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Abstract

Transfer learning and ensembling are two popular techniques for improving the
performance and robustness of neural networks. Due to the high cost of pre-training,
ensembles of models fine-tuned from a single pre-trained checkpoint are often used
in practice. Such models end up in the same basin of the loss landscape, which
we call the pre-train basin, and thus have limited diversity. In this work, we show
that ensembles trained from a single pre-trained checkpoint may be improved by
better exploring the pre-train basin, however, leaving the basin results in losing
the benefits of transfer learning and in degradation of the ensemble quality. Based
on the analysis of existing exploration methods, we propose a more effective
modification of the Snapshot Ensembles (SSE) for transfer learning setup, StarSSE,
which results in stronger ensembles and uniform model soups.

1 Introduction

Ensembling neural networks by averaging their predictions is one of the standard ways to im-
prove model quality. This technique is known to improve not only the task-specific quality metric,
e. g., accuracy, but also the model calibration (Lakshminarayanan et al., 2017) and robustness to
noise (Gustafsson et al., 2020), domain shift (Ovadia et al., 2019), and adversarial attacks (Strauss
et al., 2017). In practice, the importance of the solution robustness often goes hand in hand with the
scarcity of data and computational resources for training. A popular way to obtain a high-quality
solution for a task with limited data using less computation is transfer learning, which initializes the
training process on the target task with the model checkpoint pre-trained on a large source task.

In this paper, we investigate the effectiveness of neural network ensembling methods in transfer
learning setup since combining the two techniques is a non-trivial problem. The diversity of networks
is crucial for obtaining substantial quality gain with ensembling. Therefore, in classic deep ensembles
(DE by Lakshminarayanan et al. (2017)), networks are trained independently from different random
initializations. However, in the transfer learning setup, networks are not trained from scratch but
are fine-tuned from pre-trained checkpoints. Fine-tuning networks from different independently pre-
trained checkpoints results in a diverse set of models and a high-quality final ensemble but requires a
huge amount of computation due to the large cost of the pre-training process. Fine-tuning networks
from the same pre-trained checkpoint is much more resource-effective; however, the resulting set of
networks are usually located in the same basin of the loss landscape (Neyshabur et al., 2020), are
less diverse, and their ensemble has lower quality (Mustafa et al., 2020). So, the main question of
our paper is the following: can we improve the quality of the ensemble of networks obtained by
fine-tuning from the same pre-trained checkpoint by better exploring the loss landscape of the target
task?
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We focus on the image classification target tasks and consider two types of pre-training: super-
vised (Kornblith et al., 2019) and self-supervised (Grill et al., 2020). First of all, in Section 5.1, we
confirm that in this setup, there is indeed a substantial quality gap between ensembles of models
fine-tuned from the same and different pre-trained checkpoints. Thus, methods aiming at closing this
gap are worth researching. We also show that models fine-tuned from the same pre-trained checkpoint
lay in the same basin of the loss landscape, meaning there is no significant high-loss barrier on the
linear interpolation between them. We refer to this basin as the pre-train basin throughout the paper.

To understand whether the ensemble quality can be improved by better exploring the pre-train basin or
the close vicinity outside of it, we take inspiration from the literature on efficient ensembling methods
in regular non-transfer learning setup. We focus our study on cyclical learning rate methods, such as
Snapshot Ensembling (SSE by Huang et al. (2017)), because they can either explore one basin of the
loss landscape or go outside of the basin depending on the chosen hyperparameters. In Section 5.2,
we show that with accurate hyperparameter tuning, these methods can explore the pre-train basin
and produce ensembles of similar or even higher quality than the independent fine-tuning of several
neural networks. However, they are not able to leave the pre-train basin without losing the advantages
of transfer learning, followed by significant degradation in the quality of individual models and the
whole ensemble. Thus, we conclude that the gap between ensembles of networks fine-tuned from the
same and from different independently pre-trained checkpoints can not be closed by exploring the
loss landscape of the target task using existing methods.

Based on the analysis of the behavior of the standard sequential variant of SSE in Section 5.3, we
propose its parallel variant StarSSE, which is more suitable for exploring the pre-train basin in the
transfer learning setup (see Section 5.4). StarSSE fine-tunes the first model from the pre-trained
checkpoint in a usual way and then trains all the following models, independently initializing them
with the first fine-tuned one. In contrast to the SSE, StarSSE does not move further from the
pre-trained checkpoint with each training cycle; therefore, it does not suffer from the progressive
degradation of individual model quality. Even though StarSSE is technically very similar to the
independent fine-tuning of all the models from the pre-trained checkpoint, it has an important
conceptual difference: it separates 1) model fine-tuning from the pre-train checkpoint to the area with
high-quality solutions for the target task and 2) exploration of this area for obtaining diverse models.
As a result, StarSSE can collect a more diverse set of networks without sacrificing the quality of
individual models.

Finally, we analyze different aspects of SSE and StarSSE that can be important for their practical
application. Firstly, in Section 6, we show that the set of models, collected by SSE or StarSSE in
the pre-train basin, can not only constitute an effective ensemble but also result in a strong uniform
model soup (Wortsman et al., 2022; Rame et al., 2022), i. e., a model obtained by weight-averaging
all models in the set. Then, in Section 7, we study the robustness of the resulting ensembles and
model soups to the test data distribution shifts. Lastly, in Section 8, we confirm that SSE and StarSSE
are effective in more practical large-scale experiments with CLIP model (Radford et al., 2021) on the
ImageNet classification target task (Russakovsky et al., 2015). In all additional experiments, StarSSE
also outperforms the standard SSE.

Our code is available at https://github.com/isadrtdinov/ens-for-transfer.

2 Ensembling methods in regular training

Deep ensemble (DE) is the most common method of neural network ensembling in a regular non-
transfer learning setup. A DE consists of several networks of the same architecture trained separately
from different random initializations using the same training methods and hyperparameters. Training
from different initializations makes neural networks diverse and results in a high-quality ensemble.
However, separate training of all the networks requires a lot of resources. From the loss landscape
perspective, DE can be called a global method: due to diverse initializations, networks in such an
ensemble are independent and come from different basins of low loss (Fort et al., 2019).

To reduce training costs, many methods propose to train the networks jointly or consequentially. Most
of these methods can be assigned to one of two groups based on the degree of coverage of different
loss landscape basins: local and semi-local. Local methods (SWAG by Maddox et al. (2019), SPRO
by Benton et al. (2021), FGE by Garipov et al. (2018), etc.) train the first network and then efficiently
sample other ensemble members from the basin of low loss around it. Semi-local methods (SSE
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by Huang et al. (2017), cSGLD by Zhang et al. (2020), etc.), instead of focusing on one basin, try
to explore a larger portion of the loss landscape by sequentially training networks using a cyclical
learning rate schedule. At the beginning of each cycle, the learning rate is increased to help the
network leave the current low-loss basin, and at the end of the cycle, it is decreased to obtain a
high-quality checkpoint in the next basin to add to the ensemble. Because of the knowledge transfer
between the consecutive models, such methods can use training cycles shorter than usual model
training, which decreases the overall ensemble training cost. In terms of network diversity and the
final ensemble quality, semi-local methods work better than local ones, given the same number of
networks in an ensemble. However, methods from both of these groups are inferior to the global
ones (Ashukha et al., 2020; Fort et al., 2019).

The described categorization of ensembling methods into three groups, local, semi-local, and global,
is not strict. For example, FGE, which is usually assigned to the local group, and SSE, which
is usually assigned to the semi-local group, are both based on cyclical learning rate schedules
and can be used as either local or semi-local methods, depending on the hyperparameters. Also,
local and semi-local methods can be combined with global ones by training several networks from
different random initializations, then sampling some networks locally around each of them, and finally
ensembling all the obtained networks (Fort et al., 2019). Moreover, recent works on loss landscape
analysis hypothesize that two networks trained independently from different random initializations are
effectively located in the same basin up to the neuron permutation (Entezari et al., 2022; Ainsworth
et al., 2023) and activations renormalization (Jordan et al., 2023), which blurs the boundaries between
local and global methods. However, existing local and semi-local methods are not able to find as
diverse networks as the global ones can, so in practice, these groups are still easily distinguishable.

If several networks are located in the same basin of low loss, they can be weight-averaged instead of
ensembling. The Stochastic Weight Averaging technique (SWA by Izmailov et al. (2018)) averages
several checkpoints from one standard training run or models from a local cyclical learning rate
schedule method to improve the model quality and robustness.

3 Scope of the paper: transfer learning perspective

In the transfer learning setup, a DE for the target task can be trained in two ways: using different
separately pre-trained checkpoints to initialize each network or using the same pre-trained checkpoint
for all the networks. In terms of the categorization from the previous section, only the former variant
can be called global because the networks fine-tuned from the same pre-trained checkpoints are
usually located in the same basin of low loss (Neyshabur et al., 2020). Thus, we call the former
variant Global DE while the latter is Local DE. Similarly to the relation between local and global
methods in regular training, in the transfer learning setup, Global DEs contain more diverse networks
and show better quality than Local DEs (Mustafa et al., 2020). At the same time, the difference in
training cost between Local and Global DEs is even more pronounced because the pre-training cost
is usually huge compared to the fine-tuning cost.

One of the goals of our paper is to understand whether the existing local and semi-local ensembling
methods can be beneficial in the transfer learning setup and help close the quality gap between Local
and Global DEs. We focus on the situation when only one pre-trained checkpoint is available, as
in Local DE, and study the effectiveness of cyclical learning rate methods. This group of methods
contains such methods as FGE, SSE, and cSGLD. We choose cyclical methods because they can
work in both local and semi-local regimes and show the strongest results in closing the gap with
global methods in the regular training setup (Ashukha et al., 2020). In Appendix C, we show that in
the transfer learning setup, they are also more effective than other local methods. Cyclical methods
have very similar structure and differ mostly in training scheme for the first network and learning rate
schedules in the cycles. FGE trains the first network with a more standard long schedule, while SSE
and cSGLD use the same schedule in all the cycles. Also, FGE uses short cycles with a triangular
learning rate schedule and low maximum learning rate, while SSE and cSGLD use long cycles with a
cosine learning rate schedule and relatively high maximum learning rate. In the paper, we mostly
experiment with a version of SSE, which fine-tunes the first network with a fixed standard fine-tuning
schedule and then trains all the following networks with the same cosine schedule, for which we vary
the length and the maximum learning rate. Depending on the cycle hyperparameters, SSE can behave
as either a local method (short cycles with low maximum learning rate) or a semi-local method
(longer cycles with higher maximum learning rate). We choose to fine-tune the first network in a
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fixed way for easier comparison with Local and Global DEs. The results for other variants of cyclical
methods are similar and discussed in Appendix D.

To the best of our knowledge, cyclical methods were not previously studied in the transfer learning
setup. Moreover, based on our analysis of the SSE behavior, we propose its parallel version, StarSEE,
which shows better results in this setup. Several recent works (Mustafa et al., 2020; Wortsman et al.,
2022; Rame et al., 2022) study another technique for improving the diversity of Local DEs by training
networks using different hyperparameters (learning rate, weight decay, data augmentation, etc.). In
Appendix K, we show that this technique can be also effective for Global DEs and StarSSEs, however,
it is not able to close the gaps between the methods and change the comparison results.

Since models in a Local DE are usually located in the same basin of low loss, they can be weight-
averaged to obtain a single model called a model soup (Wortsman et al., 2022; Rame et al., 2022). If
the set of models to average is chosen properly using validation data, a model soup provides a quality
boost without the high computational costs of ensembles in the inference stage. Model soups usually
show slightly inferior results on the in-distribution data compared to Local DE, but they are more
robust to distributional shifts. We also study the weight-averaging potential of SSE and StarSSE in
the transfer learning setup, including the robustness of the resulting models to distributional shifts.

4 Experimental setup

Data, architectures, and pre-training. In most of the experiments, we use a standard ResNet-50
architecture (He et al., 2016) and consider two types of pre-training on the ImageNet dataset (Rus-
sakovsky et al., 2015): supervised and self-supervised with the BYOL method (Grill et al., 2020).
We use 5 independently pre-trained checkpoints in both cases. As for target tasks, we choose three
image classification tasks: CIFAR-10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b), and
SUN-397 (Xiao et al., 2010). For SUN-397, we use only the first train/test split of the ten specified in
the original paper. We also experiment with a CLIP model (Radford et al., 2021) on the ImageNet
target task in Section 8, other non-natural image classification target tasks in Appendix N, and Swin-T
transformers (Liu et al., 2021) in Appendix M.

Fine-tuning of individual models. We replace the last fully-connected layer with a randomly
initialized layer having an appropriate number of classes and then fine-tune the whole network using
mini-batch SGD with batch size 256, momentum 0.9, and cosine learning rate schedule (Loshchilov
and Hutter, 2017). For each target task and each type of pre-training, we choose the optimal number
of epochs, weight decay, and initial learning rate for fine-tuning by grid search, allocating a validation
subset from the training set (see Appendix B for more detail).

SSE and StarSSE. The first network in SSE or StarSSE is always trained in the same manner as
an individual fine-tuned network described in the previous paragraph with the optimal number of
fine-tuning epochs and maximum learning rate. We denote these optimal hyperparameter values for
each task as ×1. For training all the following networks, we use the same learning schedule, for
which we vary the number of epochs and maximum learning rate in a cycle. We consider different
hyperparameter intervals for different tasks to cover all types of method behavior and denote the
values relatively to the optimal ones for individual model fine-tuning (for example, ×0.5 or ×2).

Aggregating results. All ensemble accuracy values presented in the plots are averaged over several
runs, so mean and standard deviation are shown. For Local and Global DEs, we average over at
least 5 runs (we fine-tune 5 networks from each pre-trained checkpoint and average over different
pre-trainings and fine-tuning random seeds). For SSE and StarSSE, we average over two runs, each
from a different pre-trained checkpoint.

Connectivity analysis. To analyze the behavior of ensemble methods, we look at the linear connec-
tivity of ensemble members. Usually, two models are called linearly connected and laying in the
same low-loss basin if there is no high-loss barrier on the linear interpolation between them, meaning
the loss occurred when linearly connecting the models is lower than the linear interpolation of their
losses with the same interpolation coefficients (Entezari et al., 2022). In our analysis, we use accuracy
instead of loss. The two metrics behave similarly, however, the absolute accuracy values are easier
to interpret. Hence, we examine whether ensemble members lay in the same high-accuracy area
(high-accuracy basin) or if there is a zone of lower accuracy on the linear interpolation between them
(low-accuracy barrier).
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Table 1: Accuracy of ensembles of size 5 of ResNet-50 models with supervised (SV) and self-
supervised (SSL) pre-training. Green numbers indicate the gap between Local and Global DE.

Pre-train. Dataset Local DE Global DE SSE (opt.) StarSSE (opt.)

SV
CIFAR-100 85.65±0.12 86.82±0.14 (+1.17) 86.04±0.18 86.30±0.18

CIFAR-10 97.52±0.04 97.69±0.05 (+0.17) 97.30±0.05 97.39±0.01

SUN-397 62.23±0.38 64.65±0.10 (+2.42) 63.63±0.14 64.20±0.21

SSL
CIFAR-100 87.33±0.21 88.10±0.11 (+0.77) 87.11±0.06 87.63±0.12

CIFAR-10 97.97±0.05 98.14±0.05 (+0.17) 97.94±0.04 98.06±0.02

SUN-397 65.77±0.19 67.04±0.09 (+1.27) 65.79±0.10 66.37±0.25

Supervised pre-training Self-supervised pre-training
fix lr x4, vary ep.:
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Baselines
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Figure 1: Results of SSEs (top row) and StarSEEs (bottom row) of different sizes on CIFAR-100 for
different types of pre-training and varying values of cycle hyperparameters (maximum learning rate
and number of epochs). Local and Global DEs are shown for comparison with gray dotted lines.

5 Empirical analysis of ensembling in transfer learning

5.1 Local and global deep ensembles

As a first step of our empirical analysis of ensembling methods in transfer learning, we compare
the quality of Local and Global DEs in our setup. In Table 1, we show the results for ensembles
of maximal considered size 5. Also, the results for ensembles of variable sizes are visualized in
Figure 1 with gray dashed lines (see Appendix E for the results on other datasets). For both types
of pre-training and all considered target tasks, there is a significant quality gap between Local and
Global DEs. Thus, the problem of closing this gap is relevant to our setup.

We also confirm that networks from the Local DE lay in the same high-accuracy basin. Gray baseline
lines in Figure 2 show accuracy along line segments between random pairs of networks from the
same Local DE (see Appendix F for results on other datasets). There are no significant low-accuracy
barriers in training and test metrics.

5.2 Local and semi-local Snapshot Ensembles

Since a Local DE only explores the pre-train basin, we experiment with the SSE method with varying
values of cycle hyperparameters to answer two questions: 1) can we improve a Local DE quality by
better exploring the pre-train basin, and 2) can we improve it even further by exploring the close
vicinity outside the pre-train basin? In this section, we demonstrate the results only on the CIFAR-100
task; the results for other target tasks are similar and presented in Appendix E.
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Figure 2: Linear connectivity analysis of Local DEs, SSEs (left plots), and StarSSEs (right plots) on
CIFAR-100 with self-supervised pre-training. We show train and test accuracy along line segments
between two random networks in Local DEs, between the first and the last (5-th) network in three
differently behaving SSEs, and between the first and any other consequent network in three differently
behaving StarSSEs. Hyperparameters for more local and more semi-local experiments are the same
for SSE and StarSSE, while hyperparameters for the optimal experiments may differ.
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Figure 3: Train and test accuracy of individual models from three differently behaving SSEs (left
plots) and StarSSEs (right plots) on CIFAR-100 with self-supervised pre-training (with a single
fine-tuned model for comparison). Hyperparameters for more local and more semi-local experiments
are the same for SSE and StarSSE, while hyperparameters for the optimal experiments may differ.

We vary the maximum learning rate and number of epochs in SSE cycles in the top row of plots in
Figure 1. Varying these hyperparameters similarly changes method behavior because training with a
higher learning rate or for a larger number of epochs allows the network to go further from the pre-
train checkpoint. For low values of hyperparameters, especially the learning rate, SSE collects very
closely located checkpoints; therefore, their ensembling does not substantially improve the prediction
quality. When we increase the values, SSE collects more diverse checkpoints, and ensemble quality
rises. However, for high hyperparameter values, the ensemble quality significantly degrades with the
number of networks due to degradation of the quality of individual models as they move further and
further away from the pre-train checkpoint (see next sub-sections).

Overall, SSE with optimally chosen hyperparameters can construct an ensemble of similar, and in
some cases even better, quality than Local DE but is not able to close the gap with Global DE (see
Table 1). Interestingly, SSE shows strong results for small ensembles, sometimes even matches the
Global DE for ensembles of size 2, however, for large ensembles, SSE results become weaker (see
Figure 1). SSE shows stronger improvements in the case of supervised pre-training, most likely
because of the higher difference in the optimal hyperparameter values for SSE and usual Local DEs.

5.3 Analysis of Snapshot Ensemble behavior

To better understand the properties of different types of SSE behavior and the reasons behind them, we
analyze three experiments for each setup in more detail. We consider the following three experiments:
the more local experiment (with low learning rate and very slow-growing ensemble quality), the
more semi-local experiment (with high learning rate, a large number of epochs, and ensemble quality
degradation for large ensemble sizes), and the optimal experiment (with medium learning rate and
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number of epochs, and the best quality for an ensemble of size 5). See Appendix B for the exact
values of hyperparameters for these three experiments. In this section, we demonstrate the results
only for experiments with self-supervised pre-training and the CIFAR-100 dataset. The results with
supervised pre-training are similar and presented in Appendix F.

In the left pair of plots in Figure 2, we show how train and test accuracy behave along the line segment
between the first and the last (5-th) network in the SSE. Metric values along the line segment between
two random networks from the same Local DE are shown as baselines. From the loss landscape
perspective, more local and more semi-local experiments indeed demonstrate the expected local and
semi-local behavior, respectively. Interestingly, the behavior of optimal experiments is also local,
without low-accuracy barriers. These results confirm that SSE can behave as both local and semi-local
methods and that its local variant provides the best results. In Appendix G, we provide additional
locality analysis based on the accuracy behavior on 2D planes in the weight space.

In the left pair of plots in Figure 3, we show how train and test accuracy of individual models in
SSE changes with each cycle. In all the experiments, model test accuracy degrades with each cycle,
even though the train accuracy increases or stays at the maximum value. From this, we can conclude
that the further individual models walk away from the pre-train checkpoint, the more they overfit the
training data of the target task and, as a result, lose the advantages of transfer learning.

SSE with optimal hyperparameters can improve over Local DE by better exploring the pre-train basin
and collecting more diverse networks (see Appendix J for the detailed diversity analysis). The diversity
of these networks even makes up for the gradual decrease in individual model quality. However,
leaving the pre-train basin with SSE results in the most pronounced degradation of individual model
test accuracy, which leads to decreasing ensemble quality. We also hypothesize that due to the
decrease in the quality of individual models, SSE with any values of parameters is not able to
effectively construct large ensembles in the transfer learning setup (any SSE plot will start to decrease
if we grow the ensemble size further).

Whether staying in the pre-train basin is an essential condition to take advantage of knowledge transfer
and obtain high-quality ensembles or the considered methods explore the vicinity of the pre-train
basin in a non-effective way is an interesting question for future research. We suspect that the main
reason why SSE can not leave the pre-train basin without losing the transfer learning advantage is
the fact that SSE only looks at the target task loss landscape without taking into consideration the
source task one. Shwartz-Ziv et al. (2022) show that accounting for the source loss landscape shape
around the pre-trained checkpoint can improve fine-tuning accuracy of individual models and local
ensembles. However, to do so, they fit a normal prior on the source task, centered in the pre-trained
checkpoint, which most likely can be effective only locally in the pre-train basin (see Appendix L
for additional experiments on SSE with similar regularizations). Hence, more advanced techniques
should be developed to account for the source loss landscape shape outside of the pre-train basin.

5.4 StarSSE — a better version of Snapshot Ensemble for transfer learning

Our study of SSE behavior shows that, in the transfer learning setup, standard cyclical learning rate
methods suffer from individual network quality degradation due to moving too far from the pre-train
checkpoint and overfitting to the target training data, and this effect becomes more pronounced with
each cycle. SSEs with long cycles and high learning rates are affected the most by this, but at the
same time, they show high quality for small ensemble sizes (see results for ensembles of size 2 at the
top row of Figure 1). So, even though the second network found by SSE is weaker as an individual
model, it may be a better candidate for the ensemble with the first one than another independently
fine-tuned network, as in Local DE.

Based on these observations, we propose a parallel version of SSE, StarSSE, which is more suitable
for the transfer learning setup. StarSSE trains the first model with the standard fine-tuning schedule,
as in Local DE or SSE. Then, all the following models are trained with the same schedules as in
SSE cycles but in a parallel rather than sequential manner. Each of these models is initialized with
the weights of the first fine-tuned model. As a result, we have a "star" with the first model in the
center and all other models at the ends of the "rays". Due to the parallel structure, StarSSE does not
move further from the pre-trained checkpoint with each training cycle as SSE, but at the same time, it
explores the area with good candidates for ensembling around the first fine-tuned network.
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We show how StarSSE with different cycle hyperparameters behaves in the bottom row of plots in
Figure 1 (for consistency with SSE, we call hyperparameters for training all the networks except
the first one as cycle hyperparameters). The results on other datasets are presented in Appendix E.
StarSSE demonstrates more stable results for medium and high values of cycle hyperparameters than
SSE, and as a result, it produces better larger size ensembles. Even though for the highest considered
hyperparameter values, StarSSE quality still decreases with increasing ensemble size, its degradation
is much less severe. As can be seen from Table 1, the optimal StarSSE outperforms the optimal SSE.

To better understand the difference between StarSSE and SSE behavior, we conduct the same analysis
of linear connectivity and individual model quality for three distinct StarSSE experiments, as in the
previous section for SSE. For easier comparison, we choose the same cycle hyperparameters for more
local and more semi-local experiments as for their SSE counterparts. For the optimal experiment, we
choose its own hyperparameter values to compare the best results of the methods. The exact values of
hyperparameters can be found in Appendix B. In the right pair of plots in Figure 2, we show how train
and test accuracy of StarSSE behave along the line segment between the first and any of the following
models (it does not matter which model to choose because all of them are trained independently in
the same manner). The more semi-local StarSSE experiment demonstrates much more local behavior
from the loss landscape perspective than the SSE one, which confirms that StarSSE does not go too
far from the pre-train basin, even with relatively high hyperparameter values. The optimal StarSSE
experiment demonstrates local behavior; therefore, StarSSE, similarly to SSE, should be used only as
a local method in the transfer learning setup. As shown in the right pair of plots in Figure 3, all the
models in StarSSE, starting from the second one, have a very similar quality, which makes StarSSE
more stable for larger ensemble sizes. For the optimal experiment, the quality degradation between
the first and the following models is very low and can be compensated by the model diversity in
StarSSE to achieve higher results than Local DE (see Appendix J for detailed diversity analysis).

In conclusion, StarSSE is a more effective alternative to cyclical learning rate methods for the transfer
learning setup, which can work with higher values of cycle hyperparameters to obtain diverse models
without gradual degradation of individual model quality. StarSSE is technically very similar to Local
DE, however, there is an important conceptual difference between them. StarSSE separates the two
processes: 1) model fine-tuning from the pre-train checkpoint to a high-quality area for the target
task, and 2) exploration of this area for obtaining diverse models. On the contrary, Local DE tries
to do both of them jointly each time it fine-tunes a network. The design of StarSSE allows it to
make exploration with higher hyperparameter values, which are suboptimal for the initial fine-tuning
process, and obtain a more diverse set of models. The fact that optimal hyperparameter values for
StarSSE are higher than the optimal ×1 values for Local DE (see Figure 1) supports this reasoning.

6 Soups of SSE and StarSSE models

In the previous section, we show that SSE and StarSSE methods can be effective in transfer learning
but only in constructing local ensembles. Even though the locality usually leads to limited model
diversity, it also has its benefits: it allows to weight-average a set of models to obtain a single,
more accurate, and robust model. To constitute a strong weight-averaged model, a set of models
needs to lie in the same low-loss basin and have a convex loss landscape between the models.
Diversifying the models in a set can improve the averaging results; therefore, model soups (Wortsman
et al., 2022; Rame et al., 2022), which average independently fine-tuned models, show better results
than SWA (Izmailov et al., 2018), which averages several checkpoints from the same training run.
Moreover, for even higher diversity, model soups are usually constructed from the models fine-tuned
with variable hyperparameters. However, the relation between the final quality and the diversity of the
models is not as straightforward for weight-averaging as for ensembles because diversifying models
too much may result in a non-convex loss between them. Because of this, averaging all fine-tuned
models into a uniform model soup does not result in a high-quality model, and, to constitute an
effective greedy model soup, a subset of models needs to be chosen using the validation data.

Linear connectivity analysis in Figure 2 shows that averaging two models from the Local DE does not
lead to a strong model, while models from optimal SSE and StarSSE experiments lay in a more convex
part of the pre-train basin and average much better. This observation motivates us to investigate the
weight-averaging of models from SSE or StarSSE to construct uniform model soups. We compare
ensembles and uniform model soups of models obtained with Local DE, SSE, and StarSSE in the top
row in Figure 4 (see Appendix H for results with supervised pre-training). Firstly, weight-averaging
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Figure 4: Results of ensembles (left plots) and model soups (right plots) of different sizes on ID
(CIFAR-100 test set, top row) and OOD (CIFAR-100C, bottom row) for SSE and StarSSE with
self-supervised pre-training. For OOD, we measure the average accuracy over all possible corruptions
and severity values. Standard deviations are calculated over different pre-training checkpoints and/or
fine-tuning random seeds.

Local DE models does not improve the quality over individual models. Model soups from more
local and optimal SSE and StarSSE experiments show better results than an individual fine-tuned
model. However, for the more local experiments, the improvement is minor due to the low model
diversity. Weight-averaging networks from the more local SSE in our setup is very close to standard
SWA. Models from more semi-local SSE and StarSSE experiments can not constitute adequate model
soups due to the low-accuracy barriers between the models. Comparison between SSE and StarSSE
optimal experiments shows the advantage of the latter: the soup of StarSSE models demonstrates
better results than from SSE ones and matches the quality of the ensemble of the same models.

To conclude, StarSSE can collect a set of models in the pre-train basin, which are diverse enough to
constitute a strong local ensemble and, at the same time, are located in a convex part of the basin and
result in a strong uniform model soup after weight-averaging. In standard model soups, models are
usually fine-tuned with varying hyperparameters for higher diversity, and StarSSE can also benefit
from this hyperparameter diversification (see Appendix K). This makes the further analysis of their
combination a promising direction for future research.

7 Robustness analysis

One of the main benefits of ensembles and model soups is their robustness to different types of
test data modifications. In this section, we evaluate the robustness properties of the ensemble and
soup variants of SSE and StarSSE on the corrupted version of the CIFAR-100 dataset. CIFAR-100C
dataset (Hendrycks and Dietterich, 2019) includes 19 synthetic corruptions (e. g., Gaussian noise or
JPEG compression), each having 5 different severity values. We compare the performance of all the
methods on the in-distribution CIFAR-100 (ID) and the out-of-distribution CIFAR-100C (OOD) in
Figure 4 (see Appendix I for results with supervised pre-training). For SSE and StarSSE, we consider
the same three differently behaving experiments that are used in the previous sections.

First of all, we observe that more local ensembles lose their potential on OOD completely and have
near-constant accuracy for all the considered ensemble sizes. In contrast, the behavior of more
semi-local ensembles is very similar on ID and OOD in comparison to the Local DE. This difference
indicates that model diversity is even more important under domain shifts. The quality of optimal
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Figure 5: Results of ensembles (left plots) and model soups (right plots) of CLIP models on ImageNet.
Three differently behaving SSE and StarSSE experiments are shown with Local and Global DEs for
comparison. Hyperparameters for more local and more semi-local experiments are the same for SSE
and StarSSE, while hyperparameters for the optimal experiments may differ.

ensembles also decreases compared to a Local DE, agreeing with their local behavior. Overall,
ensemble variants of SSE and StarSSE are less robust than DEs to the test data corruption. We discuss
the reasons for such behavior in more detail in Appendix J.

For model soups, we observe similar changes in the behavior of more local and more semi-local
experiments. The former can not provide a better quality model on OOD, while the results of the
latter even improve in comparison to the soup of Local DE models. Thus, model diversity matters for
the soups too. Interestingly, optimal soups significantly outperform optimal ensembles, while on the
clean data, these two paradigms show almost the same results. This observation matches with the
findings of Wortsman et al. (2022), who claim the superiority of standard model soups over ensembles
under distribution shifts. Overall, the best results on OOD data are achieved with an optimal soup
of StarSSE models (of those trained from a single pre-trained checkpoint). It not only outperforms
its ensemble variant but also provides considerably better results than Local DE. Thus, a soup of
StarSSE models is a good option for fine-tuning a robust model given a single pre-trained checkpoint.

8 Large-scale experiments

Our main analysis of SSE and StarSSE methods is focused on moderate-size networks and smaller
target tasks to be able to accurately compare the results with both Local and Global DE baselines.
However, to confirm that the main conclusions of the paper stand in more practical large-scale setups,
we experiment with the CLIP ViT-B/32 model pre-trained on the large dataset of the image-text
pairs and the ImageNet target task. In these experiments, we drop the Global DE baseline due to its
extremely high computational cost. In Figure 5, we compare the results of three differently behaving
SSEs and StarSSEs (see Appendix B for specific hyperparameter values) and the Local DE baseline.
SSE and StarSSE with optimal hyperparameter values significantly outperform Local DE both as
ensembles and as uniform model soups. The comparison of StarSSE and SSE confirms previously
discussed benefits of the parallel training strategy: StarSSE ensembles and model soups, trained with
high hyperparameter values, show less quality degradation than their corresponding SSE counterparts.
We conclude that StarSSE is effective for constructing better local ensembles in practical large-scale
setups too.

9 Conclusion

In this work, we study the effectiveness of cyclical learning rate methods for training ensembles
from a single pre-trained checkpoint in the transfer learning setup. We demonstrate that while better
exploration of the pre-train basin with these methods can be beneficial, they can not leave the basin
without losing the advantages of transfer learning and significant quality degradation. Based on our
analysis, we also propose a parallel version of the SSE method for transfer learning, StarSSE. Models
from StarSSE not only constitute a better ensemble but also lay in a more convex part of the pre-train
basin and can be effectively combined into a high-quality model soup.
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A Limitations and societal impact

The main limitation of our work is choosing the hyperparameter values for Local and Global DEs
based on the validation accuracy of individual models. Even though it is standard practice for
DEs, such hyperparameters may lead to suboptimal ensemble quality. However, we used the same
hyperparameters for the training of the first SSE and StarSSE models, so their quality may also be
suboptimal. Also, an extension of the study to other domains may be an interesting addition to our
work.

To the best of our knowledge, our work does not have any negative societal impact, except the
substantial computational costs of the conducted study. However, our work improves understanding
of the ensembles and model soups construction using only one pre-trained checkpoint, which can
help to reduce computational costs in future projects.

B Experimental setup details

All the described experiments were carried out using the PyTorch framework (Paszke et al., 2019).

Pre-training of ResNets. For the supervised case, we use available ResNet-50 checkpoints2 pre-
trained by Ashukha et al. (2020). We take five of them trained from different random initializations
with the same hyperparameters. For the self-supervised case, we also pre-train five checkpoints
from scratch for 1000 epochs using the hyperparameters from the original BYOL paper. We use the
solo-learn library for BYOL pre-training (da Costa et al., 2022).

Swin-T. We pre-train five Swin-T checkpoints from scratch in a supervised manner on ImageNet
for 300 epochs. We use the official code and hyperparameters from the original Swin paper. For
fine-tuning of individual models for Local and Global DEs, we use AdamW (Loshchilov and Hutter,
2019) and linear learning rate warm-up for 10% of the fine-tuning epochs. For SSE and StarSSE, we
also use AdamW for each cycle but the learning rate warm-up is applied only in the first cycle.

Fine-tuning hyperparameters grid search for ResNet and Swin-T models. We divide the training
data into training and validation subsets in 1 to 10 ratio for CIFAR10, CIFAR100 and in 1 to 5 ratio
for SUN397 as in the work of Kornblith et al. (2019) and 1 to 5 ration for Clipart and Chest-X. We
use grid search for the values of training epochs, initial learning rate and weight decay giving the
best quality of individual fine-tuned networks on validation subsets. For ResNet-50 (both types of
pre-training), we consider weight decays from [2 · 10−5, 1 · 10−4, 5 · 10−4] and initial learning rates
from [5 · 10−4, 10−3, 2.5 · 10−3, 5 · 10−3, 10−2, 2.5 · 10−2, 5 · 10−2, 10−1, 2 · 10−1]. For Swin-T,
the ranges are [10−2, 5 · 10−2, 2.5 · 10−1] and [2.5 · 10−5, 5 · 10−5, 10−4, 2.5 · 10−4, 5 · 10−4, 10−3],
respectively. As for the number of training epochs, we determine the value corresponding to 20000
SGD steps (this procedure is taken from Kornblith et al. (2019); the value differs across datasets,
making up 102 for CIFAR-10, CIFAR-100, 256 for SUN-397, 8 for Chest-X and 19 for Clipart) and
consider its multipliers from the list [×0.03125,×0.0625,×0.125,×0.25,×0.5,×1] rounded down.
The resulting optimal sets of hyperparameters are shown in Table 2.

CLIP. We use a CLIP ViT-B/32 model pre-trained by the authors on a large dataset of image-text
pairs. For fine-tuning of individual models for Local DEs, we follow Wortsman et al. (2022) using
AdamW (Loshchilov and Hutter, 2019), linear learning rate warm-up for 500 SGD steps and the best
combination of the training hyperparameters from their random search (number of epochs 11, batch
size 512, learning rate 1.23 · 10−5, label smoothing 0.134, and augmentation Rand-Augment with
M = 19, N = 0). For SSE and StarSSE, we also use AdamW, learning rate warm-up, and the same
batch size, label smoothing, and augmentations in each cycle.

Hyperparameters of more local/optimal/more semi-local experiments. The hyperparameter
multipliers for more local, SSE optimal, StarSSE optimal and more semi local experiments are
presented in Table 3.

Amount of computations. We use NVIDIA TESLA V100 and A100 GPUs for computations in our
experiments. Total expenses on pre-training constitute 8K GPU hours for self-supervised ResNet-50
(BYOL) and supervised Swin-T. Fine-tuning models for Local and Global DEs and cyclical learning

2https://github.com/SamsungLabs/pytorch-ensembles
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Table 2: Optimal values of training epochs, initial learning rate and weight decay for fine-tuning an
individual model.

Pre-train.
Target
dataset

epochs lr wd

SV
ResNet-50

CIFAR-10 51 2.5 · 10−2 2 · 10−5

CIFAR-100 25 5 · 10−3 5 · 10−4

SUN-397 256 5 · 10−4 5 · 10−4

ChestX 8 2.5 · 10−2 5 · 10−4

Clipart 19 2.5 · 10−2 5 · 10−4

SSL
ResNet-50

CIFAR-10 25 5 · 10−2 10−4

CIFAR-100 25 5 · 10−2 10−4

SUN-397 16 10−1 10−4

ChestX 8 2 · 10−1 5 · 10−4

Clipart 19 10−1 2 · 10−5

SV
Swin-T

CIFAR-100 102 10−4 2.5 · 10−1

SUN-397 256 2.5 · 10−5 5 · 10−2

Table 3: Considered multipliers of the learning rate and the number of epochs for more local, SSE
optimal, StarSSE optimal, and more semi-local experiments for different datasets and types of pre-
training.

Pre-train.
Target
dataset

more
local

SSE
optimal

StarSSE
optimal

more
semi-local

lr ep. lr ep. lr ep. lr ep.

SV
ResNet-50

CIFAR-10 ×0.25 ×1 ×2 ×0.25 ×2 ×0.5 ×2 ×2

CIFAR-100 ×1 ×1 ×2 ×1 ×4 ×1 ×8 ×4

SUN-397 ×0.5 ×1 ×32 ×0.125 ×32 ×0.125 ×32 ×1

ChestX ×0.25 ×1 ×4 ×2 ×2 ×2 ×8 ×4

Clipart ×0.25 ×0.5 ×1 ×0.5 ×2 ×0.5 ×4 ×2

SSL
ResNet-50

CIFAR-10 ×0.5 ×1 ×1 ×1 ×2 ×1 ×4 ×4

CIFAR-100 ×0.25 ×1 ×2 ×0.5 ×4 ×0.5 ×4 ×4

SUN-397 ×0.5 ×1 ×1 ×1 ×2 ×1 ×4 ×8

ChestX ×0.5 ×1 ×1 ×1 ×1 ×2 ×2 ×4

Clipart ×0.5 ×0.5 ×4 ×0.5 ×4 ×0.5 ×8 ×2

SV
Swin-T

CIFAR-100 ×0.5 ×0.25 ×2 ×0.25 ×4 ×0.5 ×4 ×1

SUN-397 ×1 ×1 ×16 ×0.125 ×16 ×0.25 ×16 ×1

CLIP
ViT-B/32

ImageNet ×1 ×0.25 ×2 ×1 ×2 ×1 ×6 ×1

rate ensembles took another 17K GPU hours, resulting in a total amount of approximately 25K GPU
hours.

C Non-cyclical local ensemble methods

In this section, we experiment with non-cyclical local ensemble methods in the transfer learning setup
and show that they are generally less effective than the cyclical ones. We choose three non-cyclical
methods: KFAC-Laplace (Ritter et al., 2018), SWAG (Maddox et al., 2019) and SPRO (Benton
et al., 2021). KFAC-Laplace is the most simple one and does not require any additional training.
Given one usually trained network, it computes the Laplace approximation with a block Kronecker
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Table 4: Accuracy and diversity of ensembles of size 5 for non-cyclical local methods, Local DE, and
optimal SSE and StarSSE. Self-supervised pre-training.

Dataset Local
DE

SSE
(optim.)

StarSSE
(optim.)

KFAC
Laplace

SPRO SWAG

CIFAR-
100

acc. 87.33±0.21 87.11±0.06 87.63±0.12 86.01±0.02 86.46±0.08 86.99±0.08

div. 66.25±3.56 71.57±5.94 71.51±2.08 35.38±2.07 33.94±16.96 36.74±5.86

SUN-
397

acc. 65.77±0.19 65.79±0.10 66.37±0.25 64.39±0.07 64.71±0.09 65.83±0.11

div. 47.41±2.48 57.69±6.51 60.74±1.94 17.87±0.94 24.37±9.87 49.45±5.70

factored (KFAC) estimate of the Hessian matrix and then samples network weights from the Gaussian
distribution with the trained network as a mean and the obtained KFAC estimate as a covariance
matrix. SWAG also constructs the Gaussian distribution but uses the SWA solution as a mean and
approximates the covariance matrix based on the SWA checkpoints. SWAG is shown to be the most
effective alternative to cyclical methods in the regular training setup (Ashukha et al., 2020). SPRO
shows competitive results to SWAG by constructing a simplex in the weight space with the given
trained network as one of the vertexes and then sampling ensemble members from it.

In the experiments, we consider ResNet-50 with self-supervised pre-training on CIFAR-100 and
SUN-397 datasets. We use the official SWAG repository3 for the implementations of KFAC-Laplace
and SWAG, and our own implementation of SPRO. We use grid search to determine the optimal
hyperparameters for the non-cyclical local methods:

• KFAC-Laplace. We search for the optimal sampling scale from the list [0.2, 0.4, 0.6, 0.8, 1.0,
1.2]. The resulting values are 1.0 for CIFAR-100 and 0.6 for SUN-397.

• SWAG. We continue training the fine-tuned checkpoints with a constant learning rate (0.08 for
CIFAR-100 and 0.16 for SUN-397) for 19 more epochs, gathering new models at the end of
each epoch (overall, there are 20 models counting the fine-tuned one). Then, we search for the
value of sampling scale from the list [0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2] similar to KFAC-Laplace.
The optimal values are 0.1 for CIFAR-100 and 0.2 for SUN-397.

• SPRO. We start with a fine-tuned checkpoint and train 2 more points to form 2-simplexes.
We vary the learning rate ([0.0125, 0.025, 0.05, 0.1]) and the number of epochs (CIFAR-100:
[5, 10, 20], SUN-397: [4, 8, 16]), as well as the regularization coefficient ([10−6, 10−5]) to train
these points. The optimal tuples are (0.05, 10, 10−5) for CIFAR-100 and (0.05, 16, 10−6) for
SUN-397.

In Table 4, we compare accuracy and diversity of 5-network ensembles obtained with the considered
non-cyclical local methods, Local DE baseline, and optimal SSE and StarSSE (see Appendix J
for the definition of the diversity metric). KFAC-Laplace and SPRO show inferior accuracy and
diversity compared to both Local DE and SSE; hence, these methods’ behavior is extremely local.
SWAG demonstrates stronger results, even comparable to Local DE and SSE on SUN-397. However,
StarSSE is more effective than SWAG on both datasets. In conclusion, even though cyclical methods
can not benefit from the exploration of several low-loss basins in transfer learning setup, they are still
preferable to other local methods, similarly to the regular training setup. Based on this analysis, we
decided to focus on cyclical methods in the paper.

D Variants of cyclical ensemble methods

In this section, we discuss other variants of cyclical learning rate methods and explain our choice
of SSE with a fixed first model fine-tuning schedule for the main study. In all the experiments, we
consider ResNet-50 on CIFAR-100 with self-supervised pre-training.
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Figure 6: Results of ensembles (left plots) and individual models (right plots) for our variant of
SSE with a fixed schedule for the first network fine-tuning and Standard SSE, which uses the same
hyperparameters in each cycle. CIFAR-100, self-supervised pre-training. Hyperparameters for all
three differently behaving experiments are the same for both methods.

D.1 SSE vs Standard SSE: why we fine-tune the first model with a fixed schedule

Standard SSE (Huang et al., 2017) trains all the models using the same learning rate schedule in
each cycle. However, we choose to use a separate fixed schedule for the first model fine-tuning. This
separation allows us to experiment with different hyperparameters for loss landscape exploration
without harming the first fine-tuning cycle, which is responsible for moving from the pre-trained
checkpoint to the high-quality area in the weight space for the target task.

In the right pair of plots in Figure 6, we compare the behavior of individual model quality from our
variant of SSE and the standard SSE with the same hyperparameter values (we use the values for
three differently behaving SSEs specified in Appendix B). The first model from the optimal standard
SSE experiment has adequate quality, which can also be improved a bit by choosing hyperparameter
values optimal for Local DE instead of the ones optimal for our SSE. Since hyperparameter values
of the more local and the more semi-local experiments are very different from the hyperparameters
usually used for individual model fine-tuning in Local DEs, the quality of the first model from
standard SSE is very low in these cases. Moreover, going through more cycles does not help due
to slow quality improvement for low hyperparameter values and progressive quality degradation
for high hyperparameter values. As a result, the ensemble quality of standard SSE with different
hyperparameter values varies a lot, not only due to changes in exploration but also due to different
fine-tuning quality in the first place (see the left pair of plots in Figure 6).

To solve the described problem, the first low-quality models are usually dropped from the standard
SSE. However, this can not help in the case of high hyperparameter values, which is important to
us in this paper. Moreover, for different hyperparameter values, we would need to drop a different
number of first models, which would make the comparison of different SSEs and DEs much less
clear.

D.2 cSGLD

cSGLD (Zhang et al., 2020) technically is very similar to SSE and uses the same cyclical cosine
learning rate schedule. However, instead of taking only one final model from each cycle, cSGLD
samples several models on the last epochs using Langevin dynamics. In our experiments, we compare
SSE and cSGLD, which use separate hyperparameters for the first cycle due to the conclusion from
the previous section. All other aspects of the cSGLD procedure are the same as in the original paper,
which includes the number of sampled models in each cycle equal to 3.

In the right pair of plots in Figure 7, we show that models from the same cycle of cSGLD are located
in the same basins. Hence, exploration of the weight space mostly depends on obtaining the models
from different cycles, which can indeed end up in different basins, similarly to the SSE ones (see
the left pair of plots in Figure 7). Based on these observations, we compare SSE and cSGLD in

3https://github.com/wjmaddox/swa_gaussian/tree/master
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Figure 7: Linear connectivity analysis of cSGLD on CIFAR-100 with self-supervised pre-training.
We show train and test accuracy along line segments between two random networks in Local DEs,
between the last network of the first cycle (#3) and the last network of the last cycle (#15) of cSGLD
(left plots), and between the first (#1) and the last network (#3) from the first cycle of cSGLD (right
plots).
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Figure 8: Results of ensembles (left plots) and individual models (right plots) for SSE and cSGLD.
CIFAR-100, self-supervised pre-training. Hyperparameters for all three differently behaving ex-
periments are the same for both methods. Every cycle of cSGLD adds 3 new models, so cSGLD
ensembles have 3 times more models than SSE, resulting in a slightly better quality.
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Figure 9: Results of SSEs (left plots) and FGEs (right plots) of different sizes on CIFAR-100 with
self-supervised pre-training for varying values of cycle hyperparameters (maximum learning rate and
a number of epochs). Local and Global DEs are shown for comparison with gray dotted lines.
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Figure 10: Linear connectivity analysis (left plots) and individual model quality (right plots) of three
differently behaving FGEs on CIFAR-100 with self-supervised pre-training. On the left plots, we
show train and test accuracy along line segments between two random networks in Local DEs and
between the first and the last (5-th) networks in FGEs.

Figure 8, fixing the number of cycles instead of the number of models in an ensemble. We conclude
that cSGLD behaves very similarly to SSE and choose SSE for the main study because it gives almost
the same quality using fewer networks.

D.3 FGE

FGE (Garipov et al., 2018) uses a triangular schedule instead of the cosine one for each cycle and
trains the first model with a separate schedule in the same manner as we do in our version of SSE. In
our experiments, we train the first model of FGE with the same hyperparameters as the first model of
SSE.

In Figure 9, we show the results of FGE with different cycle hyperparameters and compare them to
the SSE ones. FGE experiments show similar types of behaviors, as we discussed for SSE in the
main text. However, due to the triangular learning rate schedule, FGE behaves more locally than
SSE with the same hyperparameter values. We also analyze the loss along line segments between the
models from FGE and their individual quality in Figure 10. The results show that FGE can work in
local and semi-local regimes, and it achieves the optimal ensemble quality in the local one.

E Ensembling results of SSE and StarSSE

In this section, we provide additional results of SSE and StarSSE on CIFAR-10 and SUN-397 datasets.
Figure 11 is complementary to Figure 1 from the main text and compares SSE and StarSSE with
different hyperparameter values to Local and Global DEs. The results for self-supervised pre-training
are very similar between different datasets. With supervised pre-training, the difference between
SSE/StarSSE and Local DE varies for different datasets, probably due to higher variance in optimal
hyperparameters. For SUN-397, SSE and StarSSE show very strong results close to the Global DE,
while for CIFAR-10, their results are inferior to the Local DE.

F Analysis of SSE and StarSSE behavior

In this section, we provide additional plots on the analysis of SSE and StarSSE for the case of
supervised pre-training. Figure 12 is analogous to Figure 2 from the main text and demonstrates the
behavior of train and test accuracy along line segments between the models from SSE and StarSSE.
Figure 13 is analogous to Figure 3 from the main text and demonstrates the quality of individual
models from SSE and StarSSE. The general observations are the same as in Sections 5.3 and 5.4.
Ultimately, SSE and StarSSE may work in either local or semi-local regimes, but they achieve optimal
results in the local one.
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Figure 11: Results of SSEs and StarSSEs of different sizes on CIFAR-10 and SUN-397 for different
types of pre-training and varying values of cycle hyperparameters (maximum learning rate and a
number of epochs). Local and Global DEs are shown for comparison with gray dotted lines.
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Figure 12: Linear connectivity analysis of Local DEs, SSEs (left plots) and StarSSEs (right plots)
on CIFAR-100 with supervised pre-training. We show train and test accuracy along line segments
between two random networks in Local DEs, between the first and the last (5-th) network in three
differently behaving SSEs, and between the first and any other consequent network in three differently
behaving StarSSEs. Hyperparameters for more local and more semi-local experiments are the same
for SSE and StarSSE, while hyperparameters for the optimal experiments may differ.
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Figure 13: Train and test accuracy of individual models from three differently behaving SSEs (left
plots) and StarSSEs (right plots) on CIFAR-100 with supervised pre-training (with a single fine-tuned
model for comparison). Hyperparameters for more local and more semi-local experiments are the
same for SSE and StarSSE, while hyperparameters for the optimal experiments may differ.
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Figure 14: 2D visualization of test and train accuracy around SSE and StarSSE models on the
CIFAR-100 dataset with self-supervised pre-training. The markers with black outline correspond to
the points generating the projection plane. The axes scale matches the actual distances between the
points of the plane in the weight space. The stars without black outline in the SSE plots show the
projection of SSE models from previous cycles (note that these are only the projections: the models
themselves lay outside of the projection plane and their actual accuracy is different to the one plotted).
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Figure 15: Results of ensembles (left plots) and model soups (right plots) of different sizes on
CIFAR-10 and SUN-397 for SSE and StarSSE with supervised and self-supervised pre-training.
Hyperparameters for more local and more semi-local experiments are the same for SSE and StarSSE
on the same dataset, while hyperparameters for the optimal experiments may differ.

G Accuracy behavior on 2D planes in the weight space

In this section, we plot 2-dimensional visualizations of high-accuracy regions around SSE and
StarSSE models similar to Garipov et al. (2018). To construct a 2D visualization, one needs to select
three points in the weight space and then plot the metric values over the plane generated by these
points. Overall, for SSE, we consider four points: the first SSE model (i. e., a model from a Local
DE) and three networks from three differently behaving SSE experiments; each network is taken
from the last (5-th) SSE cycle. Importantly, the three SSE experiments are all launched starting from
the same first model, which is one of the four points considered. We then take all combinations of
size three out of these four points and plot separate 2D plots for them. We repeat the same procedure
for StarSSE models.

Each combination of three points forms a triangle, which is projected into the image plane. The
first model is projected into the point (0, 0). We make the x-axis parallel to the side connecting the
first and the second models. The y-axis is parallel to the altitude of the triangle passing through the
third model. The side and the altitude are projected, preserving their original length, so the whole
plane is projected without distortion. Finally, we consider a coordinate grid over the projected plane,
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update the batch normalization statistics at the grid nodes (we use 10% of the training set for faster
processing), and evaluate test and train accuracy at these points.

The resulting 2D visualization plots are shown in Figure 14. In terms of train accuracy, the first and
the last local and optimal SSE models are located in the same basin, while the last semi-local SSE
model ”goes round the corner” — it is almost linearly connected with the last optimal model but
we see more significant barriers while connecting it to the first and the last local SSE models. The
same observations hold for StarSSE. In terms of test accuracy, the first and the last local and optimal
SSE models show similar results, however, the optimal SSE experiment goes much further from the
first model and ends up ”on the opposite wall” of the high-accuracy region, while the last local SSE
model stays ”on the same wall” as the first model. This observation holds for StarSSE too. It also
matches our model soups experiments, where optimal SSE/StarSSE usually demonstrate substantially
stronger results than the local ones.

Semi-local SSE/StartSSE end up very close to the border of the high-accuracy region, both in terms
of test and train metrics, in the considered 2-dimensional weight subspaces. When we look at the
segment connecting the first and the last semi-local models, we see an abrupt degradation of quality
for the models laying beyond the semi-local end. The first and the last local and optimal models
are much more stable in this sense. This effect makes us suspect that leaving the pre-train basin
makes semi-local SSE/StarSSE converge to sharper minima. Moreover, the track of semi-local SSE
experiment shows that the 2-nd SSE cycle moves further from the first model than all subsequent
cycles (at least when projected into the image plane). This indicates that even a single cycle with high
hyperparameters forces the model to leave the pre-train basin and shows why semi-local StarSSE is
not efficient (despite behaving more locally than the semi-local SSE).

H Results of soups of SSE and StarSSE models

In this section, we provide additional results of SSE and StarSSE soups on different datasets and with
different types of pre-training. Figure 16 is analogous to Figure 4 from the main text, and its first
row demonstrates the results on the CIFAR-100 dataset with supervised pre-training. Additionally,
Figure 15 shows results for CIFAR-10 and SUN-397 for both supervised and self-supervised pre-
training. Similarly to Appendix E, the results for self-supervised pre-training are very similar for all
datasets, while for supervised pre-training they vary more. Also, SSE and StarSSE experiments on
CIFAR-10 with supervised pre-training become unstable for high hyperparameter values, therefore,
the more semi-local experiments here behave similarly to the optimal ones.

I OOD

In this section, we show the robustness analysis of SSE and StarSSE with supervised pre-training
complementary to Section 7. Figure 16 is analogous to Figure 4 from the main text and compares
results on in-distribution CIFAR-100 and out-of-distribution CIFAR-100C data. Results for the
supervised case are similar to the self-supervised one: SSE and StarSSE are less stable to the data
corruption than Local and Global DEs, however, soups of StarSSE models still show strong results
compared to Local DE.

J Prediction diversity

In this section, we quantitatively compare the prediction diversity of the networks in SSE, StarSSE,
and DE baselines to confirm that the SSE and StarSSE improvement over Local DE is indeed the
consequence of higher network diversity. To evaluate the diversity, we use an average normalized
prediction difference between model pairs on test data, following Fort et al. (2019) (the higher, the
more diverse):

diversity = 100 · Em1 ̸=m2

Eimages [pred1 ̸= pred2]

max(err1, err2)
,

where mi stands for a model from an ensemble with predictions pred i and test error level err i. We
normalize the prediction difference by the maximum of two errors to pay less attention to the diversity
of the models with lower accuracy. Table 5 shows the accuracy of individual models and prediction
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Figure 16: Results of ensembles (left plots) and model soups (right plots) of different sizes on ID
(CIFAR-100 test set, top row) and OOD (CIFAR-100C, bottom row) for SSE and StarSSE with
supervised pre-training. For OOD, we measure the average accuracy over all possible corruptions
and severity values. Standard deviations are calculated over different pre-training checkpoints and/or
fine-tuning random seeds.

Table 5: Accuracy of individual models and ensemble diversity for in-distribution (ID, CIFAR-100
test set) and out-of-distribution (OOD, CIFAR-100C) data for supervised (SV) and self-supervised
(SSL) pre-training. The OOD results are averaged over different corruptions and values of severity.
Standard deviations for both ID and OOD are shown over different pre-training checkpoints and
training seeds.

Pre-train. Method
accuracy (single) diversity
ID OOD ID OOD

SV

Local DE
84.47±0.15 57.46±0.81

60.21±1.37 58.72±2.33

Global DE 82.58±1.70 79.05±2.32

SSE
more local 84.24±0.23 56.30±0.99 64.01±8.94 60.80±8.32

optimal 84.18±0.49 56.38±1.27 70.50±8.78 67.79±9.06

more semi-local 82.03±1.45 54.38±2.52 81.35±12.32 78.40±11.63

StarSSE
more local 84.35±0.20 57.06±0.69 55.30±1.74 53.62±2.29

optimal 84.55±0.17 56.77±1.03 73.28±4.42 69.07±4.23

more semi-local 82.95±0.75 55.31±1.80 82.87±9.47 78.63±9.30

SSL

Local DE
85.96±0.28 58.53±0.82

66.25±3.56 62.75±3.38

Global DE 80.21±1.62 75.93±2.36

SSE
more local 85.87±0.24 57.83±0.85 47.46±7.23 44.61±7.64

optimal 85.27±0.49 57.56±1.26 71.57±5.94 66.98±6.36

more semi-local 82.52±1.96 54.20±2.94 80.93±9.57 78.68±10.37

StarSSE
more local 85.95±0.32 58.13±0.76 38.94±1.57 36.12±1.80

optimal 85.79±0.28 57.91±0.97 71.51±2.08 67.37±3.12

more semi-local 83.65±1.20 55.48±2.18 82.42±8.59 79.22±8.24
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Table 6: Accuracy of individual models and ensembles of size 5 for Local DE, Global DE and optimal
StarSSE, trained with and without hyperparameter and augmentation diversification of ensemble
members. Self-supervised pre-training.

Dataset Diversity Local DE
(single)

Local DE
(ensemble)

Global DE
(ensemble)

StarSSE
(single)

StarSSE
(ensemble)hyp. aug.

CIFAR-
100

− − 85.96±0.28 87.33±0.21 88.10±0.11 85.79±0.28 87.63±0.12

− + 85.95±0.27 87.45±0.15 88.20±0.03 85.91±0.17 87.82±0.04

+ − 85.85±0.28 87.60±0.21 88.25±0.05 85.69±0.27 87.39±0.06

+ + 85.24±0.38 87.54±0.14 88.24±0.17 85.81±0.24 87.74±0.08

SUN-
397

− − 64.32±0.40 65.77±0.19 67.04±0.09 63.98±0.49 66.37±0.25

− + 64.25±0.41 65.84±0.29 66.99±0.05 64.23±0.17 66.69±0.15

+ − 64.19±0.52 66.17±0.28 67.33±0.05 63.93±0.40 66.30±0.14

+ + 64.40±0.46 66.51±0.35 67.49±0.10 64.30±0.31 66.59±0.06

diversity on in-distribution CIFAR-100 (ID) and out-of-distribution CIFAR-100C (OOD) data for
both types of pre-training.

Despite Local and Global DEs consisting of the models of the same quality level, the latter includes
significantly more diverse networks, explaining the quality gap between the two. Generally, when
we increase the hyperparameters of SSE/StarSSE, the networks become more diverse, but their ID
accuracy decreases. The models of the optimal SSE/StarSSE experiments are much more diverse than
the ones of the more local experiments, which makes up for lower ID accuracy when constructing
ensembles. Moreover, the high diversity of models in optimal SSE/StarSSE exceeds the one of the
Local DE models, allowing optimal StarSSE (and sometimes optimal SSE) to outperform the Local
DE on clean data. The models of the more semi-local experiments achieve even higher diversity,
though it is not enough to overcome their significant quality degradation.

Our robustness analysis in Section 7 (Figure 4) and Appendix I (Figure 16) shows that optimal SSE
and StarSSE are less preferable under the distribution shifts than Local DE. The results in Table 5
confirm that the main reason for this is not the lower diversity but the lower quality of individual
models. Generally, SSE and StarSSE models tend to overfit to target data — this is the main reason
why semi-local methods do not show positive results in the transfer learning setup. Choosing the
optimal hyperparameters for SSE/StarSSE results in low/almost no degradation of individual model
quality on ID data (see Figures 3,13 and Table 5). However, overfitting becomes noticeable faster on
OOD data, hence, individual SSE/StarSSE model quality degrades more significantly in this case.

K Diversifying ensembles

One of the most common techniques to improve ensemble quality is to diversify networks by
training them in different ways (varying optimization algorithm, learning rate, weight decay, data
augmentation, etc.). This technique is shown to be effective for both Local (Mustafa et al., 2020;
Wortsman et al., 2022; Rame et al., 2022) and Global DE (Gontijo-Lopes et al., 2022). In this section,
we show that such diversification can also improve StarSSE and thus does not change the results of
methods comparison.

We consider ResNet-50 with self-supervised pre-training on CIFAR-100 and SUN-397 datasets and
try two types of model diversification:

• hyperparameter diversification — instead of training ensemble members with a fixed learning
rate, weight decay, and number of epochs, we sample these hyperparameters from the log-uniform
distributions on segments around their optimal values:

– CIFAR-100: learning rate — [0.035, 0.07], number of epochs — [20, 50] for Local DE;
learning rate — [0.08, 0.12], number of epochs — [18, 35] for StarSSE; weight decay —
[5 · 10−5, 2 · 10−4] for both.
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Table 7: Accuracy of individual models and ensembles of size 5 for three differently behaving SSEs
without regularization, with EWC regularization to the pre-trained model (EWC-PT) and with L2
regularization to the first fine-tuned model (L2-FT) on CIFAR-100 for self-supervised pre-training.
StarSSE results are given for comparison.

more local optimal more semi-local
(single) (ensemble) (single) (ensemble) (single) (ensemble)

SSE 85.87±0.24 86.57±0.07 85.27±0.49 87.11±0.08 82.52±1.96 85.60±0.10

+ EWC-PT 85.83±0.21 86.55±0.05 85.57±0.45 87.22±0.05 82.73±1.75 85.69±0.04

+ L2-FT 85.94±0.16 86.62±0.04 85.79±0.22 87.26±0.05 85.65±0.21 87.26±0.04

StarSSE 85.95±0.32 86.41±0.30 85.79±0.28 87.63±0.12 83.65±1.20 86.20±0.05

– SUN-397: learning rate — [0.1, 0.15], number of epochs — [15, 30] for Local DE; learning
rate — [0.1, 0.25], number of epochs — [15, 23] for StarSSE; weight decay — [5·10−5, 10−4]
for both.

• augmentation diversification — complementary to fixed data augmentation (random crop and
random flip), we use four color augmentations (adjusting brightness, contrast, hue, and saturation)
similar to Mustafa et al. (2020), Appendix A.3 (though we needed to change the brightness
parameters because of a different parametrization used by torchvision (Paszke et al., 2019)). We
sample minimal and maximal limits for the strength of these augmentations before each model
training:

– brightness: smin ∼ Uniform(0.25, 0.75), smax ∼ Uniform(2 · smin, 4 · smin)

– hue: δmax ∼ Uniform(0.01, 0.2), δmin = −δmax

– saturation: smin ∼ Uniform(0.25, 0.75), smax ∼ Uniform(2 · smin, 4 · smin)

– contrast: smin ∼ Uniform(0.25, 0.75), smax ∼ Uniform(2 · smin, 4 · smin)

During training, each augmentation is applied with 50% probability, and its strength is sampled
within the corresponding limits.

For diversified StarSSE, we train the first model with fixed optimal hyperparameters and augmenta-
tions and then train all the following models utilizing the diversification techniques.

In Table 6 we show how model diversification influences the average accuracy of individual models
and ensembles of size 5 for Local DE, Global DE, and StarSSE. All considered ensemble types
benefit from the diversification: while Global and Local DEs improve more from hyperparameter
diversification, StarSSE is stronger in combination with augmentation diversification. The latter
shows that proper augmentations are very important for StarSSE since longer fine-tuning of StarSSE
networks makes them more prone to overfitting. In conclusion, network training diversification can
improve the results of all ensemble types and thus can not close the quality gaps between them.

L Regularizing SSE to stay in the pre-trained basin

In this section, we experiment with different regularization techniques to prevent SSE from overfitting
and losing the advantages of transfer learning. As a first technique, we consider Elastic Weight
Consolidation (EWC, Kirkpatrick et al. (2017)), a popular continual learning method, which employs
weighted L2 regularization to the pre-trained checkpoint. The weight of each parameter is a diagonal
element of the Fisher information matrix (FIM) evaluated on the pre-training task. Hence, EWC not
only regularizes the weights to not to go too far from the pre-train checkpoint, but also takes into
account the pre-train loss landscape to control the direction of weights’ changes. This makes EWC a
very similar technique to the informative prior of Shwartz-Ziv et al. (2022), which also utilises the
pre-train loss landscape to construct the Gaussian prior on network weights. We consider three values
of the regularization coefficient λEWC ∈ [0.1, 1, 10], choosing the one performing best on the test
set λ∗

EWC = 10.

As a second technique, we consider regularization of SSE to the first fine-tuned model to force local
behavior. In this case, we use isotropic L2 regularization. The reasons for such a simplification are
two-fold: 1) we moved away from the pre-trained checkpoint, making it impossible to evaluate FIM
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Figure 17: Results of ensembles (left plots) and model soups (right plots) of Swin-T models with
supervised pre-training. Three differently behaving SSE and StarSSE experiments on CIFAR-100
and SUN-397 are shown with Local and Global DEs for comparison. Hyperparameters for more
local and more semi-local experiments are the same for SSE and StarSSE on the same dataset, while
hyperparameters for the optimal experiments may differ.

on the pre-train task without refitting the classifier head, and 2) there is no need to evaluate FIM on
the target task, as we already have access to the target loss landscape during the optimization. We
consider three values of the regularization coefficient λL2 ∈ [10−5, 10−4, 10−3], choosing the one
performing best on the test set λ∗

L2 = 10−4. In both cases (EWC to the pre-trained checkpoint and
L2 to the first fine-tuned model), the linear head is not regularized.

In Table 7, we consider three differently behaving SSEs and add regularization to each of them,
preserving the original hyperparameter values (i. e., the maximum learning rate and the number
of epochs for each cycle). Overall, the EWC regularization has little impact on the accuracy of
individual models and the ensemble. In contrast, L2 regularization increases both metrics with
the most pronounced improvements for the more semi-local experiment, which becomes similar to
the optimal one. Generally, both regularization techniques are able to improve the SSE results by
promoting a more local behavior and preventing SSE from leaving the pre-train basin, however they
can not help to explore the vicinity of the pre-train basin more effectively. Moreover, regularized
variants of SSE underperform the optimal StarSSE, making our parallel method the most effective for
the local exploration of the pre-train basin.

M Additional experiments with Swin-T

In this section, we experiment with Swin-T models pre-trained in a supervised manner. We consider
only CIFAR-100 and SUN-397 target tasks because the gap between Local DE and Global DE on
CIFAR-10 is too small. For more experimental details see Appendix B. Figure 17 shows the results
of ensembles and soups of models from three differently behaving SSE and StarSSE experiments.
Generally, we observe the same types of behavior as for ResNet-50. Optimal ensemble variants of
SSE and StarSSE show similar results to Local DE, while soups of models from optimal SSE and
StarSSE are much more accurate than the ones from Local DE models.
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Figure 18: Results of ensembles (left plots) and model soups (right plots) of different sizes on
non-natural image classification datasets Clipart and ChestX for SSE and StarSSE with supervised
and self-supervised pre-training. Hyperparameters for more local and more semi-local experiments
are the same for SSE and StarSSE on the same dataset, while hyperparameters for the optimal
experiments may differ.

N Additional experiments on non-natural image datasets

In this section, we experiment with two non-natural datasets: ChestX dataset (Wang et al., 2017)
containing medical images and a clipart image collection DomainNet Clipart (Peng et al., 2019).
We consider the ResNet-50 network with supervised and self-supervised pre-training on ImageNet.
Following Ericsson et al. (2021), we drop all multi-label images from ChestX and solve a usual
classification problem. For more experimental details, see Appendix B.

Figure 18 shows the results of ensembles and soups of models from three differently behaving SSE
and StarSSE experiments. We also provide the quality and diversity of ensemble members in Table 8
for a deeper analysis of StarSSE results. Generally, we observe more extreme results, most likely due
to higher discrepancy between source and target tasks.

On Clipart, StarSSE and SSE either show very close or even inferior results compared to the Local
DE. Analyzing the quality and diversity of ensemble members, we conclude that StarSSE does not
find a balance between the two for this task. In the supervised case, StarSSE finds stronger individual
models with lower diversity than the ones of a Local DE. Hence, the ensemble quality of StarSSE
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Table 8: Accuracy of individual models and ensemble diversity for experimetns on non-natural image
classification datasets with supervised (SV) and self-supervised (SSL) pre-training.

Pre-train. Method
Clipart Chestx

acc. (single) diversity acc. (single) diversity

SV
Local DE

74.58±0.16
66.74±1.65

51.86±0.62
42.42±1.30

Global DE 75.56±1.70 43.81±1.45

StarSSE (opt.) 75.21±0.21 64.28±1.55 53.93±0.47 46.06±4.41

SSL
Local DE

75.28±0.31
56.61±1.83

54.32±0.49
38.62±1.62

Global DE 68.46±1.46 40.05±1.76

StarSSE (opt.) 74.58±0.16 67.24±1.29 54.42±0.5 46.03±2.70

is lower, but at the same time, the soup of StarSSE models improves over the Local DE one. In the
self-supervised case, models from StarSSE are more diverse but are of lower quality than the Local
DE ones. As a result, StarSSE and Local DE show very similar results in this case.

On the contrary, the results on ChestX are very positive: SSE and StarSSE outperform both Local and
Global DEs. Interestingly, Local and Global DEs work very similarly on this task. In both supervised
and self-supervised cases, StarSSE finds a much more diverse set of models in a more convex part
of the loss landscape, hence, resulting in better ensembles and models soups. Additionally, in the
supervised case, StarSSE fine-tunes individual models more effectively than Local and Global DEs,
improving the results even further.
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