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Abstract This appendix provides additional discussions (Sec. A), implementation details (Sec. B),
more qualitative results (Sec. C), several additional experiments (Sec. D), details of motion represen-
tations and metric definitions (Sec. E).

Code Code is available at https://github.com/jpthu17/GraphMotion. In this code, we provide the
process of the training and evaluation of the proposed method, and the pre-trained weights.

A Additional Discussions
A.1 Potential Negative Societal Impacts

While our work effectively enhances the quality of human motion synthesis, there is a potential risk
that it may be used for generating fake content, such as generating fake news, which can pose a threat
to information security. Moreover, when factoring in energy consumption, there is a possibility that
the widespread use of generative models for synthesizing human motions may contribute to increased
carbon emissions and exacerbate global warming.

A.2 Limitations of our Work

Although our method makes some progress, there are still many limitations worth further study.
(1) The proposed GraphMotion inherits the randomness of diffusion models. This property benefits
diversity but may yield undesirable results sometimes. (2) The human motion synthesis capabilities
of GraphMotion are limited by the performance of the pre-trained motion variational autoencoders,
which we will discuss in experiments (Tab. D and Tab. E). This defect also exists in the existing
state-of-the-art methods, such as MLD [3] and T2M-GPT [26], which also use motion variational
autoencoder. (3) Though the proposed GraphMotion brings negligible extra cost on computations, it
is still limited by the slow inference speed of existing diffusion models. We will discuss the inference
time in experiments (Tab. C). This defect also exists in the existing state-of-the-art methods, such as
MDM [25] and MLD [3], which also use diffusion models.

A.3 Future Work

In this paper, we focus on improving the controllability of text-driven human motion generation.
Recently, large language models have made remarkable progress, making large language models a
promising text extractor for human motion generation. However, despite their strengths in general
reasoning and broad applicability, large language models may not be optimized for extracting subtle
motion nuances. In future research, we will incorporate the features of large-scale languages into
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our model, using hierarchical semantic graphs to give large language models the ability to extract
fine-grained motion description structures. In addition, the application of hierarchical semantic graphs
to other cross-modal tasks [10, 11, 15], such as cross-modal retrieval [9, 12] and visual question
answering, is also a promising research direction.

B Implementation Details

B.1 Details of Hierarchical Semantic Graphs

Table A: Node types and edge types
in the parsed hierarchical semantic
graph. Each edge type corresponds to
a type of semantic role.

Node type Description

Motion global motion description
Action verb
Specific attribute of action

Edge type Description

ARG0 agent
ARG1 patient
ARG2 instrument, benefactive
ARG3 start point
ARG4 end point
ARGM-LOC location (where)
ARGM-MNR manner (how)
ARGM-TMP time (when)
ARGM-DIR direction (where to/from)
ARGM-ADV miscellaneous
ARGM-MA motion-action dependencies
OTHERS other argument types, e.g., action

To obtain actions, attributes of action as well as the semantic
role of each attribute to the corresponding action, we imple-
ment a semantic parser of motion descriptions based on a
semantic role parsing toolkit [21, 2]. Specifically, given the
motion description, the parser extracts verbs that appeared
in the sentence and attribute phrases corresponding verb,
and the semantic role of each attribute phrase. The overall
sentence is treated as the global motion node in the hierar-
chical graph. The verbs are considered as action nodes and
connected to the motion node with direct edges, allowing for
implicit learning of the temporal relationships among var-
ious actions during graph reasoning. The attribute phrases
are specific nodes that are connected with action nodes. The
edge type between action and specific nodes is determined
by the semantic role of the specifics in relation to the ac-
tion. As shown in Tab. A, we extract three types (motions,
actions, and specifics) of nodes and twelve types of edges
to represent various associations among the nodes.

B.2 Classifier-free Diffusion Guidance

Following MLD [3], our denoiser network is learned with classifier-free diffusion guidance [8]. The
classifier-free diffusion guidance improves the quality of samples by reducing diversity in conditional
diffusion models. Concretely, it learns both the conditioned and the unconditioned distribution (10%
dropout [23]) of the samples. Finally, we perform a linear combination in the following manner,
which is formulated as:

ϵ̂mscale = α
′
ϕm(zm, tm,Vm) + (1− α

′
)ϕm(zm, tm,∅),

ϵ̂ascale = α
′
ϕa(z

a, ta, [Vm,Va, zm]) + (1− α
′
)ϕa(z

a, ta,∅),

ϵ̂sscale = α
′
ϕs(z

s, ts, [Vm,Va,Vs, za]) + (1− α
′
)ϕs(z

s, ts,∅),

(A)

Where α
′

is the guidance scale and α
′
> 1 can strengthen the effect of guidance [3]. We set α

′
to 7.5

in practice following MLD. Please refer to our code for more details.

B.3 Implementation Details for Different Datasets

Following MLD [3], we utilize a frozen text encoder of the CLIP-ViT-L-14 [19] model for text
representation. The dimension of node representation D is set to 768. The dimension of latent
embedding D′ is set to 256. For the motion variational autoencoder, motion encoder E and decoder
D all consist of 9 layers and 4 heads with skip connection [20]. We set the token sizes Cm to 2, Ca

to 4, and Cs to 8. We set λ to 1e-4. All our models are trained with the AdamW [13, 17] optimizer
using a fixed learning rate of 1e-4. We use 4 Tesla V100 GPUs for the training, and there are 128
samples on each GPU, so the total batch size is 512. The number of diffusion steps of each level
is 1,000 during training, and the step sizes βt are scaled linearly from 8.5×1e-4 to 0.012. We keep
running a similar number of iterations on different data sets. For the HumanML3D dataset, the model
is trained for 6,000 epochs during the motion variational autoencoder stage and 3,000 epochs during
the diffusion stage. For the KIT dataset, the model is trained for 30,000 epochs during the motion
variational autoencoder stage and 15,000 epochs during the diffusion stage. Code is available at
https://github.com/jpthu17/GraphMotion. In this code, we provide the process of the training and
evaluation of the proposed method, and the pre-trained model.
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“A person gets on all fours and crawls forward, then turns around and crawls back.”

Real Ours MDM (ICLR23) MLD (CVPR23) MotionDiffuse (arXiv22)

“Using both hands, a person bends over to pat the ground.”

“A person sitting on the floor scratches their head and then leans back on their right hand.”

“Person kicks left legs back and forth.”

Figure A: Qualitative comparison of the existing methods. The darker colors indicate the later
in time. The generated results of our method better match the descriptions, while others have
downgraded motions or improper semantics, demonstrating that our method achieves superior
controllability compared to well-designed baseline models. We have provided a supplemental video
in our supplementary material. In the supplemental video, we show comparisons of text-driven
motion generation. We suggest the reader watch this video for dynamic motion results.
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A person is doing 

jumping jacks.

A person is doing a 

dance.

A person takes a jump 

sideways to their right.

A person hops 

up and down in 

place.

A person looks to the right 

then kicks something with 

their left foot.

The 

person is 

clapping.

A person walking 

forward then 

walks back.

A perso bend the knee and 

leand to the floor and 

start walked.

Dancing randomly like an 

indian traditional dance 

and mix of western culture.

A person steps forward and 

reaches down to grab or place 

something with their right hand.

Figure B: Additional qualitative motion results are generated with text prompts of the Hu-
manML3D test set. The darker colors indicate the later in time. These results demonstrate that our
method can generate diverse and accurate motion sequences.

C Additional Qualitative Analysis

C.1 Qualitative Comparison of the Existing Methods

We provide additional qualitative motion results in Fig. A. Compared to other methods, our method
generates motions that match the text descriptions better, indicating that our method is more sensitive
to subtle differences in texts. The generated results demonstrate that our method achieves superior
controllability compared to well-designed baseline models.
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Real Ours MDM (ICLR23) MLD (CVPR23) MotionDiffuse (arXiv22)

“The person pick something up and tilted it to the right.”

“The person [mask] something up and [mask] it to the right.”

Figure C: Qualitative analysis on the imbalance problem. The darker colors indicate the later
in time. When the verbs and action names are masked, existing models tend to generate motion
randomly. In contrast, our method can generate motion based solely on the action specifics. These
results show that our method is not overly focused on the verbs and action names.

Motion level Action level Specific level

“A man performs a squat while lifting his arms to shoulder height and hands above his head.”

“A figure is standing, turns to look right and raises the right arm perpendicular to the ground, then looks left and raises 

the left arm perpendicular to the ground.”

Figure D: Qualitative comparison of different hierarchies. The output at the higher level (e.g.,
specific level) has more action details. Specifically, the motion level generates only coarse-grained
overall motion. The action level generates local actions better than the motion level but lacks action
specifics. The specific level generates more action specifics than the action level.

C.2 Additional Visualization Results

In Fig. B, we provide additional qualitative motion results which are generated with text prompts
of the HumanML3D test set. These results demonstrate that our method can generate diverse and
accurate motion sequences from a variety of motion descriptions.

C.3 Qualitative Analysis on the Imbalance Problem

To demonstrate the imbalance problem of other methods and prove that our method does not have
this problem, we mask the verbs and action names in the motion description to force the model to
generate motion only from action specifics. As shown in Fig. C, when the verbs and action names are
masked, existing models tend to generate motion randomly. In contrast, our method can generate
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Table B: Ablation study about the total number of diffusion steps on the HumanML3D test set.
“↑” denotes that higher is better. “↓” denotes that lower is better. We repeat all the evaluations 20
times and report the average with a 95% confidence interval. “✘” denotes that this method does not
apply this parameter. To speed up the sampling process, we use DDIM in practice following MLD.

Methods Diffusion Steps R-Precision ↑ FID ↓
Motion Tm Action Ta Specific T s Top-1 Top-2 Top-3

The total number of diffusion steps is 1000 with DDPM [7]
MDM [25] 1000 ✘ ✘ 0.320±.005 0.498±.004 0.611±.007 0.544±.044

MotionDiffuse [27] 1000 ✘ ✘ 0.491±.001 0.681±.001 0.782±.001 0.630±.001

The total number of diffusion steps is 50 with DDIM [22]
MLD [3] 50 ✘ ✘ 0.481±.003 0.673±.003 0.772±.002 0.473±.013

GraphMotion (Ours) 20 15 15 0.489±.003 0.676±.002 0.771±.002 0.131±.007

GraphMotion (Ours) 15 15 20 0.496±.003 0.686±.003 0.778±.002 0.118±.008

The total number of diffusion steps is 150 with DDIM [22]
MLD [3] 150 ✘ ✘ 0.461±.002 0.649±.003 0.797±.002 0.457±.011

GraphMotion (Ours) 50 50 50 0.504±.003 0.699±.002 0.785±.002 0.116±.007

The total number of diffusion steps is 300 with DDIM [22]
MLD [3] 300 ✘ ✘ 0.473±.002 0.664±.003 0.765±.002 0.403±.011

GraphMotion (Ours) 100 100 100 0.486±.003 0.671±.004 0.767±.003 0.096±.008

The total number of diffusion steps is 1000 with DDIM [22]
MLD [3] 1000 ✘ ✘ 0.452±.002 0.639±.003 0.751±.002 0.460±.013

GraphMotion (Ours) 400 300 300 0.475±.003 0.659±.003 0.756±.003 0.136±.007

GraphMotion (Ours) 300 300 400 0.484±.003 0.694±.003 0.787±.003 0.132±.008

Table C: Evaluation of Inference time costs on the HumanML3D test set. We evaluate the average
time per sample with different diffusion schedules and FID. “↓” denotes that lower is better. Please
note the bad FID of MDM with DDIM is mentioned in their GitHub issues #76. “✘” denotes that this
method does not apply this parameter. We use DDIM in practice following MLD.

Methods Reference Diffusion Steps Average time per sample (s) ↓ FID ↓
Motion Tm Action Ta Specific T s

The total number of diffusion steps is 1000 with DDPM [7]
MDM [25] ICLR 2023 1000 ✘ ✘ 178.7699 0.544
MLD [3] CVPR 2023 1000 ✘ ✘ 5.5045 0.568

The total number of diffusion steps is 50 with DDIM [22]
MDM [25] ICLR 2023 50 ✘ ✘ 20.5678 7.334
MLD [3] CVPR 2023 50 ✘ ✘ 0.9349 0.473
GraphMotion Ours 20 15 15 0.9094 0.131
GraphMotion Ours 15 15 20 0.7758 0.118

The total number of diffusion steps is 150 with DDIM [22]
MLD [3] CVPR 2023 150 ✘ ✘ 2.4998 0.457
GraphMotion Ours 50 50 50 2.5518 0.116

The total number of diffusion steps is 1000 with DDIM [22]
MLD [3] CVPR 2023 1000 ✘ ✘ 16.6654 0.460
GraphMotion Ours 400 300 300 22.1238 0.136
GraphMotion Ours 300 300 400 17.0912 0.132

motion that matches the description based solely on the action specifics. These results show that our
method is not overly focused on the verbs and action names.

C.4 Qualitative Comparison of Different Hierarchies

We provide different levels of qualitative comparison in Fig. D. The results show that the output at the
higher level (e.g., specific level) has more action details. Specifically, the motion level generates only
coarse-grained overall motion. The action level generates local actions better than the motion level
but lacks action specifics. The specific level generates more action specifics than the action level.
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D Additional Experiments

D.1 Analysis of the Diffusion Steps

In Tab. B, we show the ablation study of the total number of diffusion steps on the HumanML3D
test set. Following MLD [3], we adopt the denoising diffusion implicit models [22] (DDIM) during
interference. As shown in Tab. B, our method consistently outperforms the existing state-of-the-art
methods with the same total number of diffusion steps, which demonstrates the efficiency of our
method. We find that the number of diffusion steps at the higher level (e.g., specific level) has a greater
impact on the result. Therefore, in scenarios requiring high efficiency, we recommend allocating
more diffusion steps to the higher level. Moreover, with the increase of the total diffusion steps, the
performance of our method is further improved, while the performance of MLD saturates. These
results further prove the superiority of our design.

D.2 Analysis of the Inference Time

In Tab. C, we provide the evaluation of inference time costs. Our method is as efficient as the
one-stage diffusion methods during the inference stage, even though we decompose the diffusion
process into three parts. This is because we can control the total number Tm + T a + T s of iterations
by restricting it to be the same as those of the one-stage diffusion methods. As shown in Tab. C, the
inference speed of our method is comparable to that of the existing state-of-the-art methods with the
same total number of diffusion steps, which demonstrates the efficiency of our method.

D.3 Analysis of the motion VAE models

We provide the evaluation of the motion VAE models. In Tab. D, we show the results on the
HumanML3D test set. Tab. E shows the results on the KIT test set. Among the three levels, the
performance of the specific level is the best, which indicates that increasing the token size can improve
the reconstruction ability of the motion VAE models.

E Motion Representations and Metric Definitions

E.1 Motion Representations

Motion representation can be summarized into the following four categories, and we follow the
previous work of representing motion in latent space.

Latent Format. Following previous works [18, 3, 26], we encode the motion into the latent space
with a motion variational autoencoder [14]. The latent representation is formulated as:

x̂1:L = D(z), z = E(x1:L). (B)

HumanML3D Format. HumanML3D [5] proposes a motion representation x1:L inspired by
motion features in character control. This motion representation is well-suited for neural networks.
To be specific, the ith pose xi is defined by a tuple consisting of the root angular velocity ra ∈ R
along the Y-axis, root linear velocities (rx, rz ∈ R) on the XZ-plane, root height ry ∈ R, local joints
positions jp ∈ R3Nj , velocities jv ∈ R3Nj , and rotations jr ∈ R6Nj in root space, and binary
foot-ground contact features cf ∈ R4 obtained by thresholding the heel and toe joint velocities. Here,
Nj denotes the joint number. Finally, the HumanML3D format can be defined as:

xi = {ra, rx, rz, ry, jp, jv, jr, cf}. (C)

SMPL-based Format. SMPL [16] is one of the most widely used parametric human models.
SMPL and its variants propose motion parameters θ and shape parameters β. θ ∈ R3×23+3 is rotation
vectors for 23 joints and a root, while β represents the weights for linear blended shapes. The global
translation r is also incorporated to formulate the representation as follows:

xi = {r, θ, β}. (D)

MMM Format. Master Motor Map [24] (MMM) representations propose joint angle parameters
based on a uniform skeleton structure with 50 degrees of freedom (DoFs). In text-to-motion tasks,
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Table D: Evaluation of the VAE models on the motion part of the HumanML3D test set. “↑”
denotes that higher is better. “↓” denotes that lower is better. “→” denotes that results are better if the
metric is closer to the real motion. The performance of the specific level is the best.

Methods Token Size R-Precision ↑ FID ↓ Diversity →
Top-1 Top-2 Top-3

Real motion - 0.511 0.703 0.797 0.002 9.503

Motion Level 2 0.498 0.692 0.791 1.906 9.675
Action Level 4 0.514 0.703 0.793 0.068 9.610
Specific Level 8 0.525 0.708 0.800 0.019 9.863

Table E: Evaluation of the VAE models on the motion part of the KIT test set. “↑” denotes that
higher is better. “↓” denotes that lower is better. “→” denotes that results are better if the metric is
closer to the real motion. The performance of the specific level is the best.

Methods Token Size R-Precision ↑ FID ↓ Diversity →
Top-1 Top-2 Top-3

Real motion - 0.424 0.649 0.779 0.031 11.08

Motion Level 2 0.431 0.623 0.745 1.196 10.66
Action Level 4 0.413 0.644 0.770 0.396 10.85
Specific Level 8 0.414 0.640 0.760 0.361 10.86

recent methods [1, 4, 18] converts joint rotation angles into J = 21 joint XYZ coordinates. Given
the global trajectory troot and pm ∈ R3J , the preprocessed representation is formulated as:

xi = {pm, troot}. (E)

E.2 Metric Definitions

Following previous works, we use the following five metrics to measure the performance of the
model. Note that global representations of motion and text descriptions are first extracted with the
pre-trained network in [5].

R-Precision. Under the feature space of the pre-trained network in [5], given one motion sequence
and 32 text descriptions (1 ground-truth and 31 randomly selected mismatched descriptions), motion-
retrieval precision calculates the text and motion Top 1/2/3 matching accuracy.

Frechet Inception Distance (FID). We measure the distribution distance between the generated
and real motion using FID [6] on the extracted motion features [5]. The FID is calculated as:

FID = ∥µgt − µpred∥2 − Tr(Σgt +Σpred − 2(ΣgtΣpred)
1
2 ), (F)

where Σ is the covariance matrix. Tr denotes the trace of a matrix. µgt and µpred are the mean of
ground-truth motion features and generated motion features.

Multimodal Distance (MM-Dist). Given N randomly generated samples, we calculate the average
Euclidean distances between each text feature ft and the generated motion feature fm from that text.
The multimodal distance is calculated as:

MM-Dist =
1

N

N∑
i=1

∥ft,i − fm,i∥, (G)

where ft,i and fm,i are the features of the ith text-motion pair.

Diversity. All generated motions are randomly sampled to two subsets ({x1, x2, ..., xXd
} and

{x′

1, x
′

2, ..., x
′

Xd
}) of the same size Xd. Then, we extract motion features [5] and compute the average

Euclidean distances between the two subsets:

Diversity =
1

Xd

Xd∑
i=1

∥xi − x
′

i∥. (H)
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Multimodality (MModality). We randomly sample a set of text descriptions with size Jm from all
descriptions. For each text description, we generate 2×Xm motion sequences, forming Xm pairs
of motions. We extract motion features and calculate the average Euclidean distance between each
pair. We report the average of all text descriptions. We define features of the jth pair of the ith text
description as (xj,i, x

′

j,i). The multimodality is calculated as:

MModality =
1

Jm ×Xm

Jm∑
j=1

Xm∑
i=1

∥xj,i − x
′

j,i∥. (I)
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