFAR100 and Tiny-ImageNet respectively of
Table 1, CE+MMCE is worse by 4% than AUCOCLoss on Tiny-ImageNet, but by around 9% in
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Table 3: Test results on DermaMNIST and RetinaMNIST for calibration: expected calibration
error (ECE), KS score, Brier score and class-wise ECE (cwECE), post TS. In bold and underlined
respectively are the best and second best results for each metric. Noticeably, AUCOCL performs
comparably to the baselines, even though it does not aim at improving calibration explicitly.

Dataset DermaMNIST RetinaMNIST

Loss funct. ECE↓ KS↓ Brier↓ cwECE↓ ECE↓ KS↓ Brier↓ cwECE↓
CE 3,07 2,15 38,11 2,22 8,42 6,15 59,75 6,01
FL (γ=3) 4,24 1,77 36,55 2,03 13,61 10,87 63,32 8,19
AdaFL53 3,88 1,95 36,19 1,66 13,63 11,12 65,64 8,47
CE+MMCE 3,59 2,73 38,96 2,20 11,58 9,75 62,18 6,87
FL+MMCE 3,65 2,29 38,91 2,34 12,49 10,54 65,72 7,81
CE+S-AvUC 3,79 2,69 38,28 2,21 8,37 7,01 64,36 6,91
FL+ S-AvUC 3,48 2,13 37,98 1,82 11,60 5,86 64,06 7,12
CE+S-ECE 3,23 2,73 38,39 1,92 9,44 5,88 59,84 5,37
FL+S-ECE 4,5 2,67 36,91 2,08 12,52 10,05 61,16 6,08

CE+AUCOCL 5,70 1,56 36,12 1,78 8,15 4,47 58,69 4,46
FL+AUCOCL 5,10 2,04 35,46 2,04 10,77 8,84 60,52 5,32

Table 4: Test AUROC(%) on OOD detection, training on CIFAR100 and testing on CIFAR100-C
(Gaussian noise) and SVHN, using MSP, ODIN MaxLogit and EBM. Best and second best results
are in bold and underlined.

Dataset C100-C AUROC↑ SVHN AUROC↑
Loss funct. MSP ODIN MaxLogit EBM MSP ODIN MaxLogit EBM

CE 74,37 75,22 74,51 66,18 77,42 79,42 67,71 67,71
FL (γ=3) 75,12 75,35 73,43 72,83 76,61 77,08 66,69 66,42
AdaFL53 74,53 74,68 71,29 70,58 80,3 81,28 66,94 66,73
CE+MMCE 74,67 74,53 70,67 70,17 75,79 77,39 66,34 66,23
FL+MMCE 74,42 74,39 70,01 68,70 77,57 77,41 66,97 66,60
CE+S-AvUC 73,63 73,62 72,16 72,05 78,04 78,90 67,93 67,96
FL+ S-AvUC 72,78 76,72 69,53 68,51 79,68 79,68 67,38 67,24
CE+S-ECE 73,29 73,18 71,59 71,36 77,02 77,69 67,98 68,01
FL+S-ECE 74,29 73,97 71,51 70,26 79,68 81,17 67,38 67,78

CE+AUCOCL 76,03 76,90 78,02 78,30 82,03 83,50 69,51 69,69
FL+AUCOCL 76,51 76,82 75,14 74,68 80,51 79,35 69,52 69,46

CIFAR100. Figure 1a shows examples of COC curves. Overall, the plot of AUCOCLoss lies above
all the baselines, which is a desirable behavior as it corresponds to better operating points.

Even though the proposed loss was not designed to improve calibration, it provided on par perfor-
mance compared to the other cost functions particularly designed for network calibration, as reported
in Table 3 for DermaMNIST and RetinaMNIST and in the Appendix for the other datasets.

In OOD experiments reported in Table 4, we used the model trained on CIFAR100 and evaluated
the OOD detection performance on CIFAR100-C (with Gaussian noise) and SVHN dataset. Results
for CIFAR100-C averaged over all the perturbations are reported in the Appendix. We employed
state-of-the-art OOD detectors, namely MSP, ODIN, MaxLogit and EBM to determine whether a
sample is OOD or in-distribution. The bold results highlight the best results in terms of AUROC. On
both OOD datasets, AUCOCLoss always provided the highest AUROC and in almost all the cases
also the second best.

Class imbalance experiments on CIFAR100-LT are reported in the Appendix. AUCOCLoss obtains
best results for both accuracy and AUCOC, with higher benefits at increasing imbalance.

Crucially, CE+AUCOCL, where the proposed loss is used jointly with CE, outperformed every
baseline in accuracy, AUCOC and τ0 @acc. in all the experiments. It further outperformed all the
baselines in OOD detection and class imbalance experiments, presented in the Appendix. Even
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though the metric is not geared towards calibration, CE+AUCOCL yielded either the best or the
second best calibration performance in the majority of the cases compared to the baselines.

In the Appendix, we explore how the performance of a model trained with AUCOCLoss varies, when
changing batch size as it can be crucial for KDE-based methods. Even substantially lower batsch
sizes do not have a considerable effect on the performance of the proposed method.

6 Conclusion

In this paper we proposed a new cost function for multi-class classification that takes into account
the trade-off between a neural network’s accuracy and the amount of data that requires manual
analysis from a domain expert, by maximizing the area under COC (AUCOC) curve. Experiments on
multiple computer vision and medical image datasets suggest that our approach improves the other
methods in terms of both accuracy and AUCOC, where the latter was expected by design, provides
comparable calibration metrics, even though the loss does not aim to improve calibration explicitly
and outperforms the baselines in OOD detection.

While we presented COC and AUCOCLoss for multi-class classification, extensions to other tasks
are possible future work as well as investigating different performance metrics to embed in the y-axis
of COC. Moreover, aware of potential problems with KDE at the boundaries, i.e., boundary bias, we
explored corrections like reflection method, which did not provide major improvements, but we will
further investigate. We believe that this new direction of considering expert load in human-AI system
is important and AUCOCLoss will serve as a baseline for future work.
Limitations: As described in Section 3.5, AUCOCLoss alone empirically leads to slow convergence,
due to the small contribution of −log(

∑
n zn) with zn ∈ [0, 1] in its formulation. Therefore, we

recommend to use it as a secondary loss, to successfully complement existing cost functions.
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A Derivations

In this Section we provide the derivation of AUCOC and its gradient formulation.

A.1 Derivation of AUCOC

AUCOC is defined as:

AUCOC =

∫ 1

0

E[c|r ≥ r0]dτ0 =

∫ 1

0

{∫ 1

r0

E[c|r]p(r)dr
}

dτ0
1− τ0

The y-axis in COC curve is expressed mathematically by:

E[c|r ≥ r0] =
∑

p(c|r ≥ r0)c =
∑ p(c, r ≥ r0)

p(r ≥ r0)
c =

∑ ∫ 1

r0
p(c, r)dr∫ 1

r0
p(r)dr

c

=
∑ ∫ 1

r0
p(c|r)p(r)dr∫ 1

r0
p(r)dr

c =

∫ 1

r0

∑
p(c|r)cp(r)dr∫ 1

r0
p(r)dr

=

∫ 1

r0
E[c|r]p(r)dr∫ 1

r0
p(r)dr

=

=

∫ 1

r0
E[c|r]p(r)dr
1− τ0

The x-axis in COC curve is expressed mathematically by:

τ0 = p(r < r0) =

∫ r0

0

p(r)dr

Using the τ0 formulation, we can rewrite the y-axis as

E[c|r ≥ r0] =

∫ 1

r0
E[c|r]p(r)dr
1− τ0

Maximizing the area under this curve, over τ0 ∈ [0, 1] corresponds to

maxA = max

∫ 1

0

{∫ 1

r0

E[c|r]p(r)dr
}

dτ0
1− τ0

Let us assume to use a Gaussian kernel with this expression:

K(||r − rn||) =
1√
2πα

· exp
(
− (r − rn)

2

2α2

)
(9)

Developing the equation, the area calculation becomes:

A =

∫ 1

0

{∫ 1

r0

E[c|r]p(r)dr
}

dτ0
1− τ0

=

=

∫ 1

0

{∫ 1

r0

1

N

N∑
n=1

1(cn)K(∥r − rn∥)dr

}
dτ0

1− τ0
=

=

∫ 1

0

{∫ 1

r0

1

N

N∑
n=1

1(cn)
1√
2πα

· exp
(
− (r − rn)

2

2α2

)
dr

}
dτ0

1− τ0
=

=

∫ 1

0

{
1

N

N∑
n=1

1(cn)

∫ 1

r0

1√
2πα

· exp
(
− (r − rn)

2

2α2

)
dr

}
dτ0

1− τ0
=

=

∫ 1

0

{
1

N

N∑
n=1

1(cn)

(
ndtr

(
1− rn√

cov

)
− ndtr

(
r0 − rn√

cov

))}
dτ0

1− τ0
=

=

#thresh∑
k=1

f(τ0,k−1, r0,k−1) + f(τ0,k, r0,k)

2
(τ0,k − τ0,k−1)

(10)
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Where:

τ0,k =

∫ r0,k

0

p(r)dr ≈ 1

N

∫ r0,k

0

N∑
n=1

K(∥r − rn∥)dr =

=
1

N

N∑
n=1

(
ndtr

(
r0,k − rn√

cov

)
− ndtr

(
−rn√
cov

)) (11)

Where ndtr expresses the Gaussian cumulative distribution function and the last row in Equation 10
exploits the trapezoidal rule for integrals computation.

A.2 Derivations of the gradients of AUCOC

d

dθ
A =

∫ 1

0

d

dθ

{∫ 1

r0

E[c|r]p(r)dr
}

dτ0
1− τ0

Here, we use the assumption discussed in Section Methods that τ0 does not depend on any parameter,
thus allowing us to apply Leibnitz’s integration rule, obtaining:

d

dθ
A =

∫ 1

0

d

dθ

{∫ 1

r0

E[c|r]p(r)dr
}

dτ0
1− τ0

(12)

=

∫ 1

0

{∫ 1

r0

d

dθ
E[c|r]p(r)dr − E[c|r0]p(r0)

dr0
dθ

}
dτ0

1− τ0
(13)

τ0 can be expressed as:

τ0 = p(r ≤ r0) =

∫ r0

0

p(r)dr (14)

Consequently:

dτ0
dθ

=

∫ r0

0

dp(r)

dθ
dr + p(r0)

dr0
dθ

= 0

dr0
dθ

= −
∫ r0
0

dp(r)
dθ dr

p(r0)

(15)

Plugging this expression back into Equation 12 we obtain:

dA
dθ

=

∫ 1

0

{∫ 1

r0

d

dθ
E[c|r]p(r)dr + E[c|r0]

∫ r0

0

dp(r)

dθ
dr

}
dτ0

1− τ0
(16)

Assuming the use of a Gaussian kernel:

K(||r − rn||) =
1√
2πα

· exp
(
− (r − rn)

2

2α2

)
(17)

And re-writing:

E[c|r0]p(r0)
p(r0)

≈
1
N

∑N
n=1 1(cn)K(∥r0 − rn∥)

1
N

∑N
n=1 K(∥r0 − rn∥)

(18)
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The gradient of the area becomes:

dA
drn

=

∫ 1

0

{∫ 1

r0

d

drn
E[c|r]p(r)dr + E[c|r0]

∫ r0

0

dp(r)

drn
dr

}
dτ0

1− τ0
=

=

∫ 1

0

{
∫ 1

r0

d

drn

1√
2πα

1

N

N∑
n=1

1(cn) · exp
(
− (r − rn)

2

2α2

)
dr+

E[c|r0]
∫ r0

0

d

drn

1√
2πα

1

N

N∑
n=1

exp

(
− (r − rn)

2

2α2

)
dr} dτ0

1− τ0
=

=

∫ 1

0

{
∫ 1

r0

1√
2πα3N

1(cn) · (r − rn) · exp
(
− (r − rn)

2

2α2

)
dr+

E[c|r0]
∫ r0

0

1√
2πα3N

(r − rn) · exp
(
− (r − rn)

2

2α2

)
dr} dτ0

1− τ0
=

=

∫ 1

0

{− 1√
2παN

1(cn) ·
[
exp

(
− (1− rn)

2

2α2

)
− exp

(
− (r0 − rn)

2

2α2

)]
−

E[c|r0]
1√

2παN

[
exp

(
− (r0 − rn)

2

2α2

)
− exp

(
− (−rn)

2

2α2

)]
dr} dτ0

1− τ0

(19)

Also for the gradients in the code implementation we exploited the trapezoidal rule for the computation
of the external integral between [0,1].

B Potential upper bound to AUCOCLoss

AUCOC has a formulation of the kind −log(
∑

n zn) with zn ∈ [0, 1]. In contrast, cross-entropy is a
−
∑

n log zn, where contribution of increasing low zn’s to the loss is much larger, hence gradient-
based optimization is faster. Exploiting Jensen’s inequality, one could find the following upper bound
of AUCOCLoss to minimise. However, from thorough experiments it has been proven not to be a
tight enough bound for the optimisation to be successful. In fact, trying to optimise the rightmost term
of the following equation, instead of the correct definition on the left, does not lead to a satisfactory
optimisation of AUCOC.

− log

(∫ 1

0

{∫ 1

r0

r∗nK(||r − rn||)dr
}

dτ0
1− τ0

)
≤

−
∫ 1

0

{∫ 1

r0

log(r∗n)K(||r − rn||)dr
}

dτ0
1− τ0

C Training details

In CIFAR100 experiments, we followed Karandikar et al. [16] and used Wide-Resnet-28-10 [41] as
the network architecture. We trained the models for 200 epochs, using Stochastic Gradient Descent
(SGD), with batch of 512, momentum of 0.9 and an initial learning rate of 0.1, decreased after 60,
120, 160 epochs by a factor of 0.1. We set these parameters based on the best validation performance
of CE and we keep it for all the losses. In Tiny-ImageNet experiments, we used ResNet-50 [10]
as backbone architecture, SGD as optimiser with a batch size of 512, momentum of 0.9 and base
learning rate of 0.1, divided by 0.1 at 40th and 60th epochs as in Mukhoti et al. [26] In DermaMNIST,
RetinaMNIST and TissueMNIST [38] experiments, we followed the training procedures of the
original paper, employing a ResNet-50 He et al. [10], Adam optimizer. The batch size is set to 128
for DermaMNIST and RetinaMNIST and to 512 for the larger TissueMNIST. We used the initial
learning rate 0.0001 for DermaMNIST and 0.001 for RetinaMNIST and TissueMNIST, and trained
the models for 100 epochs by reducing the learning rate by 0.1 after epochs 50 and 75.

All the models have been trained using either the NVIDIA GeForce RTX 2080 Ti or NVIDIA GeForce
RTX 3090. The datasets have been split as follows.

15



For CIFAR100 we used 45000/5000/10000 images respectively as training/validation/test sets.

Tiny-ImageNet is a subset of ImageNet with 64 × 64 images and 200 classes. We employed
90000/10000/10000 images as training/validation/test set, respectively.

DermaMNIST is composed of dermatoscopic images with 7007/1003/2005 samples for training,
validation and test set, respectively, categorised in 7 different diseases.

RetinaMNIST is based on the DeepDRiD24 challenge, which provides a dataset of 1,600 retina
fundus images. The task is ordinal regression for 5-level grading of diabetic retinopathy severity.
Consistently with the original paper, we split the source training set with a ratio of 9 : 1 into training
and validation set, and use the source validation set as the test set.

D Results on a third medical dataset, TissueMNIST

Tables 5 and 6 report results on an additional medical dataset, TissueMNIST. The dataset contains
236,386 human kidney cortex cells, segmented from 3 reference tissue specimens and organized into
8 categories. We split the source dataset with a ratio of 7 : 1 : 2 into training, validation and test set.
The results are consistent with those reported in the main paper.

Table 5: Test results on TissueMNIST for AUCOC and accuracy. The last two columns report τ0
corresponding to 90% and 95% accuracy. In bold and underlined respectively the best and second
best results for each metric.

τ0 ↓ @ acc.
Loss funct. AUCOC ↑ Acc. ↑ 90% 95%

CE 65,91 83,34 68,60 81,95
FL (γ=3) 66,07 82,77 79,41 87,82
AdaFL53 66,15 83,15 75,01 89,90
CE+MMCE 66,52 84,12 68,81 86,84
FL+MMCE 66,30 82,85 68,96 81,70
CE+S-AvUC 62,42 80,88 73,00 86,03
FL+ S-AvUC 62,75 79,75 74,79 84,74
CE+S-ECE 65,58 83,53 70,67 83,84
FL+S-ECE 65,20 82,59 70,90 84,06

CE+AUCOCL 67,16 84,54 68,60 77,80
FL+AUCOCL 67,04 83,46 67,21 81,55

Table 6: Test results on TissueMNIST for calibration: expected calibration error (ECE), KS score,
Brier score and class-wise ECE (cwECE), post TS. In bold and underlined respectively the best and
second best results for each metric. Noticeably, AUCOCL performs comparably to the baselines,
even though it does not aim at improving calibration explicitly.

Loss funct. ECE↓ KS↓ Brier↓ cwECE↓
CE 0,89 0,36 46,11 1,65
FL (γ=3) 2,06 0,67 46,50 1,58
AdaFL53 2,10 1,11 46,58 1,79
CE+MMCE 0,98 0,53 45,27 1,83
FL+MMCE 1,55 0,57 45,87 1,21
CE+S-AvUC 2,28 1,87 50,32 1,62
FL+ S-AvUC 2,49 1,83 50,99 2,00
CE+S-ECE 2,38 0,98 52,88 2,71
FL+S-ECE 2,45 1,40 47,29 1,83

CE+AUCOCL 1,07 0,71 44,41 1,29
FL+AUCOCL 3,56 0,68 45,54 1,47
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E Class imbalance experiments

In Table 7 we report the results for accuracy and AUCOC on the widely employed Long-Tailed
CIFAR100. We employed a tunable data imbalance ratio (Nmax / Nmin, where N is number of
samples in each class), which controls the class distribution in the training set and trained the models
with three levels of imbalance ratio, namely 100, 50, 10. Noticeably, when AUCOCLoss complements
cross-entropy it obtains the best results for both metrics in all the three settings, with higher benefits
at increasing imbalance, while with FL it obtains always the second best AUCOC and comparable
accuracy.

Table 7: Accuracy and AUCOC results on CIFAR100 Long-Tailed for 3 degrees of class imbalance
in the training set, namely 100, 50 and 10. In bold and underlined respectively the best and second
best results for each metric.

Imbalance ratio 100 50 10

Loss funct. AUCOC ↑ Acc. ↑ AUCOC ↑ Acc. ↑ AUCOC ↑ Acc. ↑
CE 72,33 47,27 78,02 53,83 89,59 71,15
FL (γ=3) 73,66 47,00 79,53 53,50 91,91 71,59
AdaFL53 73,72 47,07 79,55 53,55 92,05 71,61
CE+MMCE 72,92 47,80 78,54 53,45 90,66 71,32
FL+MMCE 73,49 46,78 79,50 53,32 91,70 71,71
CE+S-AvUC 73,08 46,62 76,15 54,45 91,72 71,60
FL+ S-AvUC 72,68 46,62 78,51 53,11 89,75 72,11
CE+S-ECE 73,53 47,58 79,31 53,84 91,63 71,67
FL+S-ECE 72,30 46,13 78,56 52,84 91,29 70,6

CE+AUCOCL 75,85 49,63 81,38 55,89 92,59 72,40
FL+AUCOCL 74,51 46,91 79,72 53,64 92,21 71,92

F Calibration results for Tiny-ImageNet and CIFAR100

In Table 8 we report calibration results respectively for CIFAR100 and Tiny-ImageNet. For all the
metrics and datasets, AUCOCLoss provides comparable results with respect to the baselines.

Table 8: Test results on CIFAR100 and Tiny-Imagenet for calibration metrics, namely expected
calibration error (ECE), KS score, Brier score and class-wise ECE (cwECE), post temperature scaling.
In bold and underlined respectively the best and second best results for each metric. Noticeably,
AUCOCL performs comparably to the baselines, even though it does not aim at improving calibration
explicitly.

Dataset CIFAR100 Tiny-Imagenet

Loss funct. ECE↓ KS↓ Brier↓ cwECE↓ ECE↓ KS↓ Brier↓ cwECE↓
CE 2,41 1,1 33,91 0,211 1,54 0,74 66,25 0,163
FL (γ=3) 1,92 1,46 31,16 0,184 1,46 1,14 65,91 0,152
AdaFL53 1,47 1,22 31,3 0,183 1,35 0,85 65,71 0,159
CE+MMCE 2,32 1,23 34,6 0,209 1,79 0,93 66,42 0,157
FL+MMCE 1,92 1,82 31,24 0,181 1,94 1,63 65,49 0,151
CE+S-AvUC 3,23 0,53 31,71 0,199 2,13 1,15 65,20 0,146
FL+ S-AvUC 1,83 0,53 31,74 0,177 1,51 1,13 64,62 0,15
CE+S-ECE 3,85 1,3 31,85 0,197 1,66 0,81 66,14 0,15
FL+S-ECE 1,74 1,56 32,19 0,180 2,6 2,37 66,40 0,161

CE+AUCOCL 1,65 0,75 29,78 0,184 1,65 1,29 64,23 0,157
FL+AUCOCL 1,34 0,95 30,24 0,175 1,86 1,29 64,45 0,155
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G Results for varying batch size

In Table 9 we report the results on DermaMNIST with reduced batch sizeon which KDE is applied
on, i.e. 64 and 28 samples per batch. The results of AUCOCLoss are not significantly affected by it,
when complementing cross-entropy and focal loss.

Table 9: Test results on DermaMNIST for accuracy, AUCOC and ECE for batch sizes 64 and 32.
Reducing the batch size does not affect significantly the performance of AUCOCL.

Batch Loss funct. AUCOC ↑ Acc. ↑ ECE ↓
CE+AUCOCL 91,16 75,18 11,00

64 FL+AUCOCL 91,13 74,71 9,35

CE+AUCOCL 90,14 73,80 15,50
32 FL+AUCOCL 91,10 73,47 6,69

H Additional results for CIFAR100 and Tiny-ImageNet

In Table 10 we report test results on CIFAR100 using ResNet-50 and Tiny-Imagenet using
WideResnet-28-10, run for one seed. Best and second best results are in bold and underlined.
They show consistency with the main experiments reported in the paper.

Table 10: Test results on CIFAR100 using ResNet-50 and Tiny-Imagenet using WideResnet-28-10,
run for one seed. Best and second best results are in bold and underlined.

Dataset CIFAR100 Tiny-ImageNet

τ0 ↓ @ acc. τ0 ↓ @ acc.
Loss funct. AUCOC ↑ Acc. ↑ 90% 95% AUCOC ↑ Acc. ↑ 65% 75%

CE 91,10 73,69 34,72 49,42 74,03 49,29 34,74 52,28
FL (γ=3) 92,68 75,13 32,30 46,40 75,05 49,56 34,17 51,72
AdaFL53 92,65 74,5 32,01 45,78 75,36 49,49 33,77 50,76
CE+MMCE 92,55 74,75 31,08 44,53 74,12 48,56 35,83 52,48
FL+MMCE 92,46 74,47 31,69 46,63 74,79 49,32 34,57 52,12
CE+S-AvUC 92,63 74,12 31,02 44,83 74,14 49,13 35,00 53,17
FL+ S-AvUC 92,71 74,82 31,11 44,51 74,21 49,02 35,22 53,12
CE+S-ECE 92,57 74,27 31,38 45,4 75,62 49,91 31,88 49,55
FL+S-ECE 92,63 75,00 31,35 47,42 74,57 49,16 35,60 52,36

CE+AUCOCL 93,81 75,94 28,39 42,61 76,64 51,40 29,97 47,65
FL+AUCOCL 93,19 75,90 29,45 43,11 75,86 50,84 32,00 50,12

I Further explanation on how improve AUCOC

There are two factors which contribute to an increase in AUCOC: decrease in the number of samples
delegated to human experts (given the same network accuracy) and increase in the accuracy for the
samples that are not delegated but analysed only by the network (given the same human workload).

These two aspects could manifest either individually, if the AUCOC improvement is generated by
just a shift "up" or "left" of COC, or in a combined way. The example provided in Figure 1a shows
an improvement in both axes ("and" case) and the proposed loss function does not favour one specific
behaviour. Figure 2 provides an example of shifts "up" and "left" ("or" cases). From the AUCOC
metrics alone, it is not possible to infer which mechanism is taking place.
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Figure 2: Toy example of possible AUCOC increase by shifting "up" or "left" the blue COC curve.

J OOD results on all the perturbations on CIFAR100-C

In table 11 we report the average results on CIFAR100-C for all the perturbations available from
Hendrycks and Dietterich [12].

Table 11: Test AUROC(%) on OOD detection, training on CIFAR100 and testing on CIFAR100-C
(all 15 perturbations) for MSP, ODIN, MaxLogit and EBM. Best and second best results are in bold
and underlined.

Dataset C100-c all corruptions AUROC↑
Loss funct. MSP ODIN MaxLogit EBM

CE 66,18 66,42 67,71 67,71
FL (γ=3) 66,57 66,36 66,69 66,42
AdaFL53 66,58 66,33 66,94 66,73
CE+MMCE 66,12 66,22 66,34 66,23
FL+MMCE 66,92 66,14 66,97 66,60
CE+S-AvUC 67,29 67,45 67,93 67,96
FL+ S-AvUC 66,78 66,00 67,38 67,24
CE+S-ECE 67,32 67,50 67,98 68,01
FL+S-ECE 67,34 65,38 67,38 67,78

CE+AUCOCL 67,77 67,77 69,51 69,69
FL+AUCOCL 68,00 66,83 69,52 69,46
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