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Abstract

Knowledge Distillation (KD) has emerged as a promising approach for compressing
large Pre-trained Language Models (PLMs). The performance of KD relies on
how to effectively formulate and transfer the knowledge from the teacher model
to the student model. Prior arts mainly focus on directly aligning output features
from the transformer block, which may impose overly strict constraints on the
student model’s learning process and complicate the training process by introducing
extra parameters and computational cost. Moreover, our analysis indicates that the
different relations within self-attention, as adopted in other works, involves more
computation complexities and can easily be constrained by the number of heads,
potentially leading to suboptimal solutions. To address these issues, we propose a
novel approach that builds relationships directly from output features. Specifically,
we introduce token-level and sequence-level relations concurrently to fully exploit
the knowledge from the teacher model. Furthermore, we propose a correlation-
based distillation loss to alleviate the exact match properties inherent in traditional
KL divergence or MSE loss functions. Our method, dubbed FCD, presents a
simple yet effective method to compress various architectures (BERT, RoBERTa,
and GPT) and model sizes (base-size and large-size). Extensive experimental
results demonstrate that our distilled, smaller language models significantly surpass
existing KD methods across various NLP tasks.

1 Introduction

Past few years have witnessed a rapid development of pre-trained language models (PLMs) thanks to
their effectiveness across a wide range of natural language processing tasks. Pre-trained language
models, such as BERT Devlin et al. [2018], RoBERTa Liu et al. [2019], and GPT-2 Radford et al.
[2019], learn contextualized text representations by predicting words given their context using large
scale text corpora, and can be fine-tuned with additional task-specific layers to adapt to downstream
tasks. However, the excellent capability for various NLP tasks comes at demaning huge resources and
large memory footprints. For example, the BERTBASE model contains about 110M parameters and
12 Transformer Vaswani et al. [2017] layers, which prevents these transformer-based models from
being finetuned and deployed on resource-constrained devices and real-time applications. Recent
studies Kovaleva et al. [2019], Voita et al. [2019] indicate that redundancy exists in the original PLMs.
Therefore, a series of attempts Chung et al. [2020], Wu et al. [2020], Wang et al. [2020c], Gordon et al.
[2020a], Tang et al. [2019], Aguilar et al. [2019] have been made to review the techniques for effective
compression of the pre-trained heavy transformers without compromising the performance, of which
knowledge distillation is considered to be a practical paradigm, Typically, knowledge distillation
techniques aims at effectively transferring the dark knowledge embedded in a large teacher network
to boost the performance of the smaller student network during training. Once trained, this compact
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student network can be directly deployed in real-life applications without introducing extra inference
time or structure modifications. The essence of knowledge distillation relies on how to formulate and
transfer the knowledge from teacher to student. The classic logit-based distillation Hinton et al. [2015]
directly mimic the final prediction outputs between the teacher and student via Kullback–Leibler (KL)
divergence, which only brings limited performance gain to the student. Besides this vanilla knowledge
distillation, many other works Du et al. [2020], Heo et al. [2019], Tian et al. [2019] also try to make
use of intermediate representations of the pre-trained teacher transformer. The intermediate layers
contain more embedding, supplement richer features, thus allow the student transformer to acquire
more information in addition to outputs. Jiao et al. [2019] proposed TinyBERT, which distill the
information between multiple intermediate features, including the embedding, self-attention matrices
and hidden states of the teacher and student networks via the mean squared error (MSE). However,
this usually need the adaption layers to align the mismatching embedding dimensions. Such gap
makes it hard for the student to mimic the teacher’s feature directly and induces additional training
cost as a consequence. MINILM Wang et al. [2020b] employs self-attention heatmaps and and value
relations via the KL-divergence loss to deeply mimic teacher’s self-attention modules. It leads to a
restriction that the number of attention heads of student model has to be the same as its teacher. To
solve this problem, MINILMv2 Wang et al. [2020a] first concatenate and then split self-attention
vectors of different attention heads according to the desired number of relation heads, which involves
more computation of queries, keys, and values in self-attention and consequently leads to suboptimal
performance.

Motivated by these observations, we aim to directly model feature relationships between the teacher
and student models. In a manner similar to the self-attention mechanism, we first model token
relations using the output features of the teacher and student models. This token-level relationship
has the capacity to capture long-term dependencies between input tokens and highlight critical tokens
essential for linguistic comprehension. While the token-level relation is intuitive, it reflect only one
aspect of the feature relationships. We further exploit another important aspect of feature relations,
the sample-level, to capture the semantic relationship across a batch of samples, an aspect that has
been overlooked in previous works. In this way, both types of relations are combined to complement
each other to bring more fine-grained feature knowledge. Therefore, the student model is expected to
have superior performance compared to that trained stand-alone. Thanks to the same shape of feature
relations between student and teacher, our method offers increased flexibility with respect to the
embedding dimension and the number of attention heads. Moreover, we propose a correlation-based
loss function to replace the KL divergence and MSE used in traditional KD methods. Specifically,
we employ the pearson linear correlation as a novel loss function, relaxing the exact match property
typically associated with KL divergence and MSE. The overview of the proposed method is illustrated
by Figure 1. To sum up, our main contributions are outlined as follows:

• We directly model feature relationships between teacher and student models, which jointly
leveraging token-level and sample-level relations to distill knowledge for the first time.

• We propose a correlation-based loss function using Pearson linear correlation, and theo-
retically explain that it offers a more flexible alternative to traditional KL divergence and
MSE.

• Extensive experiments are conducted with popular variants of PLMs, including BERT,
RoBERTa, and GPT on GLUE datasets, and our proposal consistently performs better than
existing methods.

2 Related Works

2.1 Pretrained Language Models

Pretrained language models are pretrained on large amounts of text corpus, and then fine-tuned on
task-specfic dataset. BERT Devlin et al. [2018] proposes to use a masked language modeling (MLM)
objective to pretrain a deep bidirectional Transformer encoder. RoBERTa Liu et al. [2019] achieves
strong performance by training longer steps using large batch size and more text data. Besides those
encoder-based models, GPT-2 Radford et al. [2019] is a decoder-based model designed for uni-
directional, left-to-right text processing. It predicts the next word in a sequence given the preceding
words, which allows it to generate coherent and contextually relevant text. In additon to knowledge
distillation, the compression of pretrained language models have been widely explored, ranging from
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Figure 1: Overview of the proposed method Feature Correlation Distillation (FCD). To demonstrate
the effectiveness of FCD. We introduce the token-level relationship and sample-level relationship to
distill the knowledge from teacher to student. The correlation loss based on pearson linear correlation
is used to capture the relationship between the teacher and the student (best viewed in color).

unstructured pruning Gordon et al. [2020b], Guo et al. [2019], attetnion head pruning Michel et al.
[2019]; to layer factorization Lan et al. [2019], quantization Zhang et al. [2020], Bai et al. [2020]
and dynamic width/dpeth inference Hou et al. [2020]. However, some of the techniques like weight
pruning (irregular sparsity) and quantization typically require complex piplines and can not lead to
inference speedup and run-time memory saving directly without dedicated hardware/libraries (e.g.
for sparse or low-bit computing operation). By contrast, knowledge distillation has been found to be
a simple and much effective model compression technique that allows a relatively simple model to
perform tasks almost as accurately as a complex model. Moreover, it can be combined with other
compression techniques (i.e., where the student model is a smaller, quantized, or pruned version of
the teacher model) to further compress the pre-trained language models.

2.2 Knowledge Distillation

Knowledge Distillation (KD) is a process that transferring knowledge from a large teacher model
to a small student model. It was first proposed by Hinton et al. [2015] and then how to effectively
transfer more knowledge has been explored by many subsequent works Romero et al. [2014], Ahn
et al. [2019], Park et al. [2019], Tian et al. [2019], Tung and Mori [2019]. The intermediate layers
contain much richer representation, thus allow the student transformer to acquire more information in
addition to outputs. Tang et al. [2019] distill fine-tuned BERT into an extremely small bidirectional
LSTM. Turc et al. [2019] initialize the student with a small pre-trained LM during task-specific
distillation. Sun et al. [2019a] introduce the hidden states from every k layers of the teacher to
perform knowledge distillation layer-to-layer. Aguilar et al. [2019] further introduce the knowledge
of self-attention distributions and propose progressive and stacked distillation methods. Task-specific
distillation requires to first fine-tune the large pre-trained LMs on downstream tasks and then perform
knowledge transfer. The procedure of fine-tuning large pre-trained LMs is costly and time-consuming,
especially for large datasets. MiniBERT Tsai et al. [2019] uses the soft target distributions for
masked language modeling predictions to guide the training of the multilingual student model and
shows its effectiveness on sequence labeling tasks. DistillBERT Sanh et al. [2019] uses the soft
label and embedding outputs of the teacher to train the student. TinyBERT Jiao et al. [2019] and
MOBILE-BERT Sun et al. [2019b] further introduce self-attention distributions and hidden states to
train the student. For example, MOBILE-BERT employs inverted bottleneck and bottleneck modules
for teacher and student to make their hidden dimensions the same. TinyBERT uses a uniform-strategy
to map the layers of teacher and student when they have different number of layers, and a linear
matrix is introduced to transform the student hidden states to have the same dimensions as the teacher.
However, the presence of those extra modules not only adds burden on network complexity but also
complicates the training procedure.

3 Method

In this section, we first describe the transformer architectures and define the distillation target in
Section 3.1. Then we introduce the two proposed types of feature relationships: token-level relation
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Figure 2: Our method proposes to maintain the token-level and sample-level relations between
student and teacher. Token-level relation: relation between the tokens within each sample of teacher
and student. Sample-level relation: relation between the samples on a specfic token.

in Section 3.2 and sample-level relation in Section 3.2. At last, we elaborate on the correlation-based
loss in Section 3.3 and provide a theoretical analysis in Section 3.4.

3.1 Preliminaries

The majority of pre-trained language models are based on Transformer architectures, which are
composed of a stack of Transformer blocks. We first tokenize the input sample into a sequence
of tokens and pack them together with special tokens such as [SEP] and [CLS]. These tokens are
then projected into token embeddings and fed into transformer blocks. Each Transformer block
consists of a Multi-Head Attention (MHA) and a Feed-Forward network (FFN). Layer normalization
(LN) Ba et al. [2016] and residual connection He et al. [2016] are integrated around each of these two
sub-blocks. Suppose a teacher model T and a student model S, the model takes the feature Fl−1 of
the l-th Transformer block as input, In multi-head attention, heads are computed in parallel to get the
final output, which can be formulated as:

Al = Attn(Fl−1, Ql,Kl)

Hl =
∑
H

AlVl
(1)

Al ∈ RH×N×N is the attention matrix, where H denotes the number of heads and N the sequence
length of the input. It is calculated as scaled dot-product between Ql and Kl and then apply softmax
operation on the each column of matrix Al. The final multi-head attention output Hl is calculated as
a weighted sum of values Vl. Suppose the two linear layers in FFN are parameterized by W1, b1 and
W2, b2, the output of FFN can be formulated as:

Fl = GeLU(HlW1 + b1)W2 + b2 (2)

We term Fl ∈ RN×D as the output feature of the l-th Transformer block, where D denotes the
dimension of hidden features. Some works directly adopted Fl as the distillation target. However,
the embedding dimensions DS and DT of student and teacher are typically different. Previous
works Romero et al. [2014], Yim et al. [2017], Heo et al. [2019] overcome this obstacle by building
certain adaptation modules between hidden layers of the teacher and student models. However, these
adaptation modules, with random initialization or special non-parameter transformation Srinivas and
Fleuret [2018], Komodakis and Zagoruyko [2017] would potentially disturb training process, because
it introduces extra parameters and computational cost (including weights, gradients and optimizer
states) Pudipeddi et al. [2020]. Moreover, the teacher and student models usually have different
number of heads, i.e., HT ̸= HS . To address these challenges, we aim to model feature relationships
using Fl to overcome the aforementioned issues. The details of this process are provided in the
following sections.

3.2 Distillation with feature relationships

Token-level Relation To mitigate the negative influences of magnitude differences, we first normal-
ize the block features F of both the teacher and the student, denoted as F̂ = Norm(F). Common
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normalization methods include ℓ2, softmax and layer normalization. In our implementation, we
choose ℓ2 normalization as its implementation, as it consistently outperforms the other methods in
our experiments. Subsequently, with the normalized feature, we compute the token-level relation
matrix. Specifically, for a specific sample i, we define the relation matrix between tokens for each
sample as follows:

Rt(F) =
Fi,:,:

||Fi,:,:||2
·
( Fi,:,:

||Fi,:,:||2

)Tr

(3)

Here, Tr denotes transposition for the feature. For each given sample, both the student’s and teacher’s
token-level relation matrices share the same dimensions of Rt ∈ RN×N . Each matrix effectively
serves as a relevance map, revealing the influence of each token in relation to others within the same
sequence (see the left part of Figure 2). By doing so, this inner token-level relationship is adept
at capturing long-term dependencies between tokens, emphasizing those which are crucial for a
comprehensive understanding of the linguistic context. Consider tasks such as text tagging or named
entity recognition, where each token must be assigned a label based on its role within the sentence.
In such cases, the token-level relation matrix can serve as an effective guide, assisting the student
model to deliver enhanced performance.

Sample-level Relation In addition to the token-level relation, which captures the relationships
among different tokens within each sample, the relationships across multiple samples for each token
also provides informative knowledge for the distillation process. As such, we aim to distill this
sample-level relation as well to enhance performance. Similarly, we compute the relation matrix at
the sample level as follows:

Rs(F) =
F:,j,:

||F:,j,:||2
·
( F:,j,:

||F:,j,:||2

)Tr

(4)

In this case, for a specific token, both the student’s and teacher’s sample-level relation matrices,
denoted as Rs, share the same dimensions of RB×B . These matrices describe the relationships
between different samples, as illustrated in the right part of Figure 2. They enable the capture of
semantic relationships across a batch of samples, which is particularly essential for tasks like text
classification and summarization. In these tasks, recognizing the sample-level relationship can be
instrumental in making accurate predictions. It allows the model to discern the similarities and
differences between samples, rather than viewing each sample in isolation. For the sample-level
relation modeling, instead of directly comparing words based on their positions across sentences,
we transform each sentence into a unified high-dimensional space using the same network. Within
this space, token features at the same positions from distinct sequences become comparable. This
approach forms the foundation of our sample-level relation modeling and serves as a valuable guide
for the student model, enhancing its performance in tasks necessitating a deep understanding of
inter-sample relationships.

Computation Complexity Analysis The token-level and sample-level relation maps, in our pro-
posed method, require computational complexities of 2BN2D and 2B2ND, respectively. The asso-
ciated memory space required for these computations is BN2 +B2N . In contrast, MiniLM Wang
et al. [2020b] utilizes self-attention and value-value attention, results in total computational complexi-
ties and memory space requirements of 4BN2D and 2BN2, respectively. MiniLMv2 Wang et al.
[2020a] employs a different attention mechanism, resulting in total computational complexities and
memory space requirements of 18BN2D and 9BN2, respectively. For a concrete example, consider
the BERTBASE model, where B is set to 32, N is 128, and D is 768. Our proposed method yields
computational complexities and memory space requirements of 0.6GFLOPs and 0.6MB, respec-
tively. In comparison, MiniLM has computational complexities and memory space requirements
of 3.2GFLOPs and 2MB, respectively, while for MiniLMv2, these values rise to 14.5GFLOPs and
9.4MB, respectively. Thus, our method demonstrates significant efficiency in terms of computational
complexity and memory space requirement, providing a more resource-efficient option for knowledge
distillation.

3.3 Distillation with pearson linear correlation

In addition the distillation target, the design of the distillation loss plays a crucial role in transferring
the knowledge from the teacher model to the student model. A general distillation loss can be
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expressed as:
L = Γ (ϕT (FT ), ϕS(FS)) (5)

Here, ϕT and ϕS denote the feature transformations for the teacher and student models, respectively.
These transformations convert raw features into a form that is more conducive to knowledge transfer.
In previous works, ϕ often takes the form of an adaptation layer that aligns the embedding dimensions
between the teacher and student models. However, in our method, as discussed in Section 3.2, ϕ is
used to denote the token-level and sample-level relation matrix. Γ is a distance function measuring
the similarity between student and teacher features. The most commonly used functions include KL
divergence and the mean squared error. However, these functions exhibit an ’exact match’ property,
which means the loss reaches the minimal if and only if the features of student and teacher are
all identical. This requirement could impose overly strict constraints on the student, particularly
when there is a large discrepancy between the teacher and student. To alleviate these constraints, we
introduce the Pearson correlation coefficient as a more flexible alternative, which is used to measure
the strength of the linear relationship between two variables and remains invariant under positive
linear transformations. The basic form of Pearson correlation coefficient between X and Y follows
the Pearson index can be computed as follows:

ρ(X,Y ) :=

∑
(Xi − µX)(Yi − µY )√∑

(Xi − µX)2
√∑

(Yi − µY )2
(6)

where µX , µY denote the mean value of the variable X,Y respectively. The Pearson correlation
coefficient, denoted by ρ, ranges between -1 and 1. Therefore, 1− ρ always falls between 0 and 2,
making it suitable to be used as a loss function. We call our final formulation of the distance function
Pearson linear correlation (PLC), which is defined as follows:

Γ (X,Y ) := 1− ρ(X,Y ). (7)

In this way, we shift the focus from attempting to exactly replicate the teacher’s features to preserving
and learning the relational information between the teacher’s and student’s features. This shift
effectively relaxes the ’exact match’ requirement inherent in conventional Knowledge Distillation
(KD) methods. Thus, the distillation loss in our approach comprises two types of losses: token-level
relation loss and sample-level relation loss. The token-level relation loss quantifies the discrepancy
between the token-level relation matrices of the student and teacher models. It is defined as the
average PLC between the student’s and teacher’s token-level relations across all samples in the batch:

Lt :=
1

B

B∑
i=1

Γ (Rt(FS),Rt(FT )) (8)

The sample-level relation loss quantifies the discrepancy between the sample-level relation matrices
of the student and teacher models. It is defined as the average PLC between the student’s and teacher’s
sample-level relations across all tokens in the sequence.

Ls :=
1

N

N∑
j=1

Γ (Rs(FS),Rs(FT )) (9)

The intrinsic sensitivity of the PLC to outliers necessitates normalization of features prior to calculat-
ing the distillation loss, thus ensuring a stable training process. Given these two components, the
overall training loss of our proposed method consists of the task loss, token-level relation loss, and
sample-level relation loss, which can be formulated as follows:

L = Lg + αLt + βLs (10)

Here, Lg denotes the task training loss, while α, β are weighting factors used to balance the task
training loss and the relation losses.

3.4 Theoretical Analysis

As discussed in Section 3.3, different distance functions like Kullback-Leibler (KL) divergence
and Mean Squared Error (MSE) are commonly used to measure the similarity between the teacher
and the student models. However, these functions have an ’exact match’ property, which means
that the distance is zero if and only if the student and teacher features are exactly the same. This
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Model #Params Speedup SST-2 MNLI-m QNLI QQP RTE SST-B MRPC CoLA AVG
BERTBASE 110M ×1.0 93.4 84.5 91.5 72.3 66.8 85.2 88.3 52.8 79.3
BERTSMALL6 66M ×2.0 90.7 81.2 87.9 69.4 64.3 79.8 83.7 41.4 74.8
BERT-PKD6 66M ×2.0 92.0 81.5 89.0 70.7 65.5 81.6 85.0 43.5 76.1
DistilBERT6 66M ×2.0 92.5 82.6 88.9 70.1 58.4 81.3 86.9 49.0 76.2
TinyBERT6 66M ×2.0 92.1 82.8 89.8 71.2 70.0 83.9 88.0 51.1 78.6
MINILM6 66M ×2.0 92.0 83.0 91.1 71.4 70.8 84.2 88.5 49.2 78.8
MINILMV26 66M ×2.0 92.4 83.4 90.0 71.5 71.3 84.5 88.6 51.8 79.2
Ours 66M ×2.0 92.8 83.8 91.3 72.0 71.7 84.8 89.1 52.0 79.6
RoBERTaBASE 125M ×1.0 95.3 87.2 93.2 73.8 72.7 88.4 90.1 62.0 82.8
RoBERTaSMALL6 82M ×2.0 92.3 83.1 90.4 72.1 68.4 86.8 87.5 54.1 79.3
MINILMV26 82M ×2.0 93.5 84.3 91.6 72.8 72.1 87.5 88.2 57.8 81.0
Ours 82M ×2.0 93.8 85.6 92.0 73.5 72.5 88.3 89.6 60.3 81.9
DistilGPT2 82M ×2.3 90.7 81.6 87.9 66.8 68.3 79.6 87.9 39.4 75.3
Ours 82M ×2.3 92.0 83.4 88.5 70.6 70.2 81.6 88.4 42.3 77.1

Table 1: Results of the proposed method on the test sets of GLUE. We use the metric of Matthews
correlation for CoLA, Pearson-Spearman correlation for STS-B, and accuracy for other datasets.
Following previous works Sun et al. [2019a], we also report the average score of these eight tasks
(the “AVG” column). The speedup is in terms of the BERTBASE and RoBERTaBASE inference time
and evaluated on a single GPU with a single input of 64 or 128 length. The fine-tuning results are an
average of 4 runs.

can be written as Γ (X,Y ) = 0 when X = Y . Unlike KL divergence or MSE, PLC is invariant
under positive linear transformations. This means that even if a positive linear transformation is
applied to one or both of the features, the correlation coefficient remains the same. In other words,
Γ (X,Y ) = 0 if Y = αX + β, where α > 0 and β are constants.This property makes PLC a more
flexible choice for knowledge distillation, as it allows the student model to learn from the teacher
model in a less restrictive way. The detailed mathematical justification for this property is provided
in the supplementary materials.

We next delve into the relationship between the Pearson linear correlation (PLC), Kullback-Leibler
(KL) divergence and Mean Squared Error (MSE). For KL divergence, the normalized features are
transformed into a probability distribution, and then we minimize the discrepancy between the
softened probabilities of the teacher and student models.

LKL(F̂T , F̂S) = τ2
∑
m

ϕt(F̂T ; τ)log
ϕt(F̂T ; τ)

ϕs(F̂S ; τ)
(11)

Here, τ denotes a temperature parameter used to adjust the softness degree in the distributions.
Assuming the value of τ is significantly large compared to the magnitude of the normalized features,
and F̂S , F̂T are drawn from a standard normal distribution, we can derive the gradient of LKL with
respect to the normalized feature F̂ i

S as follows:

∂LKL

∂F̂S

≈ 1

M

(
F̂S − F̂T

)
=

∂LMSE

∂F̂S

(12)

Further, given that 1
m−1

∑
i F̂2

S = 1 and 1
m−1

∑
i F̂2

T = 1, we can reformulate the MSE loss as
follows:

LMSE(F̂S , F̂T ) =
1

2M

∑
(F̂S − F̂T )

2 ≈ 1− ρ(FS ,FT ) (13)

This equivalence clarifies the intrinsic connection between KL divergence, MSE, and PLC of nor-
malized feature distributions. The detailed derivations and empirical results to support this claim are
provided in the supplementary material.

4 Experiments

4.1 Distillation Setup

We evaluate the efficacy of the proposed FCD on 8 out of 9 tasks from the General Language
Understanding Evaluation (GLUE) Wang et al. [2019] benchmark, which consists of 2 single-sample
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Figure 3: Comparison of distillation results of student models using BASE-size and LARGE-size
teachers (BERT and RoBERTa) shown in the left part. The right part shows ablation of token-level
and sample-level relations.

(CoLA and SST-2) and 5 sample-pair (MRPC, QQP, MNLI, QNLI and RTE) classification tasks, and
1 regression task (STS-B). Following previous worksSun et al. [2019a], we use the same metrics
as the GLUE benchmark for evaluation. In order to verify the effectiveness and robustness of our
method, we distill teacher models with different architectures, model sizes. Concretely, we consider
encode-based models including BERTBASE, BERTLARGE, RoBERTaBASE and RoBERTaLARGE to
ensure a fair comparison with of a wide range of prior works. Moreover, we also explore the
compression of decoder-based models by employing our distillation method to improve fine-tuning
of DistilGPT2 Wolf et al. [2020], which is rarely investigated in most previous works.

4.2 Implementation Details

The process of distilling pretrained Language Models (LM) generally comprises two stages: task-
agnostic distillation and task-specific distillation. Task-agnostic distillation involves a pre-training
process on a large-scale dataset. However, this stage can be costly and time-consuming, particularly
for scenarios with limited computational resources. In contrast, task-specfic LM distillation proves to
be effective and considerably more economical compared to pre-training. As an increasing number of
pretrained LM models are becoming publicly available through resources such as the HuggingFace
Transformers library Wolf et al. [2020], directly leveraging these models can save substantial time
and computational resources compared to training from scratch. Given these considerations, our
focus in this work is on task-specific knowledge distillation. However, it is important to note that our
method is not limited to task-specific distillation and can be readily applied in task-agnostic scenarios
as well. Specifically, we first fine-tune the pretrained teacher models on a specific task. Following
this, the corresponding student model is initialized with the teacher model using the LayerDropping
method Sajjad et al. [2020]. Subsequently, we perform distillation with FCD. We employ a grid
search algorithm on the development set to tune the hyper-parameters. Specifically, we trained the
student model for 3, 5 and 10 epochs, using a batch size of 32. The learning rates we experimented
included 2e− 5, 1e− 5 and 5e− 6. For the CoLA task, we extended the training steps to 25 epochs.
The parameters α and β from the distillation loss are tuned from {0.1, 0.2, 0.4, 1}, a choice guided
by maintaining the different components of the loss in the same order of magnitude. We adopt a
cosine decay schedule with a warm-up phase of 5 epochs and utilize the AdamW optimizer with a
weight decay of 0.5. The maximum sequence length is set to 64 for single-sample tasks, and 128 for
sequence pair tasks.

4.3 Main Results

We start by comparing our proposed method with several KD baselines, including DistilBERT Sanh
et al. [2019], TinyBERT Jiao et al. [2019], BERT-PKD Sun et al. [2019a], MiniLM Wang et al.
[2020b], MiniLMv2 Wang et al. [2020a]. Similar to previous studies, we distill a 12-layer base
model into a 6-layer student model with only about 60% parameters and 2x inference speedup. In
order to evaluate the impact of knowledge distillation, we also report the results of BERTSMALL6
and RoBERTaSMALL6. These smaller models are obtained using the LayerDropping method Sajjad
et al. [2020], wherein the strategy of dropping the top layer has been demonstrated to be a strong
baseline. Consequently, we drop the top 6 layers of the base model and fine-tune it without using
knowledge distillation. For fair comparisons, we fine-tune the released models and evaluate the result
on the test set of GLUE without resorting to data augmentation strategy Jiao et al. [2019]. The results
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Table 2: Comparison of using different distillation
loss functions.

Method MNLI-m QQP RTE Average

FCD (KL) 83.3 71.2 70.7 75.1
FCD (MSE) 83.6 71.6 71.2 75.5
FCD (Pearson) 83.8 72.0 71.7 75.8

Table 3: Distillation results with different
layer selecting schemes.

Scheme layers MNLI-m CoLA

Top {7,8,9,10,11,12} 82.9 50.7
Uniform {2,4,6,8,10,12} 83.8 52.0
Bottom {1,2,3,4,5,6} 83.3 51.5

from these 6-layer student models are summarized in Table 1. The top group of models denotes the
uncased version of base-size BERT used as the teacher model.Notably, our model outperforms all
compared models by a large margin. Similar trends are observed in the middle group, where base-size
RoBERTa is utilized as the teacher model. Our model surpasses the MiniLMv2 by 0.4% accuracy
on RTE, 0.5% F1 on MRPC, and 0.3% Spearman correlation on STS-B. Furthermore, we conduct
experiments on a decode-base model DistilGPT2. In this setting, we employ the GPT-2 model with
12 layers and 768 hidden size as the teacher model. Noatably, our proposed method outperforms the
original KD method by an average of 1%, , underlining the efficacy of our approach in decoder-based
model. As illustrated in the left part of Figure 3, student models that are distilled from large-size
teacher models achieve further improvements. Moreover, this performance gain increases with the
capacity of teacher models, thereby demonstrating the effectiveness of our proposed method across
different sizes of pretrained Transformer models.

4.4 Ablation Studies

Effect of different components In this study, we introduce two distinct types of relations: token-
level and sample-level relations. To verify the effectiveness of each, we conduct experiments using Lt

and Ls to investigate their respective influences on the student model. As depicted in the right part of
Figure 3, each component within the distillation loss independently contributes to the enhancement of
the final performance. Moreover, a further boost in performance is observed when these components
are combined. We noticed that the performance degradation on SST-2 is more substantial compared
to other tasks without token-level relation. We speculate that the token-level relation is particularly
important for this single sentence binary classification task.

Effect of different distillation loss functions Here, we compare our proposed Pearson Linear
Correlation (PLC) with the Mean Squared Error (MSE) and Kullback–Leibler (KL) divergence,
which are widely-used loss functions. To ensure a fair comparison, we tune the distillation loss
weight for both MSE and KL. The comparative results across three tasks are presented in Table
2, which demonstrates that adopting Feature Correlation Distillation (FCD) with PLC consistently
yields higher performance compared to the FCD combined with MSE and KL. This indicates that
the more flexible Pearson correlation might serve as a more suitable metric for measuring relations
within the FCD.

Effect of different layer selection strategies Apart from the type of knowledge used for distillation,
the selection of layers significantly affects the overall performance of distillation. We study the impact
of three distinct layer selection strategies: uniform, top, and bottom, and compare their respective
performances. Specifically, we utilize BERTBASE as the teacher model and a 6× 768 model as the
student model. The number of selected layers is set to 6. The results are reported in Table 3. For
BERTBASE, using the uniform layer selection strategy yields superior performance compared to the
other strategies. This finding highlights the crucial role of both the head and tail layers of student
models in the distillation process.

5 Conclusion

In this paper, we introduce Feature Correlation Distillation (FCD), a novel and effective method for
distilling large Transformer-based Pretrained Language Models (PLMs). Our approach simultane-
ously models both token-level and sample-level relations derived from the features of the Transformer
block. Moreover, we propose a correlation-based distillation loss to enhance the performance of
the model distillation process. We also provide a theoretical interpretation of our proposed Pearson
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linear correlation formulation, offering a deeper understanding of its underlying operation and impli-
cations. Through extensive experiments on the GLUE tasks, our distilled smaller language models
consistently outperformed existing knowledge distillation methods across a variety of architectures
while significantly reducing both the model size and inference time. With its simplicity and strong
performance, we hope our approach can serve as a solid baseline for future research.
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6 Appendix

6.1 Implementation of FCD

The implementation details of FCD are presented in Figure 4. Utilizing the output features from
both the student and teacher models, denoted as Fs and Ft respectively, our method ensures ease of
implementation.
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Figure 4: The PyTorch implementation of FCD.

6.2 Proofs

Invariance of Pearson’s Correlation under Positive Linear Transformation. Let’s consider
two random variables X and Y . A positive linear transformation on X and Y can be formulated
as X ′ = aX + b and Y ′ = cY + d, where a × c > 0 and b, d are arbitrary constants. Applying
these transformations to the means of X and Y , we derive µX′ = aµX + b and µY ′ = cµY + d. By
substituting the transformed variables and their corresponding means into Equation 6:

ρ′(X,Y ) =

∑
((aXi + b)− (aµX + b))((cYi + d)− (cµY + d))√∑

((aXi + b)− (aµX + b))2
√∑

((cYi + d)− (cµY + d))2

=

∑
(a(Xi − µX))(c(Yi − µY ))

(a
√∑

(Xi − µX)2)(a
√∑

(Yi − µY )2)
= ρ(X,Y )

(14)

Relationship among PLC, KL divergence and MSE In Equation 11, ϕ(·) represents the softmax
function, while τ denotes a temperature parameter controlling the softness of the distributions.

∂ LKL

∂F̂ i
S

= τ (ϕs(τ)− ϕt(τ)) = τ

(
exp(F̂ i

S/τ)∑m
j=1 exp(F̂ j

S/τ)
− exp(F̂ i

T /τ)∑m
j=1 exp(F̂ j

T /τ)

)
, (15)

Assuming τ is significantly large compared to the magnitude of the normalized features and both
F̂ i

S and F̂ i
T are drawn from a standard normal distribution. In this case, the term F̂ i/τ becomes

quite small, allowing us to approximate exp(F̂ i/τ) as 1 + F̂ i/τ . This simplification leads to an
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(a) (b) (c) (d)

Figure 5: Visualization of the token-level relational features under different normalization functions.
(a) Pre-Norm. (b) ℓ2-Norm. (c) Layer-Norm. (d) Softmax-Norm.

approximation of the gradient in Equation 15:

∂LKL

∂F̂ i
S

≈ τ

(
1 + F̂ i

S/τ

M +
∑

j=1 F̂
j
S/τ

− 1 + F̂ i
T /τ

M +
∑

j F̂
j
T /τ

)
(16)

Given that the sums
∑

j F̂
j
S and

∑
j F̂

j
T are both zero, Equation 16 simplifies further to:

∂LKL

∂F̂ i
S

=
1

M
(F̂S − F̂T ) =

∂LMSE

∂F̂ i
S

(17)

Moreover, considering 1
m−1

∑
i F̂2

S = 1 and 1
m−1

∑
i F̂2

T = 1, we can reformulate the MSE as
follows:

LMSE(F̂S , F̂T ) =
1

2M

∑
(F̂S − F̂T )

2

=
1

2M

(
(2M − 2)− 2

m∑
i=1

F̂SF̂T

)

=
2M − 2

2M
(1− ρ(FS ,FT )) ≈ LPLC(FS ,FT )

(18)

Thus, we demonstrate that minimizing KL divergence between normalized features under a high-
temperature limit is equivalent to minimizing the MSE between normalized ones, which is in turn
equivalent to maximizing the PLC between the original features.

6.3 More Experiments Results

Effect of different Normalization and Loss Functions Section 3.4 in the main text clarifies
the intrinsic relationship between KL divergence, MSE, and PLC. However, the assumption that
normalized features follow a Gaussian distribution may not invariably be valid. To investigate the
performance of varying normalization and loss functions, we conducted a series of experiments,
setting the temperature τ to 10 when utilizing KL divergence as the loss function. Table 4 demonstrates
that the ℓ2 norm consistently outperforms other normalization functions. Minimizing KL divergence
between layer-normalized features in the high-temperature limit can yield results comparable to MSE
and PLC. To further underscore the benefits of ℓ2 normalization, we provide a visualization of the
pre-normalized and post-normalized token-level relational features in Figure 5. In contrast to ℓ2
normalization, other functions often produce a wider range with larger values, suggesting that directly
imitating these normalized features could introduce significant noise, potentially leading to subpar
results.

Results on SQuAD v1.1 and v2.0. To further demonstrate FCD’s effectiveness, we applied it to the
question-answering tasks of SQuAD v1.1 Rajpurkar et al. [2016] and SQuAD v2.0 Rajpurkar et al.
[2018]. We framed these tasks as sequence labeling problems, predicting the likelihood of each token
being the start or end of an answer span. We employed the F1 metric for both versions of SQuAD.
BERTBASE was used as the teacher model, and a 6 × 768 model served as the student model. The
results, presented in Table 5, indicate that FCD can enhance the student model’s performance on both
tasks.
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Table 4: Results of the loss function combined with different normalization mechanism.

Scheme MNLI-m QQP CoLA Average

LayerNorm + KL 83.4 71.5 51.4 68.8
LayerNorm + MSE 83.6 71.8 51.5 69.0
PreNorm + PLC 83.3 71.2 51.7 68.7
Softmax + PLC 83.4 71.7 51.5 68.9
ℓ2 + PLC 83.8 72.0 52.0 69.3

Table 5: Results of baselines and FCD on question answering tasks.

Method SQuAD 1.1 SQuAD 2.0

BERTBASE 88.7 78.8
DistilBERT6 86.2 69.5
TinyBERT6 87.5 77.7
Ours 88.2 78.4

6.4 Discussion

Limitations. While FCD demonstrates consistent performance improvements across diverse
Transformer-based models, its effectiveness may be less pronounced on other architectures such as
Recurrent Neural Networks (RNNs). The feature relationships in RNNs are not as explicit as in
Transformers, potentially limiting the applicability and impact of FCD.

Societal impacts. The extensive computational resources required to evaluate our proposed method
could significantly contribute to carbon emissions, thereby raising sustainability concerns. However,
the objective of our approach is to enhance the efficiency of lightweight models through knowledge
distillation. This enhancement could ultimately replace heavier models in production settings,
resulting in substantial energy savings. Thus, the thorough validation of FCD’s efficacy is a necessary
trade-off to ensure its potential benefits.
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