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Abstract

When deploying machine learning estimators in science and engineering (SAE)
domains, it is critical to avoid failed estimations that can have disastrous conse-
quences, e.g., in aero engine design. This work focuses on detecting and correcting
failed state estimations before adopting them in SAE inverse problems, by utilizing
simulations and performance metrics guided by physical laws. We suggest to flag
a machine learning estimation when its physical model error exceeds a feasible
threshold, and propose a novel approach, GEESE, to correct it through optimization,
aiming at delivering both low error and high efficiency. The key designs of GEESE
include (1) a hybrid surrogate error model to provide fast error estimations to
reduce simulation cost and to enable gradient based backpropagation of error feed-
back, and (2) two generative models to approximate the probability distributions
of the candidate states for simulating the exploitation and exploration behaviours.
All three models are constructed as neural networks. GEESE is tested on three
real-world SAE inverse problems and compared to a number of state-of-the-art
optimization/search approaches. Results show that it fails the least number of times
in terms of finding a feasible state correction, and requires physical evaluations
less frequently in general.

1 Introduction

Many estimation problems in science and engineering (SAE) are fundamentally inverse problem,
where the goal is to estimate the state x ∈ X of a system from its observation y ∈ Y . Examples
include estimating the temperature state from the observed spectrum in combustion diagnostics
[1], and discovering design parameters (state) of aero engine according to a group of performance
parameters (observation) [2]. Traditional physics-driven inverse solvers are supported by rigorous
physical laws, which vary depending on the application, e.g., the two-colour method for spectrum
estimation [3], and cycle analysis for aero engine design [4]. Recent advances take advantage of
machine learning (ML) techniques, constructing mapping functions F to directly estimate the state
from the observation, i.e., x̂ = F (y) [5, 6, 7]. Such ML solutions are more straightforward to
develop, moreover, efficient and easy to use. However, ML-based state estimates can sometimes be
erroneous, while SAE applications have very low error tolerance. One can imagine the disastrous
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consequences of providing unqualified aero engine design parameters. Therefore, it is critical to
detect and correct failed ML estimations before adopting them.

This leads to a special SAE requirement of evaluating the estimation correctness in the deployment
process of an ML estimator. Since the ground truth state is unknown at this stage, indirect evaluation
has to be performed. Such evaluations can be based on physical forward models and performance
metrics [8, 9]. A common practice is to combine multiple evaluations to obtain an accumulated
physical error, enforcing quality control from different aspects.

When the physical error exceeds a feasibility threshold, one has to remediate the concerned ML
estimation. One practice for finding a better estimation is to directly minimize the physical error in
state space [10]. This requires solving a black-box optimization problem, for which it is challenging
to find its global optimum, iterative approaches are used to find a near-optimal solution [11, 12].
In each iteration, a set of states are selected to collect their physical errors, then error feedback is
used to generate better state(s) until a near-optimal state is found. Physical error collection involves
time-consuming simulations[13, 14], e.g., a spectrum simulation which, despite taking just several
minutes for each run [15], can become costly if queried many times. Consequently, the optimization
process becomes time-consuming. Therefore, in addition to searching a satisfactory state with as
small as possible physical error, it is also vital to decrease the query times to the physical evaluation.

Our work herein is focused on developing an efficient algorithm for remediating the concerned
ML estimation in deployment. We propose a novel correction algorithm, Generative Exploitation
and Exploration guided by hybrid Surrogate Error (GEESE), building upon black-box optimization.
It aims at finding a qualified state within an error tolerance threshold after querying the physical
evaluations as few times as possible. The key design elements of GEESE include: (1) A hybrid
surrogate error model, which comprises an ensemble of multiple base neural networks, to provide
fast estimation of the physical error and to enable informative gradient-based backpropagation of
error feedback in model training. (2) A generative twin state selection approach, which consists of
two generative neural networks for characterizing the distributions of candidate states, to effectively
simulate the exploitation and exploration behaviours. We conduct thorough experiments to test the
proposed algorithm and compare it with a series of state-of-the-art optimization/search techniques,
based on three real-world inverse problems. Results show that, among the compared methods, GEESE
is able to find a qualified state after failing the least number of times and needing to query the physical
evaluations less times.

2 Related Work

Optimization in SAE: Development of SAE solutions often requires to formulate and solve opti-
mization problems [16, 17, 18]. They are often black-box optimization due to the SAE nature. For
instance, when the objective function is characterized through physical evaluations and solving partial
differential equations (PDEs) [19], it is not given in a closed form. Typical black-box optimization
techniques include Bayesian Optimization [20], Genetic Algorithm (GA) [21], and Particle Swarm
Optimization (PSO) [22], etc. They often require a massive number of queries to the objective func-
tion in order to infer search directions for finding a near-optimal solution, which is time-consuming
and expensive in SAE applications.

Instead, differentiable objective functions are constructed, and the problem is reduced to standard
optimization, referred to as white-box optimization to be in contrast with black-box. A rich amount
of well established solvers are developed for this, e.g., utilizing first-order and second-order gradient
information [23]. Some recent developments use neural networks to optimize differentiable physical
model evaluations, e.g., Optnet [24] and iterative neural networks [25]. However, physics-driven
objective functions cannot always be formulated in a differential form, e.g., errors evaluated by
the physical forward model in aero engine simulation, which is a mixture of database data, map
information and PDEs [26]. A grey-box setting is thus more suitable in practice, where one does not
overwrap the evaluations as a black box or oversimplify them as a white box, but a mixture of both.

Surrogate Model in Black-box Optimization: To reduce the cost of querying objective function
values in black-box optimization, recent approaches construct surrogate models to obtain efficient and
cheap estimation of the objective function. This practice has been used in SAE optimization, where
the objective functions are mostly based on physical evaluations. The most popular technique for
constructing surrogate models is machine learning (ML), including neural networks and Gaussian pro-
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cess models [27, 28, 29]. The associated surrogate model is then incorporated within an optimization
process, guided by, for instance, GA and Bayesian optimization, which generate states and interact
with it [30, 29], or neural networks that work with differentiable surrogate models [31, 32, 12]. To
avoid overfitting, recent effort has been invested to develop surrogate models consistent with some
pre-collected data, aiming at obtaining more reliable near-optimal solutions [33, 34, 35, 36, 37].
Nevertheless, there is no guarantee that a surrogate model can well approximate a physical model
consistently. Indeed, this is the motivation for the proposed method, where surrogate models are used
to speed up the querying process, while the decision in regards to the suitability of the solution is
based on the actual physical evaluation.

Reinforcement Learning for Inverse Problems: In addition to black-box optimization based
approaches, Reinforcement Learning (RL) [38, 39] serves as an alternative framework for solving
inverse problems [40, 41, 42]. In an RL-based solution framework, physical evaluations are wrapped
as a black-box environment outputting scalar reward, and the actions are the states to estimate
according to the observation. The behaviour of the environment is simulated by training a world/critic
model [43, 44], which is equivalent to a surrogate model of the physical evaluations. Different from
black-box optimization based approaches, RL does not intend to search a feasible state estimation
for the given observation, but to learn an authoritative agent/policy model [45, 46] to provide state
estimations, while the policy training is guided by optimizing an accumulated scalar reward or error
[47, 48]. Because of the desire of training a powerful policy model and the statistical nature of the
reward, RL often requires many physical evaluations to collect diverse samples and validate training
performance [49, 50]. This can be time-consuming when there is limited computing resource.

3 Proposed Method

We firstly explain the notation convention: Ordinary letters, such as x or X , represent scalars or
functions with scalar output. Bold letters, such as x or X, represent vectors or functions with vector
output. The i-th element of x is denoted by xi, while the first k elements of x by x1:k. We use
|x|, ∥x∥1 and ∥x∥2 to denote the dimension, l1-norm and l2-norm of the vector x. An integer set is
defined by [n] = {1, 2 . . . n}.

Without loss of generality, an estimated state x̂ is assessed by multiple physical models and/or metrics
{Pi}hi=1, resulting to an h-dimensional error vector, denoted by

e(x̂,y) = [EP1
(x̂,y), EP2

(x̂,y), . . . , EPh
(x̂,y)] . (1)

Each concerned ML estimation obtained from an observation y is remediated independently, so y
acts as a constant in the algorithm, which enables simplifying the error notation to e(x̂) and EPi

(x̂).
A better state estimation is sought by minimizing the following accumulated physical error as

min
x̂∈X

e(x̂) =

h∑
i=1

wiEPi
(x̂), (2)

where the error weights are priorly identified by domain experts according to the targeted SAE
application. For our problem of interest, the goal is to find a state correction that is within a desired
error tolerance, e.g., e(x̂) ≤ ϵ where ϵ > 0 is a feasibility threshold, determined by domain experts.
Thus it is not necessary to find a global optimal solution, instead a feasible solution suffices. A typical
iterative framework for black-box optimization can be used for this. For instance, at each iteration

t, a set of selected states
{
x̂
(t)
i

}nt

i=1
are queried to collect their physical errors resulting in a set of

state-error pairs
{(

x̂
(t)
i , ei

)}nt

i=1
. A state analysis is then performed according to the error feedback.

In the next iteration, a new set of states
{
x̂
(t+1)
i

}nt+1

i=1
are selected to query. This process is repeated

until the feasible state x̂∗ that satisfies e(x̂∗) ≤ ϵ is found. When designing such a framework, the
objective is to find a feasible state x̂∗ by querying the physical errors as less times as possible because
it is time-consuming to collect the errors.

We challenge the difficult setting of choosing only two states to query at each iteration. To ease the
explanation, we first present a sketch of our proposed GEESE approach in Algorithm 1. It starts

from an initial set of randomly selected and queried states
{(

x̂
(0)
i , ei

)}N

i=1
. After this, at each
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iteration, only two new states are selected to query based on a novel twin state selection approach
that we propose, which selects a potentially near-optimal state for exploitation and a potentially
informative state for exploration, resulting in

(
x̂
(t)
IT , e

(t)
IT

)
and

(
x̂
(t)
R , e

(t)
R

)
. The selection requires to

perform error analysis for a large set of candidate states, involving both the errors and their gradients.
To ease and enable such computation, we develop a differentiable surrogate error model ê (x,w)
to rapidly approximate those error elements that are expensive to evaluate or in need of gradient
calculation, and also provide informative gradient guidance with the assistance of error structure.
The weights w of the surrogate model are trained using the queried state-error pairs, which start

as
{(

x̂
(0)
i , ei

)}N

i=1
and then expand by including

(
x̂
(t)
IT , e

(t)
IT

)
and

(
x̂
(t)
R , e

(t)
R

)
at each iteration till

the algorithm terminates by satisfying the feasibility condition e(x̂∗) ≤ ϵ. Below, we first explain
the process of constructing the surrogate model for error approximation, followed by the twin state
selection for characterizing the probability distributions of the candidate states and collecting errors,
and finally, the implementation of the complete algorithm.

Algorithm 1 Sketch of GEESE

1: Randomly select n0 states and query their physical errors to obtain D0 =
{
x̂
(0)
i , ei

}n0

i=1

2: Train the surrogate error model ê
(
x,w(0)

)
with D0

3: for t ≤ T do
4: Select a query state x̂

(t)
IT by exploitation and collect the state-error pair

(
x̂
(t)
IT , e

(t)
IT

)
5: Update the feasible state x̂∗ = x̂

(t)
IT

6: Stop the algorithm if e(x̂∗) ≤ ϵ

7: Select a query state x̂
(t)
R by exploration and collect the state-error pair

(
x̂
(t)
R , e

(t)
R

)
8: Expand the training data Dt using the two pairs

(
x̂
(t)
IT , e

(t)
IT

)
and

(
x̂
(t)
R , e

(t)
R

)
9: Keep training the surrogate error model using Dt, resulting in ê

(
x,w(t)

)
10: end for
11: output x̂∗

3.1 Hybrid Neural Surrogate Error Models

We start from an informal definition of implicit and explicit errors. Among the set of h error elements
in Eq. (1 ), those that are expensive to collect or to perform gradient calculation are referred to
as implicit errors. These can include cases where the system is too complicated and needs much
more time to calculate the gradient than that of network backpropagation; or where the system is
indifferentiable, such as the physical model of spectroscopy [15] and aeroengine [26] containing
database or map. In addition to implicit errors, the remaining are explicit errors. We order these error
elements so that the first k elements {EPi

(x̂)}ki=1 are implicit while the remaining {EPi
(x̂)}ni=k+1

are explicit. Our strategy is to develop a surrogate for each implicit error element, while directly
calculate each explicit error.

Taking advantage of the robustness of ensemble learning [51, 52], we propose to estimate the implicit
errors by an ensemble of multiple base neural networks. Each base neural network is fully connected
with a mapping function ϕ(x,w) : RD ×R|w| → Rk, taking the D-dimensional state space RD as
its input space, while returning the approximation of the k implicit errors by its k output neurons. An
example of such a state space is a space of D = 2 dimensions, where the two dimensions correspond
to the temperature and concentration states from spectroscopy. Another example is a state space of
D = 11 dimensions with each state corresponding to a design parameter for aeroengine design, for
which we provide more details in Section 4 and Appendix A. The network weights are stored in the
vector w. We train L individual base networks sharing the same architecture, while obtain the final
prediction using an average combiner. As a result, given a state estimation x̂, the estimate of the
implicit error vector is computed by

êim
(
x̂, {wi}Li=1

)
=

1

L

L∑
i=1

ϕ (x̂,wi) , (3)
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and thus, the accumulated physical error is approximated by

ê
(
x̂, {wi}Li=1

)
=

k∑
j=1

wj

(
1

L

L∑
i=1

ϕj (x̂,wi)

)
︸ ︷︷ ︸

approximated implicit error

+

h∑
j=k+1

wjEPj
(x̂)︸ ︷︷ ︸

true explicit error

. (4)

We refer to Eq. (4) as a hybrid surrogate error model including both approximated and true error
evaluation.

The weights of the base neural networks {wi}Li=1 are trained using a set of collected state-error pairs,
e.g., D = {(x̂i, ei)}Ni=1. In our implementation, bootstrapping sampling [53] is adopted to train
each base neural network independently, by minimizing a distance loss between the estimated and
collected implicit errors, as

min
wi

E(x̂,e)∼D [dist (ϕ (x̂,wi) , e1:k)] . (5)

A typical example of the distance function is dist(ê, e) = ∥ê− e∥22.

Here, we choose to estimate each element of the implicit error vector, rather than to estimate a scalar
value of the weighted error sum, because the structural information of the error vector can directly
contribute in training through its associated gradient information. When estimating the weighted
sum directly, it is in a way to restrict the training loss to a form loosely like (ê (w)− ∥e∥1)2, which
negatively affects the information content of the gradient information. We have observed empirically
that, the proposed individual error estimation leads to improvements in training the exploitation
generator, compared to using the weighted error sum, see ablation study (1) in Table 2.

3.2 Twin State Selection

A selection strategy, i.e., twin state selection (TSS), for querying two individual states at each iteration
is proposed, one for exploration and one for exploitation, respectively. The objective of TSS is to
substantially reduce the cost associated with physical error collection. In turn, this translates to the
formidable challenge of designing a selection process, which maximizes the informativeness of the
associated physical error collection subject to minimizing query times. It is obviously impractical
and inaccurate to adopt the naive approach of choosing directly one state by searching the whole
space. Instead, we target at a two-folded task, researching (1) which candidate set of states to select
from and (2) how to select.

By taking advantage of developments in generative AI, we construct generative neural networks
to sample the candidate states. Specifically, we employ a latent variable z ∈ Rd, which follows
a simple distribution, e.g., uniform distribution z ∼ U

(
[−a, a]d

)
, and a neural network G(z,θ) :

Rd ×R|θ| → RD. The transformed distribution p (G(z,θ)) is then used to model the distribution
of a candidate set. Thus, the task of candidate selection is transformed into determining the neural
network weights θ for the generator G.

In general, exploitation attempts to select states close to the optimal one, whereas exploration attempts
to select more informative states to enhance the error estimation. There are various ways to simulate
the exploitation and exploration behaviours. For instance, in conventional black-box optimization,
e.g., Bayesian optimization and GA, exploitation and exploration are integrated within a single state
selection process [54], while in reinforcement learning, a balance trade-off approach is pursued
[55, 39]. Our method treats them as two separate tasks with distinct strategies for constructing
generators and selecting states.

ExploITation: To simulate the exploitation behaviour, the exploitation generator GIT is trained at
each iteration by minimizing the expectation of the physical error estimate, using the hybrid surrogate
error model

θ
(t)
GIT

= arg min
θ∈Rd

Ez∼U([−a,a]d)

[
ê

(
GIT(z,θ),

{
w

(t−1)
i

}L

i=1

)]
, (6)

where the base networks from the last iteration are used and we add the subscript t− 1 to the weights
of the error network for emphasizing. Finally, among the candidates generated by GIT with its trained
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weights θ(t)
GIT

, we select the following state

x̂
(t)
IT = arg min

x̂∼p
(
x̂|θ(t)

GIT

) ê
(
x̂,
{
w

(t−1)
i

}L

i=1

)
, (7)

to query its physical error by Eq. (1), resulting in the state-error pair
(
x̂
(t)
IT , e

(t)
IT

)
. If the queried error

is less than the feasibility threshold, i.e., e(t)IT ≤ ϵ, this selected state is considered acceptable and
the iteration is terminated. Otherwise, it is used to keep improving the training of the surrogate error
model in the next iteration.

ExploRation: To simulate the exploration behaviour, a state that does not appear optimal but has
the potential to complement the surrogate error model should be selected. We use an exploration
generator GR to generate candidates. To encourage diversity so as to facilitate exploration, we assign
the generator random weights sampled from a simple distribution, e.g.,

θ
(t)
GR

∼ N
(
0, I |θGR |

)
. (8)

We do not intend to train the exploration generator GR, because any training loss that encourages
exploration and diversity can overly drive the base networks to shift focus in the state space and cause
instability in the integrated algorithm. Such an instability phenomenon, caused by training GR, is
demonstrated in the ablation study (2) in Table 2.

By adopting the idea of active exploration via disagreement [56, 57], we consider the state, for which
the base networks are the least confident about to estimate the implicit errors, as more informative.
Since we use an ensemble of base neural networks to estimate the error, the standard deviations
of the base network predictions serve as natural confidence measures [56], which are stored in a
k-dimensional vector:

σ

(
x̂,
{
w

(t−1)
i

}L

i=1

)
=
[
σ1

(
{ϕ1 (x̂,wi)}Li=1

)
, . . . , σk

(
{ϕk (x̂,wi)}Li=1

)]
. (9)

The state maximizing disagreement, i.e., an accumulated standard deviation, between the base
networks, is selected given as

x̂
(t)
R = arg max

x̂∼p
(
x̂|θ(t)

GR

)σ
(
x̂,
{
w

(t−1)
i

}L

i=1

)
wT

k , (10)

where the row vector wk = [w1, w2, . . . , wk] stores the implicit error weights. The state-error pair(
x̂
(t)
R , e

(t)
R

)
is obtained after error collection.

Surrogate Model Update: To initialize the algorithm, we priorly collect a set of state-error pairs
D0 = {xi, ei}Ni=1 for randomly selected states. Next, at each iteration t, two new states are selected
and their physical errors are calculated, thus resulting in two new training examples to update the
surrogate error model, and an expanded training set Dt = Dt−1 ∪

(
x̂
(t)
IT , e

(t)
IT

)
∪
(
x̂
(t)
R , e

(t)
R

)
. In

our implementation, the base neural network weights w(t−1)
i obtained from the previous iteration

are further fine tuned using the two added examples
(
x̂
(t)
IT , e

(t)
IT

)
and

(
x̂
(t)
R , e

(t)
R

)
, as well as the N

examples sampled from the previous training set Dt−1.

3.3 Remediation System and Implementation

Given an ML estimation x̂, the remediation system collects its physical error vector as in Eq. (1),
then calculates the accumulated error from the objective function of Eq. (2) and compares it to the
feasibility threshold ϵ > 0. When the error exceeds the threshold, the GEESE algorithm is activated
to search a feasible estimation x̂∗ such that e (x̂∗) ≤ ϵ by querying the physical error as few times
as possible. Algorithm 2 outlines the pseudocode of GEESE2, while Fig.1 illustrates its system
architecture. Our key implementation practice is summarized below.

2project repo: https://github.com/RalphKang/GEESE
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Algorithm 2 GEESE

Require: Physical error model (and or metrics) {Pi}hi=1 and error weights {wi}hi=1, feasibility
threshold ϵ > 0, training frequency coefficient δG, focus coefficient c > 0, maximum iteration
numbers T and Te, early stopping threshold ϵe > 0, initial training data size N

Ensure: An acceptable state x̂∗ with e(x̂∗) ≤ ϵ

1: Initialize: iteration index t = 0, initial base neural network weights
{
w

(0)
i

}L

i=1
, number of early

stopped base neural networks ne = 0, initial exploitation neural network weights θ(0)
GIT

2: Sample ZIT for exploitation generator GIT

3: Randomly select N states to query their physical errors to obtain D0 = {xi, ei}Ni=1
4: for t ≤ T do
5: Set the added training dataset as ∆Dt = ∅
6: Update θ

(t)
GIT

by training with Eq. (6) approximated by ZIT for up to TG = δG⌊ 2ne

L + 1⌋
iterations

7: Select exploitation query state x̂
(t)
IT by Eq. (7) approximated by X

(t)
IT

8: if ê

(
x̂
(t)
IT ,
{
θ
(t)
i

}L

i=1

)
≤ cϵ then

9: Collect the new state-error pair ∆Dt = ∆Dt ∪
(
x̂
(t)
IT , e

(t)
IT

)
, set x̂∗ = x̂

(t)
IT

10: end if
11: if e =

∑h
i=1 wiEPi

(x̂∗) ≤ ϵ then
12: Stop the algorithm
13: end if
14: Sample θ

(t)
GR

by Eq. (8)

15: Select exploration query state x̂
(t)
R by Eq. (10) approximated by X

(t)
R

16: Collect the new state-error pair ∆Dt = ∆Dt ∪
(
x̂
(t)
R , e

(t)
R

)
, update the training data Dt =

Dt−1 ∪∆Dt

17: Obtain D̃i by sampling randomly N state-error pairs from Dt−1 for each base neural network.
Prepare training datasets {Di}Li=1 where Di = ∆Dt ∪ D̃i

18: Update
{
w

(t)
i

}L

i=1
by training each base neural network using Di by Eq. (5) for up to Te

iterations, and count the number of early stopped base neural networks ne

19: end for

Empirical Estimation: Eqs. (6), (7) and (10) require operations performed over probability distribu-
tions. In practice, we approximate these by Monte Carlo sampling. For Eq. (6), we minimize instead
the average over the sampled latent variables ZIT = {zi}NIT

i=1 with zi ∼ U
(
[−aIT, aIT]

d
)
, and this

is fixed in all iterations. The search space of Eq. (7) is approximated by a state set computed from

ZIT using the trained generator, i.e., X(t)
IT =

{
GIT

(
zi,θ

(t)
GIT

)}NIT

i=1
. Similarly, the search space of Eq.

(10) is approximated by a state sample X
(t)
R =

{
GR

(
zi,θ

(t)
GR

)}NR

i=1
where zi ∼ U

(
[−aR, aR]

d
)
.

Early Stopping: When training the base neural networks for implicit error estimation, in addition
to the maximum iteration number Te, early stopping of the training is enforced when the training
loss in Eq. (5) is smaller than a preidentified threshold ϵe. As a result, a higher number ne of early
stopped base neural networks indicates a potentially more accurate error estimation. This strengthens
the confidence in training the generator GIT by Eq. (6) that uses the trained base neural network from
the previous iteration. In other words, when the base neural network are not sufficiently well trained,
it is not recommended to put much effort in training the generator, which relies on the estimation
quality. Therefore, we set the maximum iteration number TG for training GIT in proportional to ne,
i.e., TG = δG⌊ 2ne

L + 1⌋, where δG is training frequency coefficient.

Failed Exploitation Exclusion: The state selection motivated by exploitation aims at choosing an
x̂
(t)
IT with comparatively low physical error. To encourage this, a focus coefficient c is introduced,
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Figure 1: The workflow of GEESE: If the estimation from an ML estimator fails the physical
evaluation EP , GEESE is activated. The error estimated by hybrid surrogate error model is used to
train the exploitation generator GIT. Two candidate state sets are generated by GIT and exploration
generator GR, and finally, two states x̂∗ = x̂IT and x̂R are selected by the surrogate error model and
fed into EP for evaluation and data collection. The process is terminated till e(x̂∗) ≤ ϵ.

which, together with the feasibility error threshold ϵ > 0, is used to exclude a potentially failed state
with a high estimated error, i.e., ê

(
x̂, {wi}Li=1

)
> cϵ, to avoid an unnecessary query.

4 Experiments and Results

We test the proposed approach GEESE on three real-world engineering inverse problems, including
aero engine design [42], electro-mechanical actuator design [58] and pulse-width modulation of
13-level inverters [59]. The first problem is to find eleven design parameters (state) of an aero engine
to satisfy the thrust and fuel consumption requirement (observation). The second problem is to find
20 design parameters (state) of an electro-mechanical actuator to satisfy requirements for overall cost
and safety factor (obversation). And the third problem is to find a group of 30 control parameters
(state) of a 13-level inverter to satisfy the requirements for distortion factor and nonlinear factor
(observation). Details of these problems along with their physical models and metrics for evaluation
are explained in supplementary material (Section A). We compare it with a set of classical and
state-of-the-art black-box optimization techniques, including Bayesian Optimization with Gaussian
Process (BOGP), GA [21], PSO [22], CMAES [60], ISRES [61], NSGA2 [62], and UNSGA3 [63],
as well as the recently proposed work SVPEN [42], which employs RL in solving SAE inverse
problems. These techniques are chosen because they are effective at seeking solutions with the assist
of actual physical evaluations.

In practice, different types of simulators exist for the same problem. For instance, for problem 1,
a simulator mentioned in [64] with high fidelity takes 10.3 seconds × 309 iterations = 53 minutes
to obtain a converged simulation, while another simulator in [65] with a much lower fidelity can
realize real-time simulation. Since we aim at a research scenario that attempts to search a feasible
state without querying too much data and without setting a high standard on data quality, we choose
to use faster simulators with lower but reasonable fidelity in our experiments. For the three studied
problems, each simulator takes no more than five seconds to run. Since the computing time varies
when changing simulators, we report the performance by query times instead of actual computing
time. Accordingly, we adopt two metrics to compare performance. First, we set a maximum budget
of T = 1, 000 query times for all studied problems and compared methods, and test each method on
each problem individually with 100 experimental cases, each case corresponds to a concerned ML
state estimation. The setup of the experimental cases is described in Appendix A of supplementary
material. we measure the number of experiments out of 100 where a method fails to correct the
concerned estimation when reaching the maximum query budget, and refer to it as the failure times
Nfailure. Also, the average number of queries that a method requires before finding a feasible state in
an experiment, is reported over 100 experiments, and referred to as average query times Nquery. A
more competitive algorithm expects smaller Nfailure and Nquery.

We report the adopted hyper-parameter and model setting for GEESE: The common hyperparameter
settings shared between all three studied problems include Te = 40, ϵe = 1e−4 and N = 64, and the
learning rates of 1e−2 and 1e−4, for training the exploitation generator and base neural networks,
respectively. Different focus coefficients of c = 1.5, 2 and 5 (set in an increasing fashion) are used
for problems 1, 2 and 3, respectively, due to an increased problem complexity in relation to their
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Table 1: Performance comparison of the compared methods, where the best is shown in bold, while
the second best is underlined

Algorithm
Problem 1

State Dimension:11
Problem 2

State Dimension:20
Problem 3

State Dimension:30
Failure times Query times Failure times Query times Failure times Query times

BOGP 0 3.29 ±1.51 97 973.76 ±144.28 4 112.66 ±229.98
GA 0 64.00 ±0.00 0 130.56 ±63.31 13 231.76 ±339.71
PSO 0 64.00 ±0.00 0 64.00 ±0.00 12 244.16±343.71

CMAES 0 55.67 ±3.28 0 119.44 ±41.80 12 227.42 ±312.17
ISRES 0 65.00±0.00 0 177.64 ±80.51 16 250.05 ±350.16
NSGA2 0 64.00 ±0.00 0 139.52 ±68.56 13 232.40 335.94

UNSGA3 0 64.00 ±0.00 0 140.80 ±79.94 12 227.52 ±330.07
SVPEN 100 1000.00±0.00 100 1000.00±0.00 100 1000.00±0.00

GEESE (Ours) 0 3.18 ±1.98 0 51.65 ±33.01 0 43.56 ±65.28

increasing dimensions of the state space. Similarly, an increasing training frequency coefficient
δG = 1, 1 and 7 is used for problems 1, 2 and 3, respectively, because the problem requires more
training iterations as it involves more complex patterns from higher-dimensional state space. The
ensemble surrogate model for estimating the implicit errors is constructed as an average of 4 multi-
layer perceptrons (MLPs) each with three hidden layers consisting of 1024, 2028 and 1024 hidden
neurons. The exploration generator GR is constructed as a single layer perceptron (SLP) and its
one-dimensional input is sampled from U ([−5, 5]). For problems 1 and 2 that are relatively less
complex from an engineering point of view, we directly set the latent space Z as the state space X
without using any neural network to transform in between. Then, we directly sample initial state set
X

(0)
IT . The exploitation state is directly optimized iteratively, e.g., by a gradient descent approach

based on Eq.(7) to obtain state set X(t)
IT , as shown in Eq. (11). The one with the smallest objective

function value is selected as the exploitation state, i.e.,

x̂
(t)
IT = argmin

x̂∈X
ê

(
x̂,
{
w

(t−1)
i

}L

i=1

)
. (11)

Problem 3 involves a special state pattern, requiring an increasing state value over the dimension, i.e.,
xi − xi+1 < 0. To enable the latent variables to capture this, we construct the exploitation generator
GIT as an MLP with three hidden layers consisting of 256, 512 and 256 hidden neurons. Also, to
avoid generation collapse [66] in problem 3, a regularization term has been added to the training loss
in Eq. (6), resulting in the following revised training to encourage state diversity, as

θ
(t)
GIT

= arg min
θ∈R30

Ez∼U([−5,5]30)

[
ê

(
GIT(z,θ),

{
w

(t−1)
i

}L

i=1

)
+max (0.0288− σ1(z,θ), 0)

]
, (12)

where σ1(z,θ) denotes the standard deviation of the first state element generated by GIT. We
encourage it to shift away from the collapsed point but not overly spread, by bounding σ1 with a
portion of the standard deviation of a uniform distribution, e.g., 0.288, and the portion 0.288

10 = 0.0288
is observed empirically effective. The spread control is only needed for the first state as the remaining
states follow by xi − xi+1 < 0. Configurations of the competing methods, together with extra
information on GEESE, are provided in Appendix B of supplementary material.

4.1 Results and Comparative Analysis

Table 1 summarizes the results of the compared methods for the three problems, obtained with a
feasibility threshold of ϵ = 0.075, which reflects high challenge with low error tolerance. It can
be observed that GEESE has the least failure times Nfailure on all three problems. In problem 3,
especially, GEESE succeeds with no failure while most other methods have more than 10 failures.
This is a highly desired characteristic for a remediation system with low error tolerance. In addition,
GEESE also has the least query times Nquery in all three problems, indicating the best efficiency.
We report additional results in Appendix C of supplementary material by varying the feasibility
threshold ϵ and the initial sample size N , where GEESE also achieves satisfactory performance in
general, while outperforming other methods in handling higher-dimensional problems with lower
error tolerance. SVPEN [42] cannot return a feasible correction in 1000 queries in all experiments, as
its core supporting RL requires a lot more queries than other optimization based techniques.
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4.2 Ablation Studies and Sensitivity Analysis

To examine the effectiveness of the key design elements of GEESEE, we perform a set of ablation
studies and report the results in Table 2 using problem 1 with a small feasibility threshold ϵ = 0.05
indicating low error tolerance. The studies include the following altered designs: (1) Estimate directly
the implicit error sum using an MLP with the same hidden layers but one single output neuron. (2)
Train the exploration generator GR by using an approach suggested by [57]. (3) Remove the early
stopping design. (4) Remove the focus coefficient.

Results show that estimating the implicit error sum worsens the performance. As explained earlier
in Section 3.1, this is because the structural information in gradient is lost in error sum estimation,
causing ambiguous update when training GIT, and consequently requires GEESE to make more error
queries. Also training GR worsens the performance as compared to just assigning random network
weights to GR without training. As previously explained in Section 3.2, this is because training GR
can frequently shift the focus of the surrogate error model and, thus, impact on the stability of the
optimization process. Both early stopping and focus coefficient play an important role in GEESE,
where the former prevents GEESE from overfitting and the latter helps avoid unnecessary queries.
Additional results on hyperparameter sensitivity analysis for GEESE are provided in Appendix D
of supplementary material. The results show that GEESE is not very sensitive to hyperparameter
changes and allows a wide range of values with satisfactory performance, which makes GEESE easy
to be tuned and used in practice.

Table 2: Results of ablation studies reported on problem 1, where a better performance is highlighted
in bold.

(1): Individual vs Sum Error Estimation
Surrogate Error Model Query times Standard deviation
Estimate error elements 20.20 16.37

Estimate error sum 23.26 21.18

(2): Effect of Exploration Training
Exploration style Query times Standard deviation

w/o training 32.64 22.82
with training 41.32 97.15

(3): Effect of Early stopping
Schedule Query times Standard deviation

with earlystop 20.20 16.37
w/o earlystop 32.80 17.84

(4): Effect of Focus Coefficient
Schedule Query times Standard deviation

with focus coefficient 20.20 16.37
w/o focus coefficient 27.19 19.36

5 Discussion and Conclusion

We have proposed a novel physics-driven optimization algorithm GEESE to correct ML estimation
failures in SAE inverse problems. To query less frequently expensive physical evaluations, GEESE
uses a cheaper hybrid surrogate error model, mixing an ensemble of base neural networks for implicit
error approximation and analytical expressions of exact explicit errors. To effectively model the
probability distribution of candidate states, two generative neural networks are constructed to simulate
the exploration and exploitation behaviours. In each iteration, the exploitation generator is trained to
find the most promising state with the smallest error, while the exploration generator is randomly
sampled to find the most informative state to improve the surrogate error model. These two types
of selection are separately guided by the approximated error by the ensemble and the disagreement
between its base neural networks. The element-wise error approximation promotes a more effective
interaction between the surrogate error model and the two generators. Being tested on three real-world
engineering inverse problems, GEESE outperforms all the compared methods, finding a feasible state
with the least query number with no failure under the low error tolerance setup.

However, there are still challenges to address in the future, particularly for very high-dimensional
inverse problems. Such problems are in need of larger and more complex model architecture to
accommodate their more complex underlying patterns, and thus impose challenge on training time
and data requirement. Computation expense should not only consider the query cost of physical
evaluations but also the learning cost of such models. Flexible neural network architectures that allow
for embedding domain specific or induced knowledge in addition to simulation data and their training,
as well as their interaction with the main solution model, e.g., an ML estimator for inverse problems,
are interesting directions to pursue.
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A Studied Inverse Problems

A.1 Problem Description

Problem 1, Turbofan Design: Turbofan is one of the most complex gas aero engine systems, and
it is the dominant propulsion system favoured by commercial airliners [26]. The inverse problem
for turbofan design is to find a group of design parameters modelled as the state to achieve the
desired performance modelled as observation. The observation includes two performance parameters,
including the thrust yt and the thrust specific fuel consumption yf . The state includes 11 design
parameters that control the performance of the engine, including the bypass ratio rbp, the fan pressure
ratio πfan, the fan efficiency ηfan, the low-pressure compressor pressure ratio πLC, the low-pressure
compressor efficiency ηLC, the high-pressure compressor pressure ratio πHC, the high-pressure
compressor efficiency ηHC, the combustor efficiency ηLC, the combustion temperature in the burner
TB, the efficiency of high-pressure turbine ηHT, and the efficiency of low-pressure turbine ηLT.
Following the same setting as in [42], the goal is to estimate the design parameters that can achieve
the performance of a CFM-56 turbofan engine, for which the thrust should be 121 KN and the thrust
specific fuel consumption should be 10.63 g/(kN.s) [67]. This corresponds to the observation vector
y = [yt, yf ] = [121, 10.63]. The 100 experiment cases tested on this problem differ from the state to
correct, which is randomly sampled from the feasible region of the design parameter space provided
by [42]. Table 3 reports the allowed range of each design parameter, which all together define the
feasible region.

Table 3: Feasible region of the design parameter space for problem 1.
Range rbp πfan πLC πHC TB ηfan ηHC ηLC ηB ηHT ηLT
Min 5 1.3 1.2 8 1300 K 0.85 0.82 0.84 0.95 0.86 0.87
Max 6 2.5 2 15 1800 K 0.95 0.92 0.94 0.995 0.96 0.97

Problem 2, Electro-mechanical Actuator Design: An electro-mechanical actuator is a device
that converts electrical energy into mechanical energy [68], by using a combination of an electric
motor and mechanical components to convert an electrical signal into a mechanical movement. It
is commonly used in industrial automation[68], medical devices[69], and aircraft control systems
[70], etc. We consider the design of an electro-mechanical actuator with a three-stage spur gears. Its
corresponding inverse problem is to find 20 design parameters modelled as the state, according to
the requirements for the overall cost yc and safety factor ys modelled as the observation. The 100
experiment cases tested on this problem differ from the observation y = [yc, ys]. We have randomly
selected 100 combinations of the safety factor and overall cost from the known Pareto front [58],
which is shown in Fig. 2a. For each observation, the state to correct is obtained by using an untrained
ML model to provide a naturally failed design.
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Figure 2: Illustration of the 100 used test cases in the 2-dimensional observation space for problem 2
(subfigure a) and 3 (subfigure b).
Problem 3, Pulse-width Modulation of 13-level Inverters: Pulse-width modulation (PWM) of
n-level inverters is a technique for controlling the output voltage of an inverter that converts DC
power into AC power [71]. It modulates the duty cycle of the output waveform of the inverter,
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thereby affecting the effective value of the voltage applied to a load. Particularly, an PWM of
13-level inverter adjusts its output waveform using 13 power switching devices to achieve higher
precision, which is widely used in renewable power generation systems [72], electric vehicles [73],
and industrial automation equipment [74]. It results in a typical inverse problem of finding the suitable
control parameters including 30 switch angles modelled as the state, according to the requirements of
the distortion factor yd (which measures the harmonic distortion of the output waveform) and the
nonlinear factor yn (which avoids the malfunctioning of the inverter and the connected load) modelled
as the observation. As in problem 2, the 100 experiment cases tested on this problem also differ from
the observation, i.e. y = [yd, yn]. They correspond to 100 randomly selected combinations of the
distortion and nonlinear factors from the known Pareto front in [59], which are shown in Fig. 2b.
For each observation, the state to correct is obtained by using an untrained ML model to provide a
naturally failed estimation.

A.2 Physical Evaluation

We describe in this section how the physical evaluations are conducted, more specifically, how the
physical errors are assessed. Overall, it includes the observation reconstruction error, which is based
on the difference between the given observation and the reconstructed observation from the estimated
state. For different problems, different physical models are used to simulate the reconstruction. It also
includes the feasible domain error, which examines whether the estimated state is within a feasible
region of the state space, and this region is often known for a given engineering problem. Apart from
these, there are also other problem-specific errors.

A.2.1 Problem 1

Observation Reconstruction Error: The gas turbine forward model [42] is used to simulate the
performance of the turbofan engine. It is constructed through the aerodynamic and thermodynamic
modelling of the components in a turbofan engine, where the modelled components include the inlet,
fan, low-pressure and high-pressure compressors, combustor, high-pressure and low-pressure turbines,
core and fan nozzles, as well as through considering the energy losses. This model can transform the
input of state into physically reasonable output of observation, which is the thrust yt and fuel flow
yf of the engine. Let F (x) denote a forward model. In problem 1, the performance requirement is
specifically y = [yt, yf ] = [121, 10.63], thus, for a estimated state x̂, the reconstruction error is

er(x̂) =

2∑
i=1

||Fi(x̂)− yi||1
2yi

, (13)

where, when i respectively equals to 1 or 2, F1(x̂) and F2(x̂) are the estimated thrust and fuel con-
sumption in the engine case, respectively. Because the magnitude of the thrust and fuel consumption
are different, we use the relative error to measure the reconstruction error of the two observation
elements.

Feasible Domain Error: In aero engine design, the design parameters cannot exceed their feasible
region and such a region has already been identified by existing work [42] as in Table 3. For the
i-th dimension of an estimated state x̂i (an estimated design parameter), and given its maximum and
minimum allowed values xmax and xmin, we define its feasible domain error by

e
(f)
i = max

(
x̂i − xmin

xmax − xmin
− 1, 0

)
+max

(
− x̂i − xmin

xmax − xmin
, 0

)
. (14)

After normalization, all the feasible values are within the range of [0, 1], while the non-feasible
ones outside. The above error simply examines how much the normalized state value exceeds 1
or below 0. We compute an accumulated feasible error for all the 11 design parameters, given by
ef (x̂) =

1
11

∑11
i=1 e

(f)
i .

Design Balance Error: Another desired property by aero engine design is a low disparity among the
values of the design parameters after normalizing them by their feasible ranges, which indicates a
more balanced design, offering better cooperation between the design components and resulting in
lower cost [42, 26]. Standard deviation is a suitable measure to assess this balance property, resulting
in another physical error

eσ(x̂) = σ

({
x̂i − xmin

xmax − xmin

}11

i=1

)
. (15)
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where σ(·) denotes the standard deviation of the elements from its input set.

Accumulated Physical Error: The above three types of errors are combined to form the following
accumulated physical error:

ê(x̂) = er(x̂) + 0.1ef (x̂) + 0.1eσ(x̂). (16)

The weights are given as 1, 0.1 and 0.1, respectively. This is because the reconstruction error
determines whether the estimated state is feasible, while the other two errors are used to further
improve the quality of the estimated state from the perspective of the design preference. Here er(x̂) is
obtained using a forward simulation process thus is an implicit error, while ef and eσ have analytical
expressions and simple gradient forms, and thus are explicit errors.

A.2.2 Problem 2

Observation Reconstruction Error: The used forward model for electro-mechanical actuator design
is a performance simulation model, considering a stepper motor, three stages of spur gears and a
housing to hold the components (i.e., stepper motor, and three stages of spur gears) [58]. It consists
of a physical model that predicts its output speed and torque and component-specific constraints, a
cost model and a geometric model that creates 3-D meshes for the components and the assembled
system. The integrated model predicts the observation y = {yc, ys}, and is named as the "CS1"
model in [58]. After reconstructing by CS1 the safety factor ys and total cost yc from the estimated
design parameters x̂, the reconstruction error is computed using Eq. 13.

Feasible Domain Error: The same feasible domain error ef as in Eq. (14) is used for each design
parameter of problem 2. The only difference is that the allowed parameter ranges for defining the
feasible region have changed. We use the region identified by [58]. There are 20 design parameters,
thus ef is an average of 20 individual errors.

Inequality Constraint Error: We adopt another seven inequality constraints provided by the forward
model [58] to examine how reasonable the estimated design parameters are. These constraints do not
have analytical forms, and we express them as ci(x̂) ≤ 0 for i = 1, 2, , . . . , 7. Based on these, we
define the following inequality constraint error

ec(x̂) =
1

7

7∑
i=1

max(ci(x̂), 0). (17)

Accumulated Physical Error: We then combine the above three types of errors, given as

ê(x̂) = er(x̂) + 0.1ef (x̂) + ec(x̂), (18)

where both er(x̂) and ec(x̂) are implicit errors computed using a black-box simulation model, while
ef is an explicit error. In this case, we increase the weight for inequality constraint error to be the
same as the reconstruction error, this is because we regard the implicit errors irrespective of their
types as the same. Of course, one can also use different weights for different types of errors according
to their expertise.

A.2.3 Problem 3

We use the forward model from [59] to reconstruct the observation for the 13-level inverter. It takes
the control parameters as the input and returns the distortion factor yd and the nonlinear factor yn.
Based the reconstructed yd and yn, the observation reconstruction error er is computed by Eq. (13)
in the same way as in problems 1 and 2. Similarly, the same feasible boundary error ef as in Eq. (14)
is computed, but the feasible region is different where the range of [0, π

2 ] is applied for all the 30
control parameters, which is defined in [59]. A similar inequality constraint error as in Eq. (17) is
used, which contains 29 inequality constraints in the form of

ci(x̂) = x̂i − x̂i+1 < 0, for i = 1, 2, . . . 29. (19)

Finally, the accumulated physical error is given by

ê(x̂) = er(x̂) + 0.1ef (x̂) + 10ec(x̂), (20)

where a large weight is used for ec(x̂) because the inequality constraints that it involves are very
critical for the design. Among the three types of errors, er(x̂) is an implicit error, while ef (x̂) and
ec(x̂) are explicit errors.
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B Extra Implementation Information

In this section, we introduce extra implementation information for GEESE and the compared methods,
in addition to what has been mentioned in the main text. In GEESE implementation, the latent vector
z has the same dimension as the state x in problems 1 and 2, because the optimization is done
directly on the latent vectors. In problem 3, the dimension of z is set be 1, and transformed into a
30-dimensional vector x by the state generator. The number of the latent vector z used for sampling
distribution of generators is set increasingly as d = 64, 128, 256 for problems 1, 2, and 3, due to the
increasing dimension of the state space of the three problems. Although, the budget query number
equals to 1000, because GEESE may query two times per iteration, thus, the maximum iteration
number is smaller than 1000, which is determined when the budget is used up.

For BOGP, its Bayesian optimization is implemented using the package [11]. The prior is set to be a
Gaussian process, and its kernel is set as Matern 5/2. The acquisition function is set to be the upper
confidence bound (UCB). The parameter kappa, which indicates how closed the next parameters
are sampled, is tuned and the optimal value is 2.5. The other hyperparameters are kept as default.
Since Bayesian optimization only queries one state-error pair in each iteration, its maximum iteration
number is equal to the maximum number of queries, i.e., 1000.

The other methods of GA, PSO, CMAES, ISRES, NSGA2, and UNSGA3 are implemented using
the package pymoo [75]. For ISRES, we optimize the offspring size, and finally apply a 1/7 success
rule to generate seven times more candidates than that in the current population in order to perform a
sufficient search. The other parameters are kept as default. Since these algorithms need to query the
whole population in each iteration, their maximum iteration number is thus much smaller than the
query budget 1000. In the experiments, these algorithms are terminated when the maximum query
number 1000 is reached.

To implement SVPEN [42], we use the default setting for problem 1. As for problems 2 and 3, to
construct the state estimator and the error estimator for SVPEN, the same structures of the base neural
networks and the exploitation generator as used by GEESE are adopted, respectively. Also the same
learning rate as used by GEESE is used for SVPEN, while the other settings are kept as default for
problems 2 and 3. In each iteration, SVPEN queries three times the physical errors for simulating the
exploitation, as well as the regional and global exploration. Thus, the maximum iteration number of
SVPEN is set as 333 to match the query budget 1000.

All the methods are activated or initialized using the same set of N state-error pairs randomly sampled
from a predefined feasible region in the state space. For GEESE and SVPEN, these samples are
used to train their surrogate error models, i.e., the base neural networks in GEESE and the error
estimator in SVPEN, thus their batch size for training is also set as N . For Bayesian optimization,
these samples are used to construct the Gaussian process prior. For GA, PSO, ISRES, NSGA2, and
UNSGA3, these samples are used as the initial population to start the search. The only special case is
CMAES, as it does not need a set of samples to start the algorithm, but one sample. So we randomly
select one state-error pair from the N pairs to activate its search.

For problem 3, we post-process the output of all the compared methods, in order to accommodate the
element-wise inequality constraints in Eq. (19), by

x̂
(p)
i = x̂

(p)
1 +

1

1 + e−
∑i

j=1 x̂
(p)
j

(
1− x̂

(p)
1

)
. (21)

As a result, the magnitude of the element in x̂(p) is monotonically increasing, and the inequality
constraints are naturally satisfied. But this can complicate the state search, as the elements are no
longer independent. A balance between correlating the state elements and minimizing the accumulated
physical error is needed. But in general, we have observed empirically that the above post-processing
can accelerate the convergence for all the compared methods. One way to explain the effectiveness
of this post-processing is that it forces the inequality constraints to hold, and this is hard for the
optimization algorithms to achieve on their own.

C Extra Results

Varying Feasibility Threshold: In addition to the feasibility threshold of ϵ = 0.075 as studied in the
main text, we test two other threshold values, including ϵ = 0.05 representing a more challenging
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Table 4: Performance comparison for two different values of feasibility threshold ϵ, where the best is
shown in bold while the second best is underlined for query times.

Threshold Algorithm

Problem 1

State Dimension:11

Problem 2

State Dimension:20

Problem 3

State Dimension:30
Failure times Query times Failure times Query times Failure times Query times

ϵ = 0.1

BOGP 0 3.04 ±0.83 78 849.26 ±295.35 3 86 ±200.49
GA 0 64 ±0 0 65.92 ±10.92 8 183.04 ±287.80
PSO 0 64 ±0 0 64.00 ±0 8 199.92 ±284.94

CMAES 0 12 ±0 0 73.84 ±25.81 3 127.29 ±233.71
ISRES 0 65 ±0 0 108.52 ±41.36 10 203.30 ±297.13
NSGA2 0 64 ±0 0 70.40 ±19.20 8 189.04 ±293.60

UNSGA3 0 64 ±0 0 68.48 ±16.33 7 177.52 ±275.84
SVPEN 82 932.51 ±176.38 100 1000 ±0 100 1000 ±0

GEESE (ours) 0 2.34 ±17.99 0 23.13 ±17.99 0 35.58 ±63.82

ϵ = 0.05

BOGP 0 9.24 ±3.97 100 1000 ±0 16 227.63 ±364.08
GA 0 64.00 ±0 0 353.28 ±105.74 20 297.92 ±363.45
PSO 0 64.00 ±0 1 157.84 ±137.40 18 290.96 ±373.65

CMAES 0 77.56 ±4.38 1 302.59 ±156.24 22 344.54 ±363.18
ISRES 0 193.00 ±0 3 391.54 ±241.22 19 313.69 ±368.78
NSGA2 0 64.00 ±0 0 352.00 ±114.31 20 299.84 364.63

UNSGA3 0 64.00 ±0 0 368.64 ±102.85 20 310.72 ±370.24
SVPEN 100 1000 ±0 100 1000 ±0 100 1000 ±0

GEESE (Ours) 0 20.20 ±16.37 0 189.90 ±164.96 2 81.26 ±155.30

case with lower error tolerance, and ϵ = 0.1 representing a comparatively easier case with higher
error tolerance. Results are reported in Table 4. In both cases, GEESE has failed the least times
among all the compared methods and for all three problems studied. It is worth to mention that, in
most cases, GEESE has achieved zero failure, and a very small Nfailure = 2 out of 100 in only one
experiment when all the other methods have failed more than fifteen times. Also, this one experiment
is the most challenging, solving the most complex problem 3 with the highest state dimension d = 30
and having the lowest error tolerance ϵ = 0.05. In terms of query times, GEESE has always ranked
among the top 2 most efficient methods for all the tested cases and problems, while the ranking of
the other methods vary quite a lot. For instance, when ϵ = 0.05, BOGP performs the best for the
easiest problem 1, but it performs the worst for the more difficult problem 2 where it has failed to
find a feasible solution within the allowed query budget. In the most difficult experiment that studies
problem 3 under ϵ = 0.05, GEESE requires much less query times and is significantly more efficient
than the second most efficient method.

Varying Initial Sample Size: In addition to the studied initial sample size N = 64 in the main
text, we further compare to more cases of N = 16 and N = 32 under ϵ = 0.05. The results are
shown in Table 5. Still, GEESE has the least failure times in all experiments, which is important
in remediating failed ML estimations. In terms of query times, GEESE still ranks among the top 2
most efficient methods for the two more complex problems 2 and 3, being the top 1 with significantly
less query times for the most complex problem 3. However, GEESE does not show advantage in the
simplest problem 1 with the lowest state dimension. It performs similarly to those top 2 methods
under N = 32, e.g. 34 vs. 32 query times, while performs averagely when the initial sample size
drops to N = 16. This is in a way not surprising, because BOGP, GA, PSO, NSGA2 and UNSGA3
can easily explore the error distribution of low state dimensions. BOGP uses Gaussian process to
construct accurate distribution of errors, while GA, PSO, NSGA2, and UNSGA3 sample sufficient
samples in each iteration to sense the distribution of error in each iteration, and there is a high chance
for them to find a good candidate in early iterations when the search space has a low dimension.
However, the valuable samples are sparsely distributed into the higher dimensional space, and it is
challenging for them to explore the error distribution and find the feasible states in the early iterations.

D GEESE Sensitivity Analysis

We conduct extra experiments to assess the hyperparameter sensitivity of GEESE using problem 1
under ϵ = 0.05. The studied hyperparameters include the number L of the base neural networks,
the number NIT of the candidate states generated for exploitation, the learning rate for training the
exploitation generator ηIT, and the early stopping threshold ϵe for training the base neural networks.
The results are reported in Table 6. It can be seen from the table that, although the performance varies
versus different settings, the change is mild within an acceptable range. This makes it convenient to
tune the hyperparameters for GEESE.

20



Table 5: Performance comparison under for two different sizes of initial samples, where the best is
shown in bold while the second best is underlined for query times.

Initial Size Algorithm

Problem 1

State Dimension:11

Problem 2

State Dimension:20

Problem 3

State Dimension:30
Failure times Query times Failure times Query times Failure times Query times

N = 32

BOGP 0 9.60 ±3.89 100 1000 ±0 15 239.12 ±367.12
GA 0 32.00 ±0 0 241.60 ±71.75 21 270.80 ±382.51
PSO 0 32.00 ±0 18 311.20 ±333.45 14 283.28 ±324.54

CMAES 0 77.56 ±4.38 1 321.01 ±188.6 22 280.54 ±363.18
ISRES 0 64.00 ±0 3 416.24 ±209.23 21 276.24 ±386.75
NSGA2 0 32.00 ±0 1 239.44 ±150.26 22 262.88 ±394.99

UNSGA3 0 32.00 ±0 2 218.72 ±136.53 22 260.64 ±396.51
SVPEN 100 1000 ±0 100 1000 ±0 100 1000 ±0

GEESE (Ours) 0 33.63 ±19.35 0 233.96 ±180.01 10 167.77 ±284.31

N = 16

BOGP 0 10.62 ±5.53 100 1000 ±0 17 249.88 ±372.99
GA 0 16.00 ±0 43 657.04 ±352.42 23 364.40 ±373.30
PSO 0 32.00 ±0 10 293.76 ±271.02 21 247.76 ±392.87

CMAES 0 77.56 ±4.38 1 333.49 ±156.24 17 320.07 ±350.84
ISRES 0 17.00 ±0 2 260.50 ±189.71 20 243.20 ±392.70
NSGA2 0 32.00 ±0 33 590.96 ±355.93 25 377.20 ±385.78

UNSGA3 0 32.00 ±0 28 487.04 ±360.22 28 408.80 ±397.77
SVPEN 100 1000 ±0 100 1000 ±0 100 1000 ±0

GEESE(Ours) 0 36.72 ±22.52 0 248.26 ±176.64 9 163.26 ±279.34

Below we further discuss separately the effects of different hyperparameters and analyze the reasons
behind: (1) We experiment with three base network numbers L = 2, 4, 8. It can be seen from Table
6 that there is a performance improvement as L increases in terms of the required query times,
but this is on the expense of consuming higher training cost. Thus, we choose the more balanced
setting L = 4 as the default in our main experiments. (2) We test different candidate state numbers
NIT = 1, 32, 64, 128 used for exploitation. Results show a performance increase followed by a
decrease as NIT increases. Using a candidate set containing one single state is insufficient, while
allowing a set with too many candidate states can also harm the efficiency. This can be caused by
the approximation gap between the surrogate error model and the true physical evaluation. In our
main experiments, we go with the setting of 64 for problem 1 as we mentioned in Appendix B,
because it provides a proper balance between the exploitation performance and the overfitting risk.
(3) We also examine different settings of the learning rate for training the exploitation generator, i.e.,
ηIT = 1e−1, 1e−2, 1e−3. Similarly, there is a performance increase first but followed by a decrease,
as in changing NIT. A larger learning rate can accelerate the learning of the exploitation generator
and subsequently enable a potentially faster search of the feasible state. But an overly high learning
rate can also cause fluctuation around the local optimum, and this then consumes more query times.
Although a smaller learning rate can enable a more guaranteed convergence to the local optimum,
it requires more iterations, thus more query times. (4) We experiment with three values of early
stopping threshold, i.e., ϵe = 1e−3, 1e−4, 1e−5. It can be seen from Table 6 that a decreasing ϵe can
first improve the efficiency but then reduce it, however without changing much the standard deviation.
An inappropriate setting of the early stopping threshold can lead to base neural networks overfitting
(or underfitting) to the actual data distribution, thus harm the performance.

Table 6: Results of sensitivity Analysis, where a better performance is highlighted in bold.

(1): Effect of Base Network Number

Base Network Number Query times

L = 2 20.20 ±16.37

L = 4 15.44 ±13.86

L = 8 15.09 ±13.01

(2): Effect of Latent Vector Number
Latent vector number Query times

NIT = 1 72.56 ±36.13
NIT = 32 28.21 ±17.05
NIT = 64 20.20 ±16.37
NIT = 128 26.95 ±14.12

(3): Effect of Learning rate for Exploration Generator
Learning Rate Query times
ηIT = 1e−1 27.56 ±9.28
ηIT = 1e−2 20.20±16.37
ηIT = 1e−3 64.36 ±44.50

(4): Effect of Early Stopping Threshold
Early stopping threshold Query times

ϵe = 1e−3 37.55±17.28
ϵe = 1e−4 20.20 ±16.37
ϵe = 1e−5 26.20 ±15.45
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