
Appendix602

A Design of LSH Functions:603

In practice, we could realize d(x, y) with cosine similarity for dense vectors. In this case, the LSH604

function familyH should have the following form.605

Definition A.1 (Sign Random Projection (SRP) Hash [56]). We define a function familyH as follow:606

Given a vectors x ∈ Rd, any h : Rd → {0, 1} that is in the familyH, we have607

h(x) = sign(Ax),

where A ∈ Rd×1 is a random matrix that every entry of A is sampled from normal distribution608

N (0, 1), sign is the sign function that set positive value to 1 and others to 0. Moreover, for two609

vectors x, y ∈ Rd we have610

Pr[h(x) = h(y)] = 1− π−1 arccos
x⊤y

∥x∥2∥y∥2
.

As shown in Definition A.1, the SRP hash is an LSH function built upon random Gaussian projections,611

which is a fundamental technique in ML [57, 58, 59, 60] If two vectors are close in terms of cosine612

similarity, their collision probability would also be high.613

The SRP hash is usually designed for dense vectors. If both x ∈ {0, 1}d and y ∈ {0, 1}d are high614

dimensional binary vectors with large d. Their Jaccard similarity [61] is also an important measure615

for search [62, 63, 64] and learning tasks [65, 66]. There also exists a family of LSH functions for616

Jacacrd similarity. We define this LSH function as:617

Definition A.2 (MinHash [67]). A function familyH is a MinHash family if for any h ∈ H, given a618

vectors x ∈ {0, 1}d, we have619

h(x) = argmin(Π(x))

where Π is a permutation function on the binary vector x. The argmin operation takes the index of620

the first non-zero value in Π(x). Moreover, given two binary vectors x, y ∈ {0, 1}d, we have621

Pr[h(x) = h(y)] =

∑d
i=1 min(xi, yi)∑d
i=1 max(xi, yi)

,

where the right term represents the Jaccard similarity of binary vectors x and y.622

Following Definition A.2, MinHash serves as a powerful tool for Jaccard similarity estimation [68,623

69, 70]. We will use both SRP hash and MinHash in the following section to build a sketch for data624

distribution.625

In this paper, we take a kernel view of the collision probability of LSH (see Definition 3.2). This626

view aligns with a series of research in efficient kernel decomposition [71, 72, 73], kernel density627

estimation [34] and kernel learning [74].628

B More Algorithms629

In this section, we introduce the client selection algorithm with our one-pass sketch.630

15

Algorithm 3 Client Selection with Distribution Sketch
Input: Clients C = {c1, · · · , cn}, Number of rounds T , Step size η, LSH function familyH, Hash
range B, Rows R, Number of active clients L, Number of Selected Clients K, Epochs E, Random
Seed s
Output: Global model wT .
Initialize: Global model w1, global sketch Sg , random seed s.
for c ∈ C do

Get client data Dc from client c.
Compute sketch Sc using Algorithm 1 with parameter Dc,H, B, R and s.
Send Sc to server
Sg ← Sg + Sc

end for
Sg ← Sg/n ▷ Generate global sketch on server
for i ∈ [T] do

L clients {c1, · · · , cL} ⊂ C are activated at random.
for j ∈ [L] do

pj = 1/∥Sg − Sj∥2 ▷ Sj is the sketch for client cj
end for
for j ∈ [L] do

pj =
exp pj∑L
l=1 exp pl

end for
Sample K clients out of {c1, · · · , cL}without replacement, client cj is selected with probability

pj .
Server send wi to the selected clients.
Each selected client ck updates wi to wi

k by training on its data for E epochs with step size η.
Each selected client sends wi

k back to the server.
wi+1 =

∑K
k=1 w

i
k

end for
return wT

C Discussion631

Limitations. To make the sketching process faster and more efficient, we need a powerful GPU for632

performing matrix multiplication. However, we still need to work on developing a hardware-friendly633

implementation for sketching in the future.634

Potential Negative Societal Impacts. Our work assesses how different the data is among clients635

without sharing the data. While the calculations are fast, they could still release carbon emissions,636

particularly when using GPUs as hardware.637

D Proofs638

To formally prove the Theorems in the paper. We start with introducing a query algorithm to the639

one-pass distribution sketch.640

Next, we introduce the formal statements in the paper as below.641

Theorem D.1 (Formal version of Theorem 3.3). Let P (x) denote a probability density function. Let
D ∼

iid
P (x) denote a dataset. Let k(x, y) be an LSH kernel (see Definition 3.2). Let S define the

function implemented by Algorithm 0. We show that

S(x) →
i.p.

1

N

∑
xi∈D

k(xi, q)

with convergence rate O(
√
logR/

√
R).642

16

Algorithm 4 Query to the Distribution Sketch
Input: Query q ∈ Rd, LSH functions h1, . . . , hR, Dataset D, Sketch S ∈ RR×B built on D with
Algorithm 1
Output: S(q) ∈ R
Initialize: S(q)← 0
A← ∅
for i = 1→ R do

A← A ∪ {Si,hi(q)}
end for
S(q)← median(A)
return S(q)

Proof. Let κ(x) =
∑

xi∈D
√
k(x, xi) be the (non-normalized) kernel density estimate. Theorem 3.4

of [75] provides the following inequality for any δ, where κ̃(x) =
∑

xi∈D
√
k(x, xi):

Pr

[
|NS(x)− κ(x)| >

(
32

κ̃2(x)

R
log 1/δ

)1/2
]
< δ

This is equivalent to the following inequality, which we can obtain by dividing both sides of the
inequality inside the probability by N .

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > (
32

κ̃2(x)

N2R
log 1/δ

)1/2
]
< δ

We want to show that the error
∣∣S(x)− 1

N κ(x)
∣∣ converges in probability to zero, because this directly

proves the main claim of the theorem. To do this, we must show that for any ∆ > 0,

lim
R→∞

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > ∆

]
= 0

This can be done by setting δ = 1
R , which yields the following inequality:

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > (
32

κ̃2(x)

N2R
logR

) 1
2

]
<

1

R

Because κ̃ < N , the following (simpler, but somewhat looser) inequality also holds:

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > (
32

logR

R

) 1
2

]
<

1

R

This implies that S(x) →
i.p.

1
N κ(x) by considering R large enough that

√
logR/R < ∆.643

Theorem D.2 (Formal version of Theorem 3.4). Let S be an ϵ-differentially private distribution sketch
of a dataset D = {x1, ...xN} with D ∼

iid
P (x) and let k(x, y) be an LSH kernel (see Definition 3.2).

Let S define the function implemented by Algorithm 0. Then

S(x) →
i.p.

1

N

∑
xi∈D

k(xi, x)

with convergence rate O(
√

logR/R+
√
R logR/(Nϵ) when R = ω(1) (e.g. R = logN).644

Proof. As before, let κ(x) =
∑

xi∈D
√

k(x, xi) be the (non-normalized) kernel density estimate and
let κ̃(x) =

∑
xi∈D

√
k(x, xi). For the ϵ-differentially private version of the algorithm, Theorem 3.4

of [75] provides the following inequality for any δ > 0.

Pr

[
|NS(x)− κ(x)| >

((
κ̃2(x)

R
+ 2

R

ϵ2

)
32 log 1/δ

)1/2
]
< δ

17

Again, we divide both sides of the inner inequality by N , and we also loosen (and simplify) the
inequality with the observation that κ̃(x)/N < 1.

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > ((
1

R
+ 2

R

N2ϵ2

)
32 log 1/δ

)1/2
]
< δ

We want to show that the error
∣∣S(x)− 1

N κ(x)
∣∣ converges in probability to zero, because this directly

proves the main claim of the theorem. To do this, we must show that for any ∆ > 0,

lim
R→∞

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > ∆

]
= 0

As before, we choose δ = 1
R , which yields the following inequality:

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > ((
1

R
+ 2

R

N2ϵ2

)
32 logR

)1/2
]
<

1

R

This is the same as:

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > (
32

logR

R
+ 64

R

N2ϵ2
logR

)1/2
]
<

1

R

Here, we will loosen the inequality again (also for the sake of presentation). Because
√
a+ b ≤√

a+
√
b, the following inequality is also satisfied:

Pr

[∣∣∣∣S(x)− 1

N
κ(x)

∣∣∣∣ > 4
√
2

√
logR

R
+ 8

√
R logR

Nϵ

]
<

1

R

Here, the convergence rate is O(
√
logR/R+

√
R logR/(Nϵ). For us to have the error converge in

probability to zero, we need for √
logR

R
+
√
2

√
R logR

Nϵ
→ 0

as N → ∞. A simple way to achieve this is for R to be weakly dependent on N (i.e. choose645

R = ω(1)). For example, choosing R = logN satisfies the conditions.646

18

