
A Additional Literature review

Minimax learning. Minimax learning (also known as adversarial learning) has been widely applied
to a large variety of problems ranging from instrumental variable estimation [BKS19, DLMS20]
to policy learning/evaluation in contextual bandits/MDPs [HW17, CNS18, FS19, FLL19, LLTZ18,
CNSS20, UIJ+21]. For example, in OPE problems with fully-observable environments, minimax
learning methods have been developed to learn q-functions and marginal ratios that are characterized
as solutions to certain conditional moment equations [UHJ20]. The solutions to these conditional
moment equations are uniquely defined. On the other hand, our case is more challenging since the
solutions to conditional moment equations are not uniquely defined. Although the solutions are
not uniquely defined and hence cannot be identified, our estimands, i.e., policy values, can be still
identified. This requires significantly distinctive analysis, which is not seen in standard IV settings or
MDP settings.

B Comparison to Analogue of Future-dependent Value Functions

Analogs of our future-dependent value functions have been introduced in confounded contextual
bandits and confounded POMDPs as bridge functions [MGT18, CPS+20, TSM20, SUHJ22, BK21].
These works consider confounded settings where actions depend on unobserved states and introduce
bridge functions to deal with confounding. Instead, we introduce future-dependent value functions
to deal with the curse of the horizon while there is no confounding issue. Existing definitions of
bridge functions in confounded POMDPs do not work in standard POMDPs. In the definition of
existing bridge functions, behavior policies cannot depend on observations O since observations O
are used as so-called negative controls, which do not affect action A and are not affected by action
A. In our setting, O does not serve as negative controls unlike their works since A clearly depends
on O. Instead, O just play a role in covariates. See Figure 3. Due to this fact, we can further add
F as input domains of future-dependent value functions, unlike bridge functions by regarding F
as just covariates. This is impossible in the definition of existing bridge functions without further
assumptions as mentioned in [NJ21]. In this sense, our setting does not fall into the category of the
so-called proximal causal inference framework. At the same time, our definition does not work in
these confounded settings since Definition 2 explicitly includes behavior policies.

We finally remark the observation that history can serve as an instrumental variable in POMDPs is
mentioned in [HDG15, VSH+16]. However, they did not propose future-dependent value functions;
their goal is to learn system dynamics.

C Off-Policy Evaluation for Memory-Based Policies

So far, we have discussed how to evaluate memoryless policies to simplify the notation. In this
section, we will now turn our attention to the evaluation of memory-based policies.

C.1 Settings

We consider M -memory policies π : Z × O → ∆(A) that are functions of the current ob-
servation Ot and past observation-action pairs at time point t, t − 1, · · · , tM denoted by Zt =
(Ot−M :t−1, At−M :t−1) ∈ Z = OM ×AM , for some integer M > 1. We assume the existence of M
observation pairs obtained prior to the initial time point (denoted by Z0). Following an M -memory
policy π, the data generating process can be described as follows. First, Z0 and S0 are generated
according to some initial distribution νS̄ ∈ ∆(S̄) where S̄ = Z × S. Next, the agent observes
O0 ∼ O(· | S0), executes the initial action A0 ∼ π(· | Z0, O0), receives a reward r(S0, A0), the
environment transits to the next state S1 ∼ T(· | S0, A0), and this process repeats. See Figure 4 for a
graphical illustration of the data-generating process. We assume that both the behavior and evaluation
policies are M -memory.

Our goal is to estimate a policy value J(πe) for an M -meory evaluation policy πe. Toward this end,
we define a state-value function under πe:

V πe

(z, s) := Eπe [

∞∑
k=0

γkRk | Z0 = z, S0 = s]
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Figure 3: Comparisons of three DAGs. \\ means no arrows. For simplicity, we consider the case with
γ = 0, i.e., we do not need the next transitions. The first graph is a graph used in [CPS+20]. Note
H,B,X are an action negative control, a reward negative control, and a covariate, respectively. We
need (H,A) ⊥ B | S,X and H ⊥ Y | S,X,A. The graph is one instance satisfying this condition.
The second graph corresponds to the contextual bandit version (γ = 0) of our setting. Future proxies
F just serve as a covariate and H serves as an action negative control. There are no nodes that
correspond to reward negative controls. The third graph corresponds to the contextual bandit version
(γ = 0) of confounded POMDPs [TSM20, SUHJ22, BK21]. A node O corresponds to a reward
negative control, and H corresponds to an action negative control that satisfies (H,A) ⊥ O | S.
Thus, O cannot include futures proxies (F ) since then we cannot ensure (H,A) ⊥ F | S since there
is an arrow from A to F .
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Figure 4: POMDPs when M = 2. Note S0, O0, A0, R0 correspond to (S,O,A,R), respectively, and
(O−2, A−2, O−1, A−1) = Z0. We cannot observe S in the offline data.

for any z ∈ Z, s ∈ S. Compared to the memory-less case, the input additionally includes z. Let
S̄t = (Zt, St), and dπ

e

t (·) be the marginal distribution of S̄t under the policy πe.

Next, we explain how the offline data is collected when behavior policies are M -memory. Specif-
ically, the dataset Dtra consists of n data tuples {(H(i), O(i), A(i), R(i), F ′(i))}Ni=1. We use
(H,O,A,R, F ′) to denote a generic history-observation-action-reward-future tuple where H denotes
the MH -step historical observations obtained prior to the observation O and F ′ denotes the MF -step
future observations after (O,A) for some integers MH > M and MF ≥ 1. Hence, given some time
step t in the trajectory data, we set (O,A,R) = (Ot, At, Rt),

H = (O−MH :t−1, A−MH :t−1) and F ′ = (Ot+1:t+MF
, At+1:t+MF−1).

We additionally set F = (Ot:t+MF−1, At:t+MF−2). We use the prime symbol ’ to represent the next
time step. Then, Z ′ = (Ot−M+1:t.At−M+1:t). See Figure 5 for details when we set t = 0.

Throughout this paper, uppercase letters such as (H,S,O,A,R, S′, F ′) are reserved for random
variables and lower case letters such as (h, s, o, a, r, s′, f ′) are reserved for their realizations. For
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Figure 5: Case with MH = 3,M = 2,MF = 2. A 2-memory policy determines action A based on
(Z,O).

Algorithm 2 Minimax OPE on POMDPs

Require: Dataset D, function classes Q ⊂ [F̄ → R],Ξ ⊂ [H → R], hyperparameter λ ≥ 0

1: b̂V = argminq∈Q maxξ∈Ξ ED[{µ(Z,A,O){R+ γq(F̄ ′)} − q(F̄ )}ξ(H)− λξ2(H)].

2: return ĴVM = EDini
[b̂V (f̄)]

simplicity, we impose the stationarity assumption, i.e., the marginal distributions of (H,S, F ) and
(H ′, S′, F ′) are the same.

The dataset Dini consists of N ′ data tuples {Z(i)
0 , O

(i)
0:MF−1, A

(i)
0:MF−1}N

′

i=1 which is generated as
follows: S̄0 ∼ νS̄ , O0 ∼ O(· | S0), A0 ∼ πb(· | Z0, O0), S1 ∼ T(· | S0, A0), · · · , until we observe
O

(i)
MF−1 and A

(i)
MF−1. We denote its distribution over F̄ = Z × F by νF̄ (·).

Notation. We denote the domain of Z by Z = OM ×AM . We define S̄ = (Z, S), F̄ = (Z,F ).

C.2 Required changes in Section 3

Every definition and statement holds by replacing F, S, F ′,F ,S with F̄ , S̄, F̄ ′, F̄ , S̄, respectively.
For completeness, we show these definitions and theorems tailored to M -memory policies.

Definition 4 (Future-dependent value functions). Future-dependent value functions gV ∈ [F̄ → R]
are defined such that the following holds almost surely,

E[gV (F̄ ) | S̄] = V πe

(S̄).

Definition 5 (Learnable future-dependent value functions). Define µ(Z,O,A) := πe(A |
Z,O)/πb(A | Z,O). Learnable future-dependent value functions bV ∈ [F̄ → R] are defined
such that the following holds almost surely,

0 = E
[
µ(Z,O,A){R+ γbV (F̄

′)} − bV (F̄ ) | H
]
. (10)

We denote the set of solutions by BV .

Theorem 4 (Identification Theorem). Suppose (a) the existence of learnable future-dependent value
functions (need not be unique); (b) the invertiblity condition, i.e., any g : S̄ → R that satisfies
E[g(S̄) | H] = 0 must also satisfy g(S̄) = 0 (i.e., g(s̄) = 0 for almost every s̄ that belongs to the
support of S̄), (c) the overlap condition wπe(S̄) <∞, µ(Z,O,A) <∞. Then, for any bV ∈ BV , we
have

J(πe) = Ef̄∼νF̄
[bV (f̄)]. (11)

C.3 Required changes in Section 4

Every algorithm holds by replacing F, S, F ′,F ,S with F̄ , S̄, F̄ ′, F̄ , S̄, respectively. For complete-
ness, we show the modified version of Algorithm 1 in Algorithm 2.
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C.4 Required change in Section 5

We present the modified version of Theorem 3 tailored to M -memory policies.
Definition 6 (Bellman operators). The Bellman residual operator onto the history is defined as

T : [F̄ → R] ∋ q(·) 7→ E[µ(Z,O,A){R+ γq(F̄ ′)} − q(F̄ ) | H = ·],

and the Bellman residual error onto the history is defined as E[(T q)2(H)]. Similarly, the Bellman
residual operator onto the latent state, T S is defined as

T S : [F̄ → R] ∋ q(·) 7→ E[µ(Z,O,A){R+ γq(F̄ ′)} − q(F̄ ) | S̄ = ·],

and the Bellman residual error onto the latent state is defined as E[{T S(q)}2(S̄)].
Theorem 5 (Finite sample property of b̂V ). Set λ > 0. Suppose (5a) BV ∩Q ̸= 0 (realizability) and
(5b) T Q ⊂ Ξ (Bellman completeness). With probability 1− δ,

E[{T b̂V }2(H)] ≤ c{1/λ+ λ}max(1, CQ, CΞ)

√
ln(|Q||Ξ|c/δ)

n
,

where c is some universal constant.
Theorem 6 (Finite sample property of ĴVM). Set λ > 0. Suppose (5a), (5b), (5c) any element
in q ∈ Q that satisfies E[{T S(q)}(S̄) | H] = 0 also satisfies T S(q)(S̄) = 0. (5d) the overlap
µ(Z,O,A) <∞ and any element in q ∈ Q that satisfies T S(q)(S̄) = 0 also satisfies T S(q)(S̄⋄) =
0 where S̄⋄ ∼ dπe(s̄). With probability 1− δ, we have

|J(πe)− ĴVM| ≤ c(1− γ)−2(1/λ+ λ)max(1, CQ, CΞ)IV1(Q)DrQ[dπe , Pπb ]

√
ln(|Q||Ξ|c/δ)

n
,

(12)

where

IV2
1(Q) := sup

{q∈Q;E[{T (q)(H)}2 ]̸=0}

E[{T S(q)(S̄)}2]
E[{T (q)(H)}2]

, (13)

Dr2Q[dπe , Pπb ] := sup
{q∈Q;Es̄∼P

πb
[{T S(q)(s̄)}2] ̸=0}

Es∼dπe [{T S(q)(s̄)}2]
Es̄∼P

πb
[{T S(q)(s̄)}2]

. (14)

D Examples

D.1 Tabular POMDPs

We have seen that in Lemma 2, rank(Prπb(Sb,H)) = |Sb| and rank(Prπb(F | Sb)) = |Sb| are
sufficient conditions for the identification in the tabular setting. The following theorem show that the
abovementioned two conditions are equivalent to rank(Prπb(F,H)) = |Sb|.
Lemma 3. rank(Prπb(Sb,H)) = |Sb| and rank(Prπb(F | Sb)) = |Sb| holds if and only if
rank(Prπb(F,H)) = |Sb|.

We again make a few remarks. First, rank(Prπb(F,H)) = |S| is often imposed to model HMMs
and POMDPs [HKZ12, BSG11]. Here, our condition rank(Prπb(F,H)) = |Sb| is weaker than this
assumption. We discuss the connection to the aforementioned works in Section F. Second, in the
literature of online RL, rank(Prπb(F,S)) = |S| is frequently imposed as well [JKKL20, LCSJ22]
although they don’t impose assumptions associated with the history proxy H . In confounded
POMDPs, [NJ21, SUHJ22] imposed a closely-related assumption, namely, rank(Prπb(F,H, a)) =
|S| for any a ∈ A where Prπb(F,H, a) is a matrix whose (i, j)-th element is Prπb(F = xi, H =
x′
j , A = a) (F = {xi},H = {x′

j}).

D.2 HSE-POMDPs and LQGs

In this section, we primarily emphasize the identification results in HSE-POMDPs. Extending these
results to the final sample result is straightforward.
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Refined identification theorem. First, we describe the population version of Theorem 3 as follows.
Theorem 7 (Refined identification theorem ). Suppose (7a) BV ∩ Q ≠ ∅, (7b) any element in
q ∈ Q that satisfies E[{T S(q)}(S) | H] = 0 also satisfies T S(q)(S) = 0. (7c) the overlap
µ(O,A) <∞ and any element in q ∈ Q that satisfies T S(q)(S) = 0 also satisfies T S(q)(S⋄) = 0
where S⋄ ∼ dπe(s). Under the above three conditions, for any bV ∈ BV ∩Q, we have

J(πe) = Ef∼νF [bV (f)].

The proof is deferred to Section L

HSE-POMDPS. By using Theorem 7, we can obtain a useful identification formula when we set
Q,Ξ to be linear models in HSE-POMDPs. We start with the definition.
Example 5 (HSE-POMDPs with linear models). Introduce features ϕF : F → RdF , ϕS : Sb →
RdS , ϕH : H → RdH such that ∥ϕF (·)∥ ≤ 1, ∥ϕS(·)∥ ≤ 1, ∥ϕH(·)∥ ≤ 1. Letting Q and Ξ be
linear models, the existence of future-dependent value functions in Q is ensured as follows under
certain conditions. Then, the existence of learnable future-dependent value functions in Q, (7a) is
automatically satisfied.

Next, we provide sufficient conditions for the realizability (7a).
Lemma 4. Suppose (LM1): E[ϕF (F ) | S] = K1ϕS(S) for some K1 ∈ RdF×dS , (LM2): V πe

(S) is
linear in ϕS(S), i.e., V πe

(S) ∈ {w⊤ϕS(S) : w ∈ RdS , ∥w∥ ≤ CLM} for some CLM ∈ R, (LM3)
for any b ∈ RS such that ∥b∥ ≤ CLM, there exists a ∈ RdF , ∥a∥ ≤ CQ such that a⊤K1ϕS(S) =
b⊤ϕS(S). Then, future-dependent value functions exist and belong to Q = {w⊤ϕF (·) : w ∈
RdF , ∥w∥ ≤ CQ} for some CQ ∈ R.

The condition (LM1) requires the existence of a conditional mean embedding operator between
F and S. This assumption is widely used to model PSRs, which include POMDPs and HMMs
[SHSF09, BGG13]. In addition, assumptions of this type are frequently imposed to model MDPs as
well [ZLKB20, DJW20, CO20, HDL+21]. (LM2) is realizablity on the latent state space. (LM3) says
the information of the latent space is not lost on the observation space. The condition rank(K1) = dS
is a sufficient condition; then, we can take CQ = CLM/σmin(K1). In the tabular case, we set
ϕF , ϕS , ϕH be one-hot encoding vectors over F ,Sb,H, respectively. Here, we remark that S in
ϕS(S) is a random variable in the offline data; thus, ϕS(·) needs to be just defined on the support of
the offline data. Hence, (LM3) is satisfied when rank(Prπb(F | Sb)) = |Sb|.
Next, we see (7b) is satisfied as follows under certain conditions.
Lemma 5. Suppose (LM1), (LM2), (LM4): E[µ(O,A)ϕS(S

′) | S] is linear in ϕS(S) and (LM5):

sup
x∈Rd,x⊤E[E[ϕS(S)|H]E[ϕS(S)|H]⊤]x ̸=0

x⊤E[ϕS(S)ϕS(S)
⊤]x

x⊤E[E[ϕS(S) | H]E[ϕS(S) | H]⊤]x
<∞, (15)

hold. Then, (7b) is satisfied.

Condition (LM4) requires the existence of conditional mean embedding between S′ and S under the
distribution induced by a policy πe. The condition (LM5) is satisfied when rank(Prπb(Sb,H)) = |Sb|
in the tabular setting.

Combining Lemma 4 and Lemma 5 with Theorem 7, we obtain the following handy formula.
Lemma 6 (Formula with linear models in HSE-PODMDPs). Suppose (LM1)-(LM5), (LM6): there
exists a matrix K2 ∈ RdS×dH such that E[ϕS(S) | H] = K2ϕH(H), (LM7): µ(Z,O,A) <∞ and

sup
x∈Rd,0̸=x⊤Es∼P

πb
[ϕS(s)ϕS(s)⊤]x

x⊤Es∼dπe [ϕS(s)ϕS(s)
⊤]x

x⊤Es∼P
πb
[ϕS(s)ϕS(s)⊤]x

<∞, (16)

hold. Then, we have

J(πe) = Ef∼νF [ϕF (f)]
⊤E[ϕH(H){ϕF (F )− γµ(O,A)ϕF (F

′)}⊤]+E[µ(O,A)RϕH(H)]. (17)

We imposed two additional assumptions in Lemma 6. (LM6) is used to ensure the Bellman complete-
ness assumption T Q ⊂ Ξ. (LM7) is similar to the overlap condition (7c) in linear models. It is char-
acterized based on a relative condition number whose value is smaller than the density ratio. Similar
assumptions are imposed in offline RL with fully observable MDPs as well [XCJ+21, ZWB21, US21].
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LQG. Finally, we extend our result to the case of LQG.
Example 1 (LQG). Linear Quadratic Gaussian (LQG) falls in the category of HSE-POMDPs.
Suppose

st+1 = Ast +Bat + ϵ1t, rt = −s⊤t Qst − a⊤t Rat, ot = Cst + ϵ2t

where A,B,C,Q,R are matrices that parametrize models and ϵ1t and ϵ2t are Gaussian noises.
Consider a linear evaluation policy πe(at | ot, zt) = I(at = F [ot, z

⊤
t ]⊤) for certain matrix

F . Notice that linear policies are commonly used in LQG since the globally optimal policy is
linear [Ber12]. Then, defining ϕS(s) = (1, {s ⊗ s}⊤)⊤, ϕF (f) = (1, {f ⊗ f}⊤)⊤ and ϕH(h) =
(1, {h⊗ h}⊤)⊤, the following holds.

Lemma 7. In LQG, (LM1),(LM2), (LM4) are satisfied. When C is left-invertible, (LM3) holds.

Thus, what we additionally need to assume is only (LM5), (LM6) and (LM7) in LQG.

E Finite Horizon Off-Policy Evaluation

For completeness, we also consider estimation of JT (πe) = Eπe [
∑T−1

k=0 γkRk] when the horizon is
finite and the system dynamics are nonstationary. We first define value and learnable future-dependent
value functions following Section 3. Let V πe

t (s) = Eπe [
∑∞

k=t γ
k−tRk | St = s] denote the state

value function.
Definition 7 (Future-dependent value functions). For t ∈ [T − 1], future-dependent value functions
{g[t]V }

T−1
t=0 are defined as solutions to

0 = E[g[t]V (F ) | S]− V πe

t (S)

and g
[T ]
V = 0. We denote the set of g[t]V by G[t]V .

Definition 8 (Learnable future-dependent value functions). For t ∈ [T − 1], learnable future-
dependent value functions {b[t]V }

T−1
t=0 are defined as solutions to

E[µ(O,A){R+ γb
[t+1]
V (F ′)} − b

[t]
V (F ) | H]

where b
[T ]
V = 0. We denote the set of b[t]V by B[t]V .

We define the following Bellman operator:

T S,t :

T−1∏
t=0

[F → R] ∋ {qt(·)} 7→ E[µ(O,A){R+ γqt+1(F
′)} − qt(F ) | S = ·] ∈ [S → R].

We again remark that while the conditional expectation of the offline data is not defined on the outside
of Sb (the support of S) above, we just set 0 on the outside of Sb.

Here are the analogs statements of Theorem 7 in the finite horizon setting.
Lemma 8. Future-dependent value functions are learnable future-dependent value functions.

Theorem 8 (Identification for finite horizon OPE). Suppose for any t ∈ [T − 1], (8a) B[t]V ∩Qt ̸= ∅,
(8b) for any q ∈ Qt that satisfies E[{T S,t(q)}(S) | H] = 0 also satisfies {T S,t(q)}(S) = 0,
(8c) overlap µ(O,A) < ∞ and for any q ∈ Qt that satisfies {T S,t(q)}(S) = 0 also satisfies
{T S,t(q)}(S⋄

t ) = 0 where S⋄
t ∼ dπ

e

t (·). Then, for any b
[0]
V ∈ B

[0]
V ∩Q0, we have

JT (π
e) = Ef∼νF [b

[0]
V (f)].

Here, (8a), (8b), (8c) correspond to (7a), (7b), (7c), respectively. Lemma 8 is often useful to ensure
(8a).

In the tabular setting, when we have rank(Prπb
(F,H)) = |Sb|, conditions (a) and (b) are satisfied.

This is the same condition imposed in Example 1. When we use linear models for Qt and Ξt, we
have the following corollary. This is the finite-horizon version of Lemma 6.
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Corollary 1 (Formula with linear models in HSE-POMDPs ). Suppose (LM1), (LM2f) V πe

t (S)
is linear in ϕS(S) for any t ∈ [T − 1], (LM3), (LM4),(LM5), (LM6). Then under the overlap
DrQ(d

πe

t , Pπb) <∞ and µ(O,A) <∞ for any t ∈ [T − 1]. Starting from θT = 0, we recursively
define

θt = E[ϕ⊤
H(H)ϕF (F )]+E[µ(O,A)ϕH(H){R+ γθ⊤t+1ϕF (F

′)}].

Then, JT (πe) = Ef∼νF [θ
⊤
0 ϕF (f)].

Remark 7 (Comparison to SIS). When we have finite samples, the estimator is defined as in
Section 4. Then, we can obtain the finite sample result as in Section 5. In this case, we
can again possibly circumvent the curse of horizon. The error scales with the marginal ratio
maxt∈[T−1] maxs∈S(d

πe

t (s)/Pπb
(s))1/2. Compared to SIS, the finite sample error does not directly

incur the exponential dependence on the horizon.

F Modeling of System Dynamics

We have so far discussed how to estimate cumulative rewards under evaluation policies. In the
literature on POMDPs [SBS+10, BSG11, BGG13, KJS15], we are often interested in learning of
system dynamics. In this section, we discuss how our methods are extended to achieve this goal. We
ignore rewards in this section. We assume policies are memory-less.

F.1 Tabular Setting

Here, let S⋄
0 , O

⋄
0 , A

⋄
0, · · · be random variables under a memory-less evaluation policy πe : O →

∆(A). Following [SBS+10, BSG11, HKZ12], we consider two common estimands:

Prπe(o0, a0, · · · , oT−1, aT−1) := Prπe(O⋄
0 = o0, A

⋄
0 = a0, O

⋄
1 = o1, · · · ), (18)

Prπe(OT | o0, a0, · · · , aT−1) := {Prπe(O⋄
T = xi | O⋄

0 = o0, · · · , A⋄
T−1 = aT−1)}|O|

i=1, (19)

given a sequence o0 ∈ O, · · · , aT−1 ∈ A. Our goal is to estimate (18) and (19) from the offline data.
To simplify the discussion, we first consider the tabular case. If we can model a |O|-dimensional vector
Prπe(o0, · · · , aT−1,OT ) ∈ R|O| where the entry indexed by xi ∈ O is Prπe(o0, · · · , aT−1, xi),
the latter estimand is computed by normalizing a vector, i.e., dividing it over the sum of all elements.
Therefore, we have Prπe(OT | o0, a0, · · · , aT−1) ∝ Prπe(o0, · · · , aT−1,OT ). Hereafter, we
consider modeling Prπe(o0, · · · , aT−1,OT ) instead of Prπe(OT | o0, · · · , aT−1).

To identify estimands without suffering from the curse of horizon, we would like to apply our proposal
in the previous sections. Toward that end, we set rewards as the product of indicator functions

Prπe(o0, a0, · · · , oT−1, aT−1) = E

(
T−1∏
k=0

I(O⋄
t = ot, A

⋄
t = at)

)
.

Since this is a product but not a summation, we cannot directly use our existing results. Nevertheless,
the identification strategy is similar.

We first introduce learnable future-dependent value functions. These are analogs of Definition 2
tailored to the modeling of system dynamics. Let Ξ ⊂ [H → R] and Q ⊂ [F → R]. Below, we fix
o0 ∈ O, · · · , aT−1 ∈ A.
Definition 9 (Learnable future-dependent value functions for modeling dynamics). Learnable future-
dependent value functions {b[t]D }

T−1
t=0 where b

[t]
D : F → R, for joint observational probabilities are

defined as solutions to

0 ≤ t ≤ T − 1;E[b[t]D (F )− I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′) | H] = 0,

E[b[T ]
D (F )− 1 | H] = 0.

We denote the set of solutions b
[t]
D by B[t]D . Learnable future-dependent value functions {b[t]P }

T−1
t=0

where b
[t]
P : F → R|O| for conditional observational probabilities are defined as solutions to

0 ≤ t ≤ T − 1;E[b[t]P (F )− I(O = ot, A = at)µ(O,A)b
[t+1]
P (F ′) | H] = 0|O|,

E[b[T ]
P (F )− ϕO(O) | H] = 0|O|,
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where ϕO(·) is a |O|-dimensional one-hot encoding vector over O and 0|O| is a |O|-dimensional

vector consisting of 0. We denote the set of solutions b[t]P by B[t]P .

Next, we define the Bellman operator.
Definition 10 (Bellman operators for modeling systems).

T S
t :

T−1∏
t=0

[F → R] ∋ {qt(·)} 7→ E[qt(F )− I(O = ot, A = at)µ(O,A)qt+1(F ′) | S = ·] ∈ [S → R].

Following Theorem 7, we can identify estimands. Here, let d̀πt (·) ∈ ∆(S) be a probability density
function of S⋄

t conditional on O⋄
0 = o0, · · · , A⋄

T = aT−1.

Theorem 9 (Identification of joint probabilities). Suppose (9a) B[t]D ∩Qt ̸= ∅, (9b) for any q ∈ Qt

that satisfies E[(T S
t q)(S) | H] = 0 also satisfies (T S

t q)(S) = 0,(9c) for any q ∈ Qt that satisfies
(T S

t q)(S) = 0 also satisfies (T S
t q)(S̀t) = 0 where S̀t ∼ d̀πt (·) and µ(O,A) < ∞. Then, for any

b
[0]
D ∩Q0 ∈ B[0]D , we have

Prπe(o0, a0 · · · , oT−1, aT−1) = Ef∼νF [b
[0]
D (f)].

Theorem 10 (Identification of conditional probabilities). Suppose (10a) B[t]P ∩Qt ̸= ∅, (10b) for any
q ∈ Qt that satisfies E[{T S

t (q)}(S) | H] = 0 also satisfies (T S
t q)(S) = 0, (10c) for any q ∈ Qt

that satisfies (T S
t q)(S) = 0 also satisfies (T S

t q)(S̀t) where S̀t ∼ d̀πt (·) and µ(O,A) < ∞. Then,
for any b

[0]
P ∩Q0 ∈ B[0]P , we have

Prπe(o0, a0 · · · , oT−1, aT−1,OT ) = Ef∼νF [b
[0]
P (f)].

The following corollary is an immediate application of Theorem 9 and Theorem 10.
Corollary 2 (Tabular Models). Let ϕF (·), ϕH(·) be one-hot encoding vectors over F andH, respec-
tively. Suppose rank(Pr(F,H)) = |Sb| and d̀π

e

t (·)/Pπb(·) <∞ for any t ∈ [T − 1] where Pπb(·) is
a pdf of S in the offline data. Then, we have

Prπe(o0, a0, · · · , oT−1, aT−1) = Prπb(H)⊤B+

{
0∏

t=T−1

DtB
+

}
C, (20)

Prπe(OT | o0, a0, · · · , oT−1, aT−1) ∝ Prπb(O,H)B+

{
0∏

t=T−1

DtB
+

}
C, (21)

where B = Prπb(F,H), Dt = E[I(O = ot, A = at)µ(O,A)ϕF (F
′)ϕ⊤

H(H)], C = PrνF (F).

In particular, when behavior policies are uniform policies and evaluation policies are atomic i.e.,
πe
t (a) = I(a = at) for some at and any t, we have Dt = Prπb(O = ot,F

′,H | A = at). In addition,
the rank assumption is reduced to rank(Prπb(F,H)) = |Sb|.

Linear models. Next, we consider cases where Qt,Ξt are linear models as in Example 2. We first
define value functions:

V πe

D,[t](·) = Prπe(O⋄
t = ot, A

⋄
t = at, · · · , O⋄

T = OT , A
⋄
T = aT | S⋄

t = ·),

V πe

P,[t](·) = {Prπe(O⋄
t = ot, A

⋄
t = at, · · · , O⋄

T = xi | S⋄
t = ·)}|O|

i=1.

Then, we can obtain the following formula as in Lemma 6. Here, DrQ(d̀
πe

t , Pπb) is the condition
number in Lemma 6.
Corollary 3 (Formula with linear models in HSE-POMDPs). Suppose (LM1), (LM2D) V πe

D,[t](S)

is linear in ϕS(S), (LM3), (LM4D) E[µ(O,A)I(O = ot, A = at)ϕF (F
′) | S],E[1 | S] is linear in

ϕS(S), (LM5) and (LM6D) DrQ(d̀
πe

t , Pπb) <∞. Then, we have

Prπe(o0, a0, · · · , oT−1, aT−1) = E[ϕH(H)]⊤B+

{
0∏

t=T−1

DtB
+

}
C (22)
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Algorithm 3 Minimax Modeling of Dynamics on POMDPs

Require: Dataset D, function classes Q ⊂ [F → R],Ξ ⊂ [H → R], hyperparameter λ ≥ 0,
Horizon T

1: Set

b̂
[T ]
D = argmin

q∈Q
max
ξ∈Ξ

ED
[
{1− q(F )}ξ(H)− 0.5λξ2(H)

]
.

2: for t = T − 1 do
3:

b̂
[t]
D = argmin

q∈Q
max
ξ∈Ξ

ED

[
{I(O = ot, A = at)µ(O,A)b̂

[t+1]
D (F ′)− q(F )}ξ(H)− 0.5λξ2(H)

]
.

(24)

4: t← t− 1
5: end for
6: return ĴVM = Ef∼νF [b̂

[0]
D (f)]

where

B = E[ϕF (F )ϕH(H)⊤], Dt = E[I(O = ot, A = at)µ(O,A)ϕF (F )ϕH(H)⊤], C = Ef∼νF [ϕF (f)].

Suppose (LM1), (LM2P) V πe

P,[t](·) is linear in ϕS(·), (LM3), (LM4P) E[µ(O,A)I(Ot = ot, At =

at)ϕF (F
′) | S],E[ϕO(O) | S] is linear in ϕS(S), (LM5) and (LM6P) DrQ(d̀

πe

t , Pπb) <∞. Then,

Prπe(OT | o0, a0, · · · , oT−1, aT−1) ∝ E[ϕO(O)ϕ⊤
H(H)]B+

{
0∏

t=T−1

DtB
+

}
C. (23)

When behavior policies are uniform, the formulas in (20) and (22) are essentially the same to those
obtained via spectral learning [HKZ12, BSG11]. We emphasize that (20)–(23) appear to be novel to
the literature since we consider the offline setting.

General function approximation. Finally, we introduce an algorithm to estimate joint probabilities
in the tabular case with general function approximation, summarized in Algorithm 3. The conditional
probabilities can be similarly estimated. We remark that function approximation is extremely useful
in large-scale RL problems.

F.2 Non-Tabular Setting

We have so far focused on the tabular case. In this section, we consider the non-tabular case. Our
goal is to estimate joint probabilities Prπe(o0, a0, · · · , aT−1) in (18) and

Eπe [ϕO(OT ) | o0, a0, · · · , aT−1]

where ϕO : O → R. When ϕO(·) is a one-hot encoding vector, this is equivalent to estimating
Prπe(OT | o0, a0, · · · , aT−1) in (19).

In the non-tabular case, Theorem 9 and Theorem 10 still hold by defining learnable future-dependent
value functions b[t] : F → R as solutions to

E[b[t](F ) | H] = E[µ(O,A)b[t](F ′) | H,O = ot, A = at]Prπb(O = ot, A = at).

where b[t] is either b[t]D or b[t]P . Then, Corollary 3 holds by just replacing Dt with

E[µ(O,A)ϕF (F )ϕ⊤
H(H) | O = ot, A = at]Prπb(O = ot, A = at).

When we have a finite sample of data, we need to perform density estimation for Prπb(O =
ot, A = at). This practically leads to instability of estimators. However, when our goal is just to
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estimate E[ϕO(O) | o0, a0, · · · , aT−1] up to some scaling constant as in [SBS+10], we can ignore
Prπb(O = ot, A = at). Then, we obtain the following formula:

Eπe [ϕO(OT ) | o0, a0, · · · , aT−1] ∝ E[ϕO(O)ϕ⊤
H(H)]B+

{
0∏

t=T−1

E[µ(O,A)ϕF (F )ϕ⊤
H(H) | O = ot, A = at]B

+

}
C.

(25)

This formula is known in HMMs [SBS+10] and in POMDPs [BGG13] where behavior policies are
open-loop.

G Connection with Literature on Spectral Learning

We discuss the connection with previous literature in detail. [SBS+10, HKZ12] consider the modeling
of HMMs with no action. In this case, our task is to model

Pr(o0, · · · , oT−1) := Pr(O0 = o0, · · · , OT−1 = oT−1)

and the predictive distribution:

Pr(OT | o0, · · · , oT−1) := {Pr(OT = xi | O0 = o0, · · · , OT−1 = oT−1)}|O|
i=1.

In the tabular case, the Corollary 2 is reduced to

Pr(o0, · · · , oT−1) = Pr(H)⊤Pr(F,H)+

{
0∏

t=T−1

Pr(O = ot,F
′,H)Pr(F,H)+

}
PrνF (F0),

Pr(OT | o0, · · · , oT−1) ∝ Pr(O,H)Pr(F,H)+

{
0∏

t=T−1

Pr(O = ot,F
′,H)Pr(F,H)+

}
PrνF (F0).

This formula is reduced to the one in [HKZ12] when F = H and Pr(H) = PrνF (F0) (stationarity).
Here, the offline data consists of three random variables {O−1, O0, O1}. In this case, the above
formulae are

Pr(o0, · · · , oT−1) = Pr(O−1)
⊤Pr(O0,O−1)

+

{
0∏

t=T−1

Pr(O0 = ot,O1,O−1)Pr(O0,O−1)
+

}
Pr(O−1),

Pr(OT | o0, · · · , oT−1) ∝ Pr(O0,O−1)Pr(O0,O−1)
+

{
0∏

t=T−1

Pr(O0 = ot,O1,O−1)Pr(O0,O−1)
+

}
Pr(O−1).

Next, we consider the case when we use linear models to estimate
E[ϕO(OT ) | o0, · · · , oT−1]

up to some constant scaling. When there are no actions, the formula (25) reduces to
E[ϕO(O)ϕ⊤

H(H)]E[ϕF (F )ϕ⊤
H(H)]+

{∏0
t=T−1 E[ϕF (F ′)ϕ⊤

H(H) | O = ot]E[ϕF (F )ϕ⊤
H(H)]+

}
Ef∼νF [ϕF (f)].

When F = H, the pdf of O−1 is the same as νF (·) and the offline data consists of three random
variables {O−1, O0, O1}, the above is reduced to the one in [SBS+10] as follows:
E[ϕO(O0)ϕ

⊤
O(O−1)]E[ϕO(O0)ϕ

⊤
O(O−1)]

+
{∏0

t=T−1 E[ϕO(O1)ϕ
⊤
O(O−1) | O0 = ot]E[ϕO(O0)ϕ

⊤
O(O−1)]

+
}
E[ϕO(O−1)].

H Omitted Experiment Details and Additional Results

This section provides additional implementation details and ablation results of the synthetic experi-
ment.

H.1 Sequential Importance Sampling (SIS)

We compare SIS [Pre00] as a baseline estimator. SIS is a non-parametric approach, which corrects
the distribution shift between the behavior and evaluation policies by applying importance sampling
as follows.

ĴSIS(π
e;D) := ED

[ ∞∑
t=1

γt−1

(
t∏

t′=1

πe(Ot′ |At′)

πb(Ot′ |At′)

)
Rt

]
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SIS enables unbiased estimation when absolute continuity (i.e., ∀(O,A) ∈ O ×A, πe(O|A) > 0→
πb(O|A) > 0) holds. However, as the importance weight grows exponentially as t becomes large,
SIS suffers from high variance [LLTZ18, UHJ20, SUHJ22]. We also empirically verify that SIS
incurs high estimation error due to variance in the experimental results.

H.2 Evaluation Metrics

We use the same evaluation metrics with [SUHJ22]. Given the i.i.d. dataset D1,D2, · · · ,Dm, the
values estimated on them Ĵ1, Ĵ2, · · · , Ĵm, and the true value Jπe

, we define the relative bias and
relative MSE as follows:

Bias(Ĵ ;D, π) :=

∣∣∣∣∣∣ 1m
m∑
j=1

(
Ĵi − Jπe

Jπe

)∣∣∣∣∣∣ , MSE(Ĵ ;D, π) := 1

m

m∑
j=1

(
Ĵi − Jπe

Jπe

)2

We use the above metrics to compare the performance of SIS, the naive baseline, and our proposal.

H.3 CartPole Setting

Environment. Here, we describe the state, action, and reward settings of the CartPole environment.
First, the 4-dimensional states of CartPole represent the position and velocity of the cart and the
angle and angle velocity of the pole. The action space is {0, 1}, either pushing the cart to the left or
right. To better distinguish the values among different policies, we used modified reward following
[SUHJ22]. Specifically, we define the reward as

R =
1

2

(∣∣∣∣2.0− x

xclip

∣∣∣∣ · ∣∣∣∣2.0− θ

θclip

∣∣∣∣− 1.0

)
,

where x and θ are the positions of Cart and angle of Pole. xclip and θclip are the thresholds such
that the episode will terminate when either |x| ≥ xclip or |θ| ≥ θclip. Under this definition, we
observe a larger reward when the cart is closer to the center, and the pole stands straight. We also set
the discount factor γ = 0.95, and the values of the policies used in our experiment are somewhere
between 20 and 40.

Estimator Implementation. We parametrize the value function bv(·) of our proposal and the naive
estimator with a two-layer neural network. The network uses a 100-dimensional hidden layer with
ReLU as its activation function, and Adam [KB14] is its optimizer. Both the naive estimator and
our proposal optimize bv(·) with the loss function defined in Example 5, but the naive one replaces
F̄ and H with O. Specifically, the naive estimator takes 4-dimensional observation O as input. On
the other side, our proposed estimator additionally inputs the concatenated vector of observation O
and one-hot representation of A for several future steps (i.e., MF ) to consider. The convergence is
based on the test loss evaluated on the test dataset, which is independent of the datasets to train value
functions and estimate the policy value. Specifically, to find a global convergence point, we first
run 20000 epochs with 10 gradient steps per each. Then, we report the results on the epoch which
achieves the minimum loss. The convergence point is usually less than 10000 epochs.

For the adversarial function space Ξ of both methods, we use the following RBF kernel K(xi;x2):

K(x1;x2) := exp

(
−∥x1 − x2∥2

2σ2

)
,

where ∥x1−x2∥2 is the l2-distance between x1 and x2, and σ is a bandwidth hyperparameter. We use
σ = 1.0 in the main text and provide ablation results with varying values of σ in the following section.
Finally, the naive estimator uses O as the input of the kernel. The proposed method first predicts
the latent spaces from the historical observations as Ŝ := fLSTM(H) and then use Ŝ as the input of
the kernel. fLSTM(H) is a bi-directional LSTM [CKPW18] with 10-dimensional hidden dimension.
We train the LSTM with MSE loss in predicting the noisy state (i.e., O) with Adam [KB14] as its
optimizer.

H.4 Additional Rsults

Figure 6 shows the experimental results in the case of using the behavior policy with ϵ = 0.1. The
result suggests that the proposed estimator reduces MSEs of the baseline estimators as observed in
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Figure 6: Logarithms of relative biases (left) and MSEs (right) of the proposed and the baseline
estimators for various values of ϵ, which specify the evaluation policy. The confidence intervals are
obtained through 100 Monte Carlo simulations.

Figure 7: Logarithms of relative biases (left), variances (center), and MSEs (right) of the proposed
estimator with varying lengths of history MH (top) and varying lengths of future steps MF (bottom).
The x-axis corresponds to the varying values of ϵ of the evaluation policy, and the associated
confidence interval is based on 20 simulations.

the ϵ = 0.3 case in the main text. Note that experimental settings other than ϵ of the behavior policy
are the same as those used in Section 6.

H.5 Ablation Results

Here, we provide ablation results with (1) varying choices of F̄ and H , and (2) varying values
of bandwidth hyperparameter σ of RKHSs. We provide the results with 20 random seeds in the
following to conduct comprehensive ablations.

The first set of experiments aims to study how the use of history and future observations help improve
the accuracy of value estimation. For this, we compare our proposed method with varying values
of history length MH and future length MF . Figure 7 (top) shows the result of varying history
lengths MH ∈ {1, 2, 3} with a fixed future length (MF = 0). We observe that the performance of the
proposed method does not change greatly with the choice of history lengths. This result suggests that
1-step history is almost sufficient to identify the latent state in our experimental settings. Next, we
report the results with varying future lengths MF ∈ {0, 1, 2} with a fixed history length (MH = 1) in
Figure 7 (bottom). The result suggests that the increased number of future steps can slightly increase
bias. We attribute this to the increased estimation difficulty of the value function due to the increase
in the dimensionality of inputs. However, we should also note that future observations may help
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Figure 8: Logarithms of relative biases (left), variances (center), and MSEs (right) of the proposed
estimator with varying bandwidth hyperparameter σ of RKHSs. The x-axis corresponds to the varying
values of ϵ of the evaluation policy, and the associated confidence interval is based on 20 simulations.

improve the performance of the proposed method when the history itself is insufficient to identify the
latent state.

The second set of experiments is to see how robust the proposed method is to the choice of hyperpa-
rameter σ. We thus vary the values of σ ∈ [0.1, 0.5, 1.0], and report the result in Figure 8. The result
shows that the estimation accuracy is almost the same between σ = 1.0 and σ = 0.5, suggesting that
the proposed value learning method is robust to the change of bandwidth hyperparameter of RKHSs
to some extent. On the other hand, we observe that a very small value (i.e., σ = 0.1) can increase
the variance of estimation. Therefore, our recommendation is to avoid a (too) small value for the
bandwidth hyperparameter σ.

I Proof of Section 3

We often use

F ′ ⊥ S,O,A | S′ and (H) ⊥ (A,O,R, F ′) | S.
This is easily checked by graphical models Figure 4.

I.1 Proof of Lemma 1

From the Bellman equation, we have

E[µ(O,A){R+ γV πe

(S′)} − V πe

(S) | S] = 0.

Then, from the definition of future-dependent value functions,

E[µ(O,A){R+ γE[gV (F ′) | S′]} − E[gV (F ) | S] | S] = 0.

Here, we use the stationarity assumption to ensure E[gV (F ′) | S′] = V πe

(S′).

Next, by using F ′ ⊥ S,O,A | S′, we have

E[µ(O,A){R+ γgV (F
′)} − gV (F ) | S] = 0. (26)

More specifically,

E[µ(O,A){R+ γgV (F
′)} − gV (F ) | S]

= E[µ(O,A){R+ γE[gV (F ′) | S′, S,O,A,Z]} − E[gV (F ) | S] | S]
(Law of total expectation)

= E[µ(O,A){R+ γE[gV (F ′) | S′]} − E[gV (F ) | S] | S] (Use F ′ ⊥ S,O,A | S′)
= 0.

Hence,

E[µ(O,A){R+ γgV (F
′)} − gV (F ) | H]

= E[E[µ(O,A){R+ γgV (F
′)} − gV (F ) | S,H] | H] (Law of total expectation)

= E[E[µ(O,A){R+ γgV (F
′)} − gV (F ) | S] | H] (Use R,O,A, F ′ ⊥ (H) | S)

= 0. (From (26))

Thus, gV is a learnable future-dependent value function.
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I.2 Proof of Theorem 1

It follows from Theorem 7, which is an improved version of Theorem 1.

I.3 Proof of Lemma 2

The first statement is straightforward noting the equation is equal to solving

x⊤Prπb(F | Sb) = y

for x given y.

The second statement is straightforward noting it is equivalent to

x⊤Prπb(Sb | H) = 0

implies x = 0. This is satisfied when rank(Prπb(Sb,H)) = |Sb|.

J Proof of Section 5

J.1 Proof of Theorem 2 and Theorem 3

By simple algebra, the estimator is written as

b̂V = inf
q∈Q

sup
ξ∈Ξ

ED[(Zf)2 − {Zf − λξ(H)}2]

where

Zf = µ(A,O){R+ γq(F ′)} − q(F ).

Noting this form similarly appears in the proof of [SUHJ22, Theorem 3], the following is similarly
completed by [SUHJ22, Theorem 3]:

E[{T (b̂V )}2(H)]1/2 = Õ

(
max(1, CQ, CΞ) (1/λ+ λ)

√
ln(|G||Ξ|/δ)

n

)
.

using realizability and the Bellman completeness. Then, we have

(J(πe)− Ef∼νF [b̂V (f)])
2

=
{
(1− γ)−1E(s̃)∼dπe [E[µ(A,O)R | S = s̃]]− Ef∼νF [b̂V (f)]

}2

=
{
(1− γ)−1E(s̃)∼dπe

[
E
[
µ(A,O){R+ γb̂V (F

′)} − b̂V (F ) | S = s̃
]]}2

(Use Lemma 9)

≤ (1− γ)−2E[{T S(b̂V )}2s] (Jensen’s inequality)

≤ (1− γ)−2E[{T (b̂V )}2(H)]× sup
q∈Q

Es∼dπe [(T Sq)2s]

E[(T q)2(H)]
.

K Proof of Section C

In this section, most of the proof follows by slightly modifying the proof for memoryless policies.
For completeness, we provide the proof of Theorem 4. As we did in the proof of Theorem 1, we
prove the following stronger statement.

Theorem 11 (Refined identification theorem ). Suppose (7a) BV ∩Q ≠ ∅, (7b) any element in q ∈ Q
that satisfies E[{T S(q)}(S̄) | H] = 0 also satisfies T S(q)(S̄) = 0. (7c) the overlap µ(Z,O,A) <
∞ and any element in q ∈ Q that satisfies T S(q)(S̄) = 0 also satisfies T S(q)(S̄⋄) = 0 where
S⋄ ∼ dπe(s). Under the above three conditions, for any bV ∈ BV ∩Q, we have

J(πe) = Ef̄∼νF̄
[bV (f̄)].
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K.1 Proof of Theorem 11

Note for any bV ∈ BV ∩Q, we have

0 = E [µ(Z,A,O) (R+ γbV (Z
′, F ′))− bV (Z,F ) | H]

= E [E [µ(Z,A,O) (R+ γbV (Z
′, F ′))− bV (Z,F ) | Z, S,H] | H] (Law of total expectation)

= E [E [µ(Z,A,O) (R+ γbV (Z
′, F ′))− bV (Z,F ) | Z, S] | H] .

In the last line, we use (H \ Z) ⊥ (A,O, F ′) | Z, S. From (7b), we have

E[bV (Z,F ) | Z, S] = E [µ(Z,A,O) (R+ γbV (Z
′, F ′)) | Z, S] . (27)

Hence, T S(bV )(S) = 0. Then, from the overlap condition (7c),

T S(bV )(S
⋄) = 0. (28)

Finally, for any bV ∈ BV ∩Q, we have

(J(πe)− Ef̄∼νF̄
[bV (f̄)])

= (1− γ)−1E(s̃)∼dπe

[
E[µ(Z,A,O)R | S̄ = s̃]

]
− Ef̄∼νF̄

[bV (f̄)]

= (1− γ)−1E(s̃)∼dπe

[
E
[
µ(Z,A,O){R+ γbV (Z

′, F ′)} − bV (Z,F ) | S̄ = s̃
]]

(Use Lemma 9)

= 0. (Use T S(S⋄) = 0.)

From the first line to the second line, we use

J(πe) = (1− γ)−1

∫
dπe(z, s)r(s, a)πe(a | z, o)d(z, s)

= (1− γ)−1E(s̃)∼dπe

[
E[µ(Z,A,O)R | S̄ = s̃]

]
.

L Proof of Section D

L.1 Proof of Theorem 7

Note for any bV ∈ BV ∩Q, we have

0 = E [µ(A,O) (R+ γbV (F
′))− bV (F ) | H]

= E [E [µ(A,O) (R+ γbV (F
′))− bV (F ) | S,H] | H] (Law of total expectation)

= E [E [µ(A,O) (R+ γbV (F
′))− bV (F ) | S] | H] .

In the last line, we use (H) ⊥ (A,O, F ′) | S. From (7b), we have

E[bV (F ) | S] = E [µ(A,O) (R+ γbV (F
′)) | S] . (29)

Hence, T S(bV )(S) = 0. Then, from the overlap condition (7c),

T S(bV )(S
⋄) = 0. (30)

Finally, for any bV ∈ BV ∩Q, we have

(J(πe)− Ef∼νF [bV (f)])

= (1− γ)−1E(s̃)∼dπe [E[µ(A,O)R | S = s̃]]− Ef∼νF [bV (f)]

= (1− γ)−1E(s̃)∼dπe [E [µ(A,O){R+ γbV (F
′)} − bV (F ) | S = s̃]] (Use Lemma 9)

= 0. (Use T S(S⋄) = 0.)

From the first line to the second line, we use

J(πe) = (1− γ)−1

∫
dπe(z, s)r(s, a)πe(a | z, o)d(z, s)

= (1− γ)−1E(s̃)∼dπe [E[µ(A,O)R | S = s̃]] .
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L.2 Proof of Lemma 4

From (LM2), there exists w1 such that V πe

(S) = w⊤
1 ϕS(S). Then, from (LM1),

E[w⊤
2 ϕF (F ) | S] = w⊤

2 K1ϕS(S) = w⊤
1 ϕS(S).

From (LM3), the above equation has a solution with respect to w2. This concludes the proof.

L.3 Proof of Lemma 5

From (LM1), (LM4) and the statement of Lemma 4, there exists w4 ∈ RdS such that

E[µ(O,A){R+ γq(F ′)} − q(F ) | S] = w⊤
4 ϕS(S).

for any q(·) = w⊤ϕF (·) ∈ Q. Letting bF (·) = {w⋆}⊤ϕF (·), this is because

E[µ(O,A){R+ γq(F ′)} − q(F ) | S] (31)

= E[µ(O,A){γq(F ′)− γbV (F
′)} − q(F ) + bV (F ) | S] (Statement of Lemma 4)

= E[µ(O,A){γ(w⊤ − {w⋆}⊤)E[ϕF (F
′) | S′]} − (w⊤ − {w⋆}⊤)E[ϕF (F) | S] | S]

= E[µ(O,A){γ(w⊤ − {w⋆}⊤)K1ϕS(S
′)} − (w⊤ − {w⋆}⊤)K1ϕS(S) | S] ((LM1))

= w⊤
4 ϕS(S). ((LM4))

for some w4.

Then, from (LM5), when w⊤
4 E[ϕS(S) | H] = 0, we have w⊤

4 ϕS(S) = 0. This is because first
E[w⊤

4 ϕS(S) | H] = 0 implies E[{E[w⊤
4 ϕS(S) | H]}2] = 0. Then, to make the ratio

sup
w∈Rd

E[{w⊤ϕS(S)}2]
E[{w⊤E[ϕS(S) | H]}2]

finite, we need E[{w⊤
4 ϕS(S)}2] = 0. This implies w⊤

4 ϕS(S) = 0.

Here, when we have

0 = E[E[µ(O,A){R+ γq(F ′)} − q(F ) | S] | H]

= E[w⊤
4 ϕS(S) | H], (Just plug-in)

we get w⊤
4 ϕS(S) = 0, i.e.,

E[µ(O,A){R+ γq(F ′)} − q(F ) | S] = 0.

L.4 Proof of Lemma 6

Letting

w̃ = E[ϕH(H){γϕF (F
′)− ϕF (F )}]+E[µ(O,A)RϕH(H)],

we want to prove w̃⊤ϕF (·) is a learnable future-dependent value function. Then, by invoking
Theorem 7, the statement is proved.

First step. Here, for q ∈ Q, we have (T q)(H) = a⊤ϕH(H) for some vector a ∈ RdH . Here,
E[(T q)2(H)] = 0 is equivalent to (T q)(H) = 0. Besides, the condition E[(T q)2(H)] = 0 is
equivalent to

a⊤E[ϕH(H)ϕ⊤
H(H)]a = 0.

Thus, E[(T q)(H)ϕ⊤
H(H)] = a⊤E[ϕH(H)ϕ⊤

H(H)] = 0, where 0 ∈ RdH is a vector consisting of 0,
is a sufficient condition to satisfy (T q)(H) = 0. Hence, if q(·) = w⊤ϕF (·) ∈ Q satisfies

E[ϕH(H){µ(O,A){R+ γq(F ′)} − q(F )}] = 0, (32)

q(·) is a learnable bridge function. Note the above equation is equal to

E[ϕH(H){γµ(O,A)ϕF (F
′)− ϕF (F )}⊤]w = E[µ(O,A)RϕH(H)].

Vice versa, i.e., any learnable future-dependent value function satisfies the above (32) is similarly
proved.
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Second step. Since there exists a linear learnable future-dependent value function in Q from
Lemma 4, we have a solution to

E[ϕH(H){γµ(O,A)ϕF (F
′)− ϕF (F )}⊤]w = E[µ(O,A)RϕH(H)]

with respect to w. We denote it by w. Thus, w̃ is also a solution since

Bw̃ = BB+Bw = Bw = E[µ(O,A)RϕH(H)]

where B = E[ϕH(H){γϕF (F
′)− ϕF (F )}⊤]. We use B = BB+B. Note w̃ and w can be different.

L.5 Proof of Lemma 7

Refer to [USL+22, Chapter J].

M Proof of Section E

M.1 Proof of Theorem 8

Take b
[t]
V ∈ B

[t]
V ∩Qt. Then, we have

E[µ(O,A){R+ γb
[t+1]
V (F ′)} − b

[t]
V (F ) | H] = 0.

Here, this implies

E[E[µ(O,A){R+ γb
[t+1]
V (F ′)} − b

[t]
V (F ) | S] | H] = 0

using H ⊥ (A,O,R, F ′) | S.

Then, from the we have T S
t (bV )(S) = 0, i.e.,

E[µ(O,A){R+ γb
[t+1]
V (F ′)} − b

[t]
V (F ) | S] = 0.

using the assumption (b). Next, from the overlap assumption (c), we have {T S,t(bV )}(S⋄
t ) = 0

where S⋄
t ∼ dπ

e

t (·).
Therefore, we have

J(πe)− Ef∼νF [b
[0]
V (f)]

=

(
T−1∑
t=0

Es∼dπ
e

t
[γtE[µ(O,A)R | S = s]

)
+

(
T−1∑
t=0

γtEs∼dπ
e

t+1
[E[b[t+1]

V (F ) | S = s]]− Es∼dπ
e

t
[E[b[t]V (F ) | S = s]]

)
(Telescoping sum)

from telescoping sum. Besides, we have

Es∼dπe
t+1

[E[b[t+1]
V (F ) | S = s]]

= Es∼dπe
t
[E[µ(O,A)E[b[t+1]

V (F ) | S′] | S = s]]

= Es∼dπe
t
[E[µ(O,A)E[b[t+1]

V (F ) | S′, O,A] | S = s]] (F ⊥ (O,A) \ S′ | S′)

= Es∼dπe
t
[E[µ(O,A)b

[t+1]
V (F ) | S = s]]. (Total law of expectation)

Therefore,

J(πe)− Ef∼νF [b
[0]
V (f)]

=

(
T−1∑
t=0

Es∼dπe
t
[γtE[µ(O,A)R | S = s]

)
+

(
T−1∑
t=0

γtEs∼dπe
t
[E[γµ(O,A)b

[t+1]
V (F ′)− b

[t]
V (F ) | S = s]]

)

=

T−1∑
t=0

γtEs∼dπe
t
[E[µ(O,A){R+ γb

[t+1]
V (F ′)} − b

[t]
V (F ) | S = s]]

=

T−1∑
t=0

Es∼dπe
t
[T S

t s]

= 0. (Recall we derive {T S,t(bV )}(S⋄
t ) = 0.)
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M.2 Proof of Corollary 1

The proof consists of three steps. We use Theorem 8.

First step: verify existence of learnable future-dependent value functions (Show (8a)). From
(LM1), we need to find a solution to

w⊤
1 E[ϕF (F ) | S] = V πe

t (S)

with respect to a value w1. Then, from (LM2f), there exists w2 and K1 such that

w⊤
1 K1ϕS(S) = w⊤

2 ϕS(S).

Thus, from (LM3), the above has a solution with respect to w1.

Second step: verify invertibility condition (Show (8b)). Take a function q[t](F ) linear in ϕF (F ).
From (LM1), (LM2) and (LM4), there exists w3 ∈ RdS such that

E[µ(O,A){R+ γq[t+1](F ′)− q[t](F )} | S] = w⊤
3 ϕS(S).

This is proved as in (31). Then, w⊤
3 E[ϕS(S) | H] = 0 implies w⊤

3 ϕS(S) = 0 from (LM5). Hence,
when we have

0 = E[E[µ(O,A){R+ γq[t+1](F ′)− q[t](F )} | S] | H]

= E[w⊤
3 ϕS(S) | H],

this implies w⊤
3 ϕS(S) = 0, i.e.,

E[µ(O,A){R+ γq[t+1](F ′)− q[t](F )} | S] = 0.

Third step: show learnable future-dependent value functions are future-dependent value
functions. Take a learnable future-dependent value function bV . Then, from the condition, we have

E[µ(O,A){R+ γb
[t+1]
V (F ′)} − b

[t]
V (F ) | S] = 0.

We want to prove

E[b[t]V (F ) | S] = V πe

t (S).

We use induction. When t = T − 1, this is clear. Next, supposing the statement is true at t+ 1, we
prove it at a horizon t. Here, we have

E[b[t]V (F ) | S] = E[µ(O,A){R+ γb
[t+1]
V (F ′)} | S]

= E[µ(O,A){R+ γE[b[t+1]
V (F ′) | S′]} | S]

= E[µ(O,A){R+ γV πe

t+1(S
′)} | S] = V πe

t (S).

Thus, from induction, we have E[b[t]V (F ) | S] = V πe

t (S) for any t ∈ [T − 1] for any learnable
future-dependent value function bV (·).

Fourth step: show the final formula. Recall we define

θt = E[ϕH(H)ϕF (F )⊤]+E[µ(O,A)ϕH(H){R+ γϕ⊤
F (F

′)θt+1}]

We want to show θ⊤t ϕF (·) is a learnable future-dependent value function. Here, we need to say

E[µ(O,A){R+ γθ⊤t+1ϕF (F
′)} − θ⊤t ϕF (F ) | H] = 0.

This is satisfied if we have

E
(
ϕH(H)

(
µ(O,A){R+ γϕ⊤

F (F
′)θt+1} − ϕ⊤

F (F )θt
))

= 0. (33)

This is because E[µ(O,A){R+ γθ⊤t+1ϕF (F
′)}− θ⊤t ϕF (F ) | H] = w⊤

5 ϕH(H) for some vector w5.
Besides, E[w⊤

5 ϕH(H)ϕH(H)] = 0 implies E[w⊤
5 ϕH(H)ϕH(H)w5] = 0, which results in

w⊤
5 ϕH(H) = 0.
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On top of that, since future-dependent value functions ⟨θ̃t, ϕF (F )⟩ exist from the first statement, we
have a solution:

E
(
ϕH(H)

(
µ(O,A){R+ γϕ⊤

F (F
′)θ̃t+1} − ϕ⊤

F (F )θ̃t

))
= 0.

with respect to θ̃t. In the following, we use this fact.

Now, we go back to the proof of the main statement, i.e., we prove (33). We use the induction. This
is immediately proved when t = T − 1. Here, suppose ϕ⊤

F (·)θt+1 is a learnable future-dependent
value function at t+ 1. Then, we have

E[ϕH(H)ϕF (F )⊤]θt

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[µ(O,A)ϕH(H){R+ γϕ⊤
F (F

′)θt+1}] (Definition)

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[µ(O,A)ϕH(H){R+ γV πe

t+1(S
′)}].

In the last line, we use the inductive hypothesis and the third step. Recall we showed in the previous
step E[b[t]V (F ) | S] = V πe

t (S) for any learnable future-dependent value functions b[t]V (·) . Then, we
have

E[ϕH(H)ϕF (F )⊤]θt

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[µ(O,A)ϕH(H){R+ γV πe

t+1(S
′)}]

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[µ(O,A)ϕH(H){R+ γϕ⊤
F (F

′)θ̃t+1}]
= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[ϕH(H)ϕF (F )⊤]θ̃t

= E[ϕH(H)ϕF (F )⊤]θ̃t (Property of Moore-Penrose Inverse)

= E[µ(O,A)ϕH(H){R+ γϕ⊤
F (F

′)θ̃t+1}] (Definition of θ̃t)

= E[µ(O,A)ϕH(H){R+ γV πe

t+1(S
′)}] (We showed in the previous step)

= E[µ(O,A)ϕH(H){R+ γϕ⊤
F (F

′)θt+1}]. (From the induction)

Hence, ϕ⊤
F (·)θt is a learnable future-dependent value function at t.

N Proof of Section F

N.1 Proof of Theorem 9

We take a value bridge function b
[t]
D ∈ Qt ∩ B[t]D for any [T ]. Then, we define

l
[t]
D (·) = E[b[t]D (F ) | S = ·].

In this section, E[· ;A0:T−1 ∼ πe] means taking expectation when we execute a policy πe from t = 0
to T − 1. Note E[· ;A0:T−1 ∼ πb] is just E[·]. Here, we have

Prπe(o0, a0, · · · , aT−1)− Ef∼νF [b
[0]
D (f)]

=

T−1∑
t=0

E

[{
t−1∏
k=0

I(Ok = ok, Ak = ak)

}{
I(Ot = ot, At = at)l

[t+1]
D (St+1)− l

[t]
D (St)

}
;A0:T−1 ∼ πe

]

=

T−1∑
t=0

E[

{
t−1∏
k=0

I(Ok = ok, Ak = ak)

}
{E[I(Ot = ot, At = at)l

[t+1]
D (St+1) | St, (O0, A0, · · · , At−1) = (o0, a0, · · · , at−1)]

− l
[t]
D (St)};A0:T−1 ∼ πe]

=

T−1∑
t=0

E

[{
t−1∏
k=0

I(Ok = ok, Ak = ak)

}{
E[I(Ot = ot, At = at)l

[t+1]
D (St+1) | St]− l

[t]
D (St)

}
;A0:T−1 ∼ πe

]
.

In the first line, we use a telescoping sum trick noting

Prπe(o0, a0, · · · , aT−1) = E

[
T−1∏
k=0

I(Ok = ok, Ak = ak);A0:T−1 ∼ πe

]
.
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From the second line to the third line, we use St+1, Ot, At ⊥ O1, · · · , At | St.

Here, we have

E[I(Ot = ot, At = at)l
[t+1]
D (St+1) | St;At ∼ πe] = l̃

[t]
D (St)

where l̃
[t+1]
D (·) = E[I(O = ot, A = at)µ(O,A)l

[t+1]
D (S′) | S = ·;At ∼ πb] using importance

sampling. Hence, the following holds:

Prπe(o0, a0, · · · , aT−1)− Ef∼νF [b
[0]
D (f)]

=

T−1∑
t=0

E

[{
t−1∏
k=0

I(Ok = ok, Ak = ak)

}{
l̃
[t+1]
D (St)− l

[t]
D (St)

}
;A0:T−1 ∼ πe

]

=

T−1∑
t=0

E

[{
t−1∏
k=0

I(Ok = ok, Ak = ak)(T S
t bD)(St)

}
;A0:T−1 ∼ πe

]
(34)

=

T−1∑
t=0

E

[{
t−1∏
k=0

I(Ok = ok, Ak = ak)E[(T S
t bD)(St) | (O1, A1, · · · , AK) = (o1, a1, · · · , oK)]

}
;A0:T−1 ∼ πe

]
(35)

From the second line to the third line, we use

E[I(O = ot, A = at)µ(O,A)l
[t+1]
D (S′) | S]

= E[I(O = ot, A = at)µ(O,A)E[b[t+1]
D (F ′) | S′] | S] (Definition)

= E[I(O = ot, A = at)µ(O,A)E[b[t+1]
D (F ′) | S′, O = ot, A = at] | S]

(Low of total expectation)

= E[I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′) | S]. (F ′ ⊥ O,A | S′)

Besides, we know for any learnable bridge function bD, we have

E[I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′)− b

[t]
D (F ) | H] = 0.

Then, since

E[E[I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′)− b

[t]
D (F ) | S] | H] = 0

from the invertibility condition (b), we have

E[I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′)− b

[t]
D (F ) | S] = 0.

From the overlap (c), this implies

(T S
t bD)(S̀t) = 0.

Finally, from (35), we can conclude Prπe(o0, a0, · · · , aT−1)− Ef∼νF [b
[0]
D (f)] = 0.

N.2 Proof of Theorem 10

This is proved as in Theorem 9 noting

Prπe(o0, a0, · · · , aT−1,OT ) = E

[
ϕO(OT )

T−1∏
k=0

I(O⋄
k = ok, A

⋄
k = ak)

]
.

N.3 Proof of Corollary 2

This is proved following Corollary 3.

N.4 Proof of Corollary 3

The proof consists of four steps. The proof largely follows the proof of Corollary 1.
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First step: verify the existence of bridge functions (9a). We show there exists a bridge function
linear in ϕF (F ). We need to find a solution to w⊤

1 E[ϕF (F ) | S] = V πe

D,[t](S) with respect to w1.
Then, from (LM2D), there exists w2 and K1 such that

w⊤
1 K1ϕS(S) = w⊤

2 ϕS(S).

Thus, from (LM3), the above has a solution with respect to w1.

Second step: verify invertibility conditions (9b). We take Qt to be a linear model in ϕF (F ). For
q
[t]
D ∈ Qt, from (LM1), (LM2), (LM4), there exists w3 ∈ RdS such that

E[q[t]D (F )− I(O = ot, A = at)µ(O,A)q
[t+1]
D (F ′) | S] = w⊤

3 ϕS(S).

Then, w⊤
3 E[ϕS(S) | H] = 0 implies w⊤

3 ϕS(S) = 0 from (LM5). Hence,

0 = E[q[t]D (F )− I(O = ot, A = at)µ(O,A)q
[t+1]
D (F ′) | H]

= E[E[q[t]D (F )− I(O = ot, A = at)µ(O,A)q
[t+1]
D (F ′) | S] | H]

implies E[q[t]D (F ) − I(O = ot, A = at)µ(O,A)q
[t+1]
D (F ′) | S] = 0. Thus, the invertibility is

concluded.

Third step: show learnable value bridge functions are value bridge functions. From the
previous discussion, learnable value bridge functions in Q need to satisfy

0 = E[b[t]D (F )− I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′) | S].

Here, we want to prove

E[b[t]D (F ) | S] = V πe

D,[t](S).

We use induction. When t = T − 1, this is clear. Next, supposing the statement is true at t+ 1, we
prove it at horizon t. Here, we have

E[b[t]D (F ) | S] = E[I(O = ot, A = at)µ(O,A)b
[t+1]
D (F ′) | S]

= E[I(O = ot, A = at)µ(O,A)E[b[t+1]
D (F ′) | S′] | S]

= E[I(O = ot, A = at)µ(O,A)V πe

D,[t+1](S
′) | S]

= V πe

D,[t](S).

Fourth step: show the final formula. We recursively define

θ⊤t = θ⊤t+1DtB
+.

starting from w̃⊤
T B = E[ϕH(H)]. We want to show θ⊤t ϕF (·) is a learnable value bridge function.

Here, we want to say

E[θ⊤t ϕF (F )− I(O = ot, A = at)µ(O,A)θ⊤t+1ϕF (F
′) | H] = 0.

This is satisfied if we have
E
[(
θ⊤t ϕF (F )− I(O = ot, A = at)µ(O,A)θ⊤t+1ϕF (F

′)
)
ϕH(H)

]
= 0

Here, refer to the fourth step in the proof of Corollary 1. Besides, as we already show linear value
bridge functions exist ⟨θ̃t, ϕF (·)⟩, we have a solution to:

E
[(

θ̃⊤t ϕF (F )− I(O = ot, A = at)µ(O,A)θ̃⊤t+1ϕF (F
′)
)
ϕH(H)

]
= 0

with respect to θ̃t.

Hereafter, we use the induction. This is immediately proved when t = T − 1. Here, suppose
ϕ⊤
F (F )θt+1 is a learnable value bridge function at t+ 1. Then, we have

E[ϕH(H)ϕF (F )⊤]θt

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+D⊤
t θt+1

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[I(O = Ot, A = at)µ(O,A)ϕH(H)ϕ⊤
F (F

′)θt+1]

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[I(O = Ot, A = at)µ(O,A)ϕH(H)V πe

D,[t+1](S
′)].
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In the last line, we use inductive hypothesis. We showed in the previous step E[b[t]D (F ) | S] =
V πe

D,[t](S) for any learnable value bridge function b
[t]
D (F ). Then, we have

E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[I(O = Ot, A = at)µ(O,A)ϕH(H)V πe

D,[t+1](S
′)]

= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[I(O = Ot, A = at)µ(O,A)ϕH(H){ϕ⊤
F (F

′)θ̃t+1}]
= E[ϕH(H)ϕF (F )⊤]E[ϕH(H)ϕF (F )⊤]+E[ϕH(H)ϕF (F )⊤]θ̃t

= E[ϕH(H)ϕF (F )⊤]θ̃t (Property of Moore-Penrose Inverse)

= E[I(O = Ot, A = at)µ(O,A)ϕH(H)V πe

D,[t+1](S
′)] (We show in the previous step)

= E[I(O = Ot, A = at)µ(O,A)ϕH(H){ϕ⊤
F (F

′)θt+1}]. (From the induction)

So far, we prove θ⊤t ϕF (·) is a learnable value bridge function for t. Finally, by consdiering a time-step
t = 0, we can prove the target estimand is

E[w̃⊤
0 ϕF (F )] = E[ϕH(H)]⊤B+

{
0∏

t=T−1

DtB
+

}
C.

O Auxiliary Lemmas

Lemma 9. Take g ∈ [S → R]. Then, we have

0 = (1− γ)−1Es∼dπe [E[µ(O,A)γg(S′)− g(S) | S = s]] + Es∼νS
[gs].

Proof. Let dπe(z, s) = dπ
e

0 (·). Then, we have∫
g(z, s)dπe(z, s)d(z, s)

= (1− γ)

∫
g(z, s)

∞∑
t=0

γtdπ
e

t (z, s)d(z, s)

= (1− γ)

∫
g(z, s)dπ

e

0 (z, s)d(z, s)︸ ︷︷ ︸
(a)

+ γ(1− γ)

∫
g(z′, s′)

∞∑
t=1

γt−1dπ
e

t (z′, s′)d(z′, s′)︸ ︷︷ ︸
(b)

.

We analyze the first term (a) and the second term (b). The first term (a) is Es∼νS
[gs]. In the following,

we analyze the second term.

Here, note

dπ
e

t (z′, s′) =

∫
T(s′ | s, a)O(o | s)πe(a | z, o)δ†(z′ = z)dπ

e

t−1(z, s)d(z, s).

where δ†(z′ = z) = δ(f−1(z
′) = f+1(z)). Here, f−1 is a transformation removing the most recent

tuple (o, a, r) and f+1 is a transformation removing the oldest tuple (o, a, r). Hence,

(1− γ)

∞∑
t=1

γt−1dπ
e

t (z′, s′)

= (1− γ)

∫ ∞∑
t=1

γt−1T(s′ | s, a)O(o | s)πe(a | z, o)δ†(z′ = z)dπ
e

t−1(z, s)d(z, s)

= (1− γ)

∫ ∞∑
k=0

γkT(s′ | s, a)O(o | s)µ(z, o, a)πb(a | z, o)δ†(z′ = z)dπ
e

k (z, s)d(z, s)

=

∫
T(s′ | s, a)O(o | s)µ(z, o, a)πb(a | z, o)δ†(z′ = z)dπ

e

(z, s)d(z, s).
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Therefore, the term (b) is

γ(1− γ)

∫
g(z′, s′)

∞∑
t=1

γt−1dπ
e

t (z′, s′)d(z′, s′)

= γ

∫
g(z′, s′)T(s′ | s, a)O(o | s)µ(z, o, a)πb(a | z, o)δ†(z′ = z)dπ

e

(z, s)d(z, z′, s, s′)

= γEs∼dπe [E[µ(O,A)γg(S′) | S = s]] .
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