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Abstract

Modeling complex dynamical systems poses significant challenges, with tradi-
tional methods struggling to work across a variety of systems and scale to high-
dimensional dynamics. In response, we present DynaDojo, a novel benchmarking
platform designed for data-driven dynamical system identification. DynaDojo
enables comprehensive evaluation of how an algorithm’s performance scales across
three key dimensions: (1) the number of training samples provided, (2) the complex-
ity of the dynamical system being modeled, and (3) the training samples required to
achieve a target error threshold. Furthermore, DynaDojo enables studying out-of-
distribution generalization (by providing multiple test conditions for each system)
and active learning (by supporting closed-loop control). Through its user-friendly
and easily extensible API, DynaDojo accommodates a wide range of user-defined
Algorithms, Systems, and Challenges (scaling metrics). The platform also
prioritizes resource-efficient training for running on a cluster. To showcase its
utility, in DynaDojo 0.9, we include implementations of 7 baseline algorithms
and 20 dynamical systems, along with many demo notebooks. This work aspires
to make DynaDojo a unifying benchmarking platform for system identification,
paralleling the role of OpenAI’s Gym in reinforcement learning.1

1 Introduction

Dynamical systems, fundamental to disciplines like physics, engineering, economics, and neuro-
science, are difficult to predict and control when nonlinear and high-dimensional. Traditional methods
that rely on a known underlying model structure fall short when faced with modern problems like
stock market forecasting or modeling human social interactions, where the structure is either unknown
or non-existent. This has prompted a shift toward data-driven modeling (system identification), and
especially model-free methods, bypassing the need for predefined equations [1]. To benefit from
these data-driven approaches, however, researchers and practitioners need tailored benchmarks to
easily evaluate and compare methods for system identification in their area of study.

In this work, we present DynaDojo, an open, extensible benchmarking platform to standardize the
process of benchmarking any learning algorithm on any dynamical system. Modeled after OpenAI’s
Gym [2] and Procgen [3], DynaDojo introduces abstractions over algorithms, systems, and challenges
∗equal contribution
†corresponding author
1https://github.com/DynaDojo/dynadojo

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
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Figure 1: Pipeline for how to use DynaDojo. Select an algorithm (Step 1) and a system (Step 2),
then instantiate a challenge (Step 3), and evaluate to get results (Step 4). It is easy to run repeated
DynaDojo challenges to compare performances on in- vs. out-of-distribution data, with vs. without
active learning, between algorithms, and across systems (Step 5).

to promote ease of use, modularity, and broad compatibility. It includes a growing library of reference
algorithms and tunable dynamical systems. Uniquely, DynaDojo facilitates benchmarking scalability
via procedural generation and customizable challenges that systematically vary training set size,
system complexity, and target error rates. Challenges also allow for assessing out-of-distribution
generalization, active learning, algorithm comparison, and cross-system performance. Through its
simple yet flexible API, parallelized execution, and interactive demos, DynaDojo aims to serve as an
accessible yet rigorous benchmarking platform for the system identification community.

2 Related work

Because of the shared contexts in the fields of system identification and reinforcement learning (RL),
we draw upon and connect literature from both areas to motivate the development of our benchmarking
platform. While system identification focuses on accurately modeling system dynamics, RL aims
to optimize inputted actions to a system to maximize reward. Despite their distinct objectives, they
both seek to model and interact with complex environments and can often be used to solve similar or
overlapping problems. For a summary comparison of DynaDojo against existing benchmarks, see
Table 1.

2.1 Benchmarks and benchmarking platforms

Single-System Benchmarks In the field of system identification, benchmarks have been created
that use data on one specific dynamical system from a physical phenomenon of interest [4, 5]. These
single-system benchmarks have been used to evaluate specific learning algorithms [6] or to compare
different approaches [7]. These narrowly focused benchmarks do not facilitate the evaluation of an
algorithm’s generalization across a diverse set of systems, which is a central aim of our work.

Benchmark Suites Benchmark suites offer a broader scope for evaluating system identification
algorithms by covering a larger subset of system classes. These suites, however, are restricted to
specific types of systems or representations, such as chaotic systems [8, 9], physical systems [10], or
partial differential equations [11, 12]. DynaDojo is agnostic to the type of dynamical system to allow
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Systems Algorithms Extensible OOD Active
Learning

Sample
Efficiency

Complexity
Measure

Single-System [4, 5] 1
Chaos [8] 131 Fixed
PDEArena [11] 5 13 ✓

PDEBench [12] 11 3 ✓ ✓

nn-benchmark [10] 4 ✓ ✓

Procgen∗[3] 16 ✓ ✓ ✓ ✓ Binary
DynaDojo 20 7 ✓ ✓ ✓ ✓ Tunable

Table 1: Comparison with related system identification benchmarks. DynaDojo, to the best of our
knowledge, is the first extensible dynamical systems benchmark that evaluates out-of-distribution
(OOD) trajectories, supports active learning, benchmarks sample efficiency, and implements dynami-
cal systems with tunable complexity measures. ∗Note: Procgen is an RL benchmark.

for a diverse range of systems to be included. We implement 20 such systems (Figure 2) and provide
a simple wrapper interface to use to add more.

OpenAI Gym To address the fragmentation and lack of standardization in system identification
benchmarks, we adopt a similar approach to OpenAI’s Gym environment [2]. OpenAI Gym offers a
common interface for RL benchmarking tasks and, with over 6,500 citations, has become a standard
benchmark framework in RL. Our work creates an extensible, standardized gym-like platform to
unify system identification benchmarks. Contrary to OpenAI’s focus on environments and not
agents [2], we provide abstractions over both entities (systems and algorithms, respectively) and
additionally implement challenges that orchestrate benchmark evaluation while scaling parameters
such as system complexity and training set size. In Subsection 2.2 we motivate our focus on
scaling system complexity and training samples. And in Section 3.4, we explain why we implement
challenges for benchmark orchestration.

2.2 Generalization and scaling

In designing DynaDojo, we drew upon a variety of literature to determine desirable features and
evaluation metrics to implement in our platform.

Out-of-Distribution Generalization In system identification, there is interest in understanding
how well models can generalize beyond the training distribution. [13] probes how deep learning
models generalize to trajectories from out-of-distribution initial conditions for dynamical systems.
[14] investigates whether deep neural networks learning cellular automata show out-of-distribution
generalization for unseen initial configurations with different rule sets. Recent RL benchmarks
have sought to split train and test data to draw from different gaming environments in response to
problems of overfitting on training environments [15, 16]. Motivated by this work, DynaDojo enables
evaluating algorithms on both in-distribution and out-of-distribution data.

Cross-System Generalization While we are unaware of any work in system identification that
explores generalization across different systems, the concept has been explored in RL. Generalization
in RL has expanded from considering unseen states to learning across different domains, as exempli-
fied by AlphaZero’s ability to learn Go, Chess, and Shogi [17], compared to AlphaGo’s specialization
in Go [18]. It is also similar the field of multi-task learning in which one general policy might train
on several different environments [19]. This trend is reflected in RL benchmarks and toolkits that
measure performance across a diverse variety of environments [2, 3]. Our work takes an analogous
approach by facilitating easy evaluation of an algorithm’s performance across different classes of
dynamical systems, thereby capturing the algorithm’s cross-system generalization capabilities.

Scaling Complexity There is a desire to understand how algorithms perform on systems of varied
complexity. For example, within system identification, [14] and [20] test deep neural networks on
their generalization capabilities for learning cellular automata with varied neighborhood sizes.

In RL, benchmarks have been designed to train and test algorithms on game environments with
varying difficulty levels [3]. This work on games, however, uses imprecise notions of difficulty which
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Figure 2: The 20 dynamical systems currently packaged in DynaDojo. Systems are annotated with the
system type (discrete, continuous, or hybrid) and their measure of complexity. Users can adjust nearly
all DynaDojo parameters on these systems, including how trajectories are initialized, simulated, and
controlled, as well as system complexity and evaluation.
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are calibrated roughly on the training speeds of baseline algorithms, but this definition is inconvenient
because it is hard to generalize and test.

In system identification, [8] provides a suite of over 100 benchmark datasets of known chaotic
dynamical systems. Each system is annotated with mathematical properties reflecting the complexity
of the system. These annotations facilitate comparison of learning methods across dynamical systems
of varying complexity; our work is similarly motivated. In DynaDojo, instead of providing fixed
datasets corresponding to different complexity levels, dynamical system classes are defined to allow
their complexity levels to be programmatically scaled. This mirrors the approach in [21] which
evaluates physics-informed neural networks on a pair of dynamical systems with tunable parameters
that control complexity.

Active Learning In RL, active learning—where the algorithm selects control inputs to intelligently
explore state-space—enhances sample efficiency. While dynamical systems can accept control inputs
and therefore can support active learning, this property is often underutilized in system identification
benchmarks that predominantly use static datasets [4, 5, 8, 10, 12]. In our work, we enable algorithms
to provide control inputs to dynamical systems, thereby facilitating active learning approaches and
interactive data generation.

Sample Efficiency The ability to learn effectively from a limited number of training samples is
particularly relevant as it directly influences an algorithm’s performance in real-world scenarios
where data may be scarce, expensive to obtain, or hard to simulate [22]. In DynaDojo, we’ve designed
metrics that measure how an algorithm’s performance scales with changes in system complexity and
training dataset size. This feature enables users to assess an algorithm’s sample efficiency, particularly
as it handles increasing complexity.

3 Overview of DynaDojo

DynaDojo operates on three core objects: Algorithms, Systems, and Challenges. Run a Challenge
with any given Algorithm and System to evaluate how a learning algorithm’s performance scales
(Figure 1). DynaDojo currently provides a suite of 7 Algorithms, 20 Systems, and 3 Challenges to be
used. Additionally, DynaDojo provides abstract interfaces for Algorithms, Systems, and Challenges
that can be extended to support custom implementations (Figure 3).
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Figure 3: Users can extend DynaDojo by implementing their own Algorithm, System, or Challenge.

3.1 Algorithms

Algorithms are subclasses of AbstractAlgorithm, an interface designed to wrap any learning
algorithm that can be used for system identification. At initialization, algorithms are provided the
dimensionality of the data which can be used to define the appropriate parameters for the algorithm,
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for example, the number of layers in a neural network or degree of a polynomial in a polynomial
regression. The AbstractAlgorithm interface further abstracts the details of the algorithm under
fit, predict, and act methods for ease of use and simplicity. See the online documentation for
additional details on the 7 algorithms included in DynaDojo.

3.2 Systems

Systems are subclasses of AbstractSystem, an interface to wrap any procedurally generated dy-
namical systems. Systems are initialized with a latent dimension and embedding dimension which
determine the complexity of the system and its generated trajectories. The AbstractSystem in-
terface abstracts the details of simulating the system under the make_init_conds and make_data
methods. Initial conditions can be produced in-distribution or out-of-distribution. Data can be
generated with noise or optional control inputs. The AbstractSystem interface also abstracts the
evaluation metric for any particular dynamical system with the calc_error method. For example,
continuous systems, such as linear dynamical systems, might implement mean-squared error to
evaluate the accuracy of predicted trajectories, whereas a binary system, such as cellular automata,
might use Hamming distance instead. Other system-specific metrics, such as achieving stability with
control, can likewise be defined in calc_error. See Figure 2 for the systems that we package with
DynaDojo and the adjustable parameters available for systems.

3.3 Challenges

Challenges are subclasses of AbstractChallenge, an interface to orchestrate the evaluation of
algorithms on systems. Challenges simplify and parallelize repeated trials of training and testing
algorithms on systems while a parameter (of the system, algorithm, or training process) scales. A
challenge is run via the evaluate method: This method handles parameter scaling, seed generation
(for reproducible execution), and job parallelization. evaluate calls on execute_job, which is
where one defines the protocol for algorithm and system instantiation, data generation, and testing for
a single trial. The plot method visualizes the results from the challenge evaluation.

In DynaDojo 0.9, we implement three challenges to evaluate scaling: FixedComplexity,
FixedTrainSize, and FixedError. In FixedComplexity, we repeatedly train and test an al-
gorithm on a system of fixed complexity while scaling the number of training samples. In
FixedTrainSize, we repeatedly train and test an algorithm on systems of increasing complex-
ity while fixing the number of training samples. In FixedError, we search for the number of training
samples necessary for an algorithm to achieve a target error rate on systems of increasing complexity.
In Figure 4, we visualize the relationship between these three scaling challenges.
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Figure 4: DynaDojo Challenges provide a snapshot of an Algorithm’s scaling behavior along one
slice of a “performance landscape” relating three dimensions: system complexity (C), prediction error
(E), and number of training samples (N). Each Challenge varies parameters along one dimension
while holding a second one constant, to measure the algorithm’s performance on the third.
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3.4 Design

Unified but decoupled. Rather than providing a single or suite of benchmarks, DynaDojo is a
benchmarking platform. We designed abstractions over algorithms and systems to unify system
identification benchmarking under one platform. This allowed us to package 20 Systems and 7
Algorithms in DynaDojo and standardize comparing them via challenges for better consistency.
While each system and algorithm work seamlessly together, they are not locked into the platform. To
ameliorate the inflexibility of requiring interfaces over both algorithms and systems, we designed them
to be decoupled from another and thus independently usable outside of DynaDojo (see Section 4.1).

Focused on scaling, not error. Often, algorithms are evaluated by their performance on a single
task. On the contrary, we are focused on how that performance scales as the task gets harder or
more data is provided (see Figure 4). Specifically in system identification, we saw an opportunity to
numerically define task difficulty via measures of complexity. To evaluate scaling, many rounds of
instantiating algorithms and systems, training, and testing must be repeated as parameters scale. This
can lead to embarrassingly parallel resource-intensive workloads. Thus, we conceived of Challenges
to manage job parallelization across cores and compute nodes. We also packaged a DynaDojo Docker
container for easy use on cluster environments.

Procedurally generated, not static. Rather than a static dataset, dynamical systems in DynaDojo
procedurally generate data at train and test time in order to support active learning, where system
trajectories are altered by control inputs provided from an algorithm. Additionally, we require a
tunable, continuous measure of complexity for each system to support scaling metrics. This requires
that dimensionality of system trajectories must be dependent on the system complexity–another
reason for procedural data generation. Compared to pre-computed datasets, a limitation of our work
is that procedural generation of data can be costly, especially for systems of high complexity.

Simple by default. A key challenge in system identification is being able to compare one algorithm
against others across many systems. This is difficult because various existing algorithms and systems
either lack a simple API or all have different APIs. Wrestling together APIs and setting the right
parameters is a major barrier to benchmarking in system identification. We designed DynaDojo with
a focus on simplicity of the API to ensure that different algorithms can painlessly run on any system.
To enable this, all systems and algorithms must come with default presets for all parameters, with
optional overrides. This requires developers to do work upfront to determine reasonable or adaptive
settings for the algorithms or systems they contribute.

Flexible and versatile. We support a variety of settings to enable features such as OOD data
generation and control inputs in order to ensure DynaDojo covers broad use-cases (Figure 2).
Our extensible interfaces for algorithms, systems, and challenges to ensure that DynaDojo can be
adapted to use-cases we have not yet covered (Figure 3). To show the versatility of DynaDojo
as a benchmarking platform, we provide numerous example Jupyter notebooks for implemented
algorithms, systems, and challenges, available in our GitHub repository.

4 Example Usage

4.1 Running a single algorithm on a single system

DynaDojo algorithms and systems can be used independently of challenges. To train and test a single
algorithm instance on a single system instance, first instantiate the system and create the training and
test data (which, in this example, is OOD).

1 latent_dim, embed_dim, train_size, test_size, timesteps = (3, 3, 50, 10, 50)
2 lorenz= LorenzSystem(latent_dim, embed_dim, seed=100)
3 x0 = lorenz.make_init_conds(train_size)
4 y0 = lorenz.make_init_conds(test_size, in_dist=False)
5 x = lorenz.make_data(x0, timesteps=timesteps)
6 y = lorenz.make_data(y0, timesteps=timesteps, noisy=True)
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Then instantiate the algorithm, fit on the training data, predict, and calculate error. Plotting utilities,
demos, and examples are provided in our GitHub repository.

1 sindy = SINDy(embed_dim, timesteps,
seed=100)↪

2 sindy.fit(x)
3

4 # predict trajectories
5 y_pred = sindy.predict(y[:, 0],

timesteps)↪

6 error = lorenz.calc_error(y, y_pred)
7

8 fig, ax = dynadojo.utils.plot([y_pred,
y], target_dim=min(3, latent_dim),
labels=["pred", "truth"])

↪

↪

(a) Code for fitting and testing SINDy on a LorenzSystem
using DynaDojo. Plotting utilities are provided to visualize
high dimensional systems.
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(b) Plot of SINDy algorithm prediction for
a Lorenz system showing high overlap with
ground truth.

4.2 Running a challenge

To evaluate, for example, how linear regression generalizes to linear dynamical systems of increasing
complexity, run FixedTrainSize. First, decide on the complexities (latent dimensions) to scale
across, the number of training samples, the number of trials, and the training and testing conditions.
Supply these arguments to instantiate a FixedTrainSize challenge. Then, evaluate the challenge
with the algorithm class and plot the results. By default, challenges are run without parallelization;
however, code examples showing parallelization across cores and computers are provided on GitHub.

1 challenge = FixedTrainSize(
2 Latent_dims=np.logspace(1, 3,

20, include_end=True),↪

3 train_size=100,
4 timesteps=50,
5 control_horizons=0,
6 max_control_cost_per_dim=0,
7 system_cls=LDSSystem,
8 trials=100,
9 test_examples=50,

10 test_timesteps=50 )
11

12 data = challenge.evaluate(
13 LinearRegression,
14 noisy=True,
15 ood=True)
16

17 FixedTrainSize.plot(data)

(a) Code for running FixedTrain challenge with on
a training set size of 100 for LinearRegression on
LDSSystem with latent dimensions from 10 to 1000.
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(b) FixedTrainSize plot for linear regression on a lin-
ear dynamical system with 100 training samples. Latent
dimensionality is on the x-axis and error on the y-axis.
Curves for testing on in- and out-of-distribution (OOD)
data are overlapping, showing OOD generalization. Af-
ter L = 100, error rapidly increases, showing weaker
sample efficiency with high system complexity.

4.2.1 Analyses

With a suite of baseline algorithms and dynamical systems, DynaDojo is designed to support running
repeated challenges to analyze algorithms across systems, schematically depicted in Figure 1.

8



Out-of-Distribution Generalization To test how an algorithm generalizes to out-of-distribution
(OOD) data, run a challenge with the ood parameter enabled. Challenges will test the algorithm
on data simulated both from initial conditions drawn from the same distribution—as the training
set initial conditions—and from those drawn OOD. See Figure 7 for an example analysis of OOD
generalization in a FixedComplexity challenge.

Active Learning DynaDojo algorithms can optionally implement an act method which generates
control inputs that DynaDojo systems accept when generating data. To compare the effect of active
learning, run a challenge for a given algorithm without control and the same algorithm with control on
a given system. See Figure 8 for an example analysis of active learning in a FixedError challenge.

Comparing Algorithms To compare algorithms, run a challenge for two different algorithms on
the same system. See Figure 9 for an example comparison of two algorithms in a FixedError
challenge.

Cross-System Generalization To investigate whether an algorithm’s performance is generalizable
across systems, run a challenge with an algorithm on two different systems. See Figure 10 for an
example analysis of cross-system generalization in a FixedTrainSize challenge.
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Figure 7: Comparing OOD generalization for
deep neural networks (DNN) on linear dy-
namical systems (latent dimension 5) in a
FixedComplexity challenge. In-distribution
test error (blue line) is decreasing steeply but
OOD test error (orange line) is constant as number
of training samples (x-axis) increases, showing
lack of OOD generalization as training size scales.

Figure 8: Comparing active learning for Low-
est Possible Radius (LPR) on cellular automata
(CA) in a FixedError challenge. As CA com-
plexity (x-axis) scales, LPR w/ control (blue line)
requires less training samples (y-axis) than LPR
w/o control (orange line) to achieve zero error.
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Figure 9: Comparing two algorithms: Linear regression (LR) and deep neural network (DNN) are
evaluated on linear dynamical systems in a FixedError challenge. As complexity (x-axis) of the
system scales, LR (left) achieves a much lower target error of 10−5 with fewer or comparable number
of training samples (y-axis) than needed by a DNN (right) for a higher target error rate of 1.
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Figure 10: Cross-system generalization: SINDy is evaluated on Lorenz Systems (left) and linear
dynamical systems (LDS) (right) in a FixedTrainSize challenge. Error (y-axis) decreases with
complexity (x-axis) for Lorenz, but increases and plateaus with complexity for LDS. Also, OOD
(orange) and in-distribution (blue) error are matched, showing OOD generalization.

5 Future work

DynaDojo is still a work in progress. As of our most recent release, our platform has certain limitations
worth noting: While we implement parallel computing across all Challenges, the FixedError
challenge is still especially resource-intensive and susceptible to noise. We aim to implement more
sophisticated root-finding search algorithms to replace our exponential search.

To improve the rigor of our scaling results, we would like to move to a more objective measure of
system complexity (e.g., the intrinsic dimension of the objective landscape [23]). We also seek to
develop scaling metrics that summarize the results plotted by DynaDojo. Furthermore, we would like
to define a unified generalization metric that captures an algorithm’s capacity to work on OOD test
data, across scales of complexity, and on different dynamical systems altogether.

We will, of course, always look for ways to include more state-of-the-art algorithms and dynamical
systems of interest. In particular, we would like to develop simple wrappers for OpenAI Gym
environments and algorithms to immediately accommodate their vast library, and vice-versa, wrapping
DynaDojo Systems and Algorithms for OpenAI Gym.

To further broaden the scope and applicability of DynaDojo, we plan on introducing new Challenges
of interest to the community. For example, we aim to incorporate an optimal control challenge
involving stabilizing a system around a target trajectory, a transfer learning challenge focusing
on fine-tuning to new system data, a multi-task learning challenge around maintaining consistent
performance across multiple dynamical systems, and a curriculum learning challenge focusing on
leveling up system complexity without retraining an algorithm from scratch. All of the Challenges
can also be extended to measure prediction/control error on multiple timescales.

Lastly, in light of the emerging importance of scaling laws in deep learning, we hope to incorporate
new scaling dimensions. These will include the number of model parameters, computational cost of
training, and activation sparsity, on top of the three existing scaling dimensions. By including these
dimensions, we aim to offer a more comprehensive view of how algorithms scale.
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