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Abstract

CLIP [1] proved that aligning visual and language spaces is key to solving many
vision tasks without explicit training, but required to train image and text encoders
from scratch on a huge dataset. LiT [2] improved this by only training the text
encoder and using a pre-trained vision network. In this paper, we show that a
common space can be created without any training at all, using single-domain
encoders (trained with or without supervision) and a much smaller amount of image-
text pairs. Furthermore, our model has unique properties. Most notably, deploying
a new version with updated training samples can be done in a matter of seconds.
Additionally, the representations in the common space are easily interpretable
as every dimension corresponds to the similarity of the input to a unique image-
text pair in the multimodal dataset. Experiments on standard zero-shot visual
benchmarks demonstrate the typical transfer ability of image-text models. Overall,
our method represents a simple yet surprisingly strong baseline for foundation
multimodal models, raising important questions on their data efficiency and on the
role of retrieval in machine learning.

1 Introduction
CLIP LiT ASIF

Figure 1: ASIF is a simple recipe to align the representations
of two frozen pre-trained encoders.

Large multimodal models such as
CLIP [1] are rapidly becoming the stan-
dard for foundation models [3] in com-
puter vision. This is largely due to
their zero-shot and open-world capabil-
ities that enable diverse suites of down-
stream tasks, from classification to de-
tection and visual search.

Overall, Radford et al. [1] demonstrated that treating image recognition as language interpretation
allows generalizing to a multitude of tasks without training explicitly for them. By building an
interpreter, CLIP changed the way computer vision is approached [4]: rather than extracting the “dog”
label from an image like a CNN [5], CLIP tests the hypothesis of a dog being in the image against
all the other hypotheses. The success of this image-text association is a testament to the power of
deep learning: the CLIP model was the first of its kind, and building it required a joint training of two
large neural encoders on a vast collection of image-text pairs.
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Still, training neural networks at such scale presents several challenges beside the obvious
infrastructure and training costs. Notably, it requires collecting massive training sets, mak-
ing it difficult to interpret the predictions of the model in light of their training data. Ad-
ditionally, the training assets are often not owned by the institution training the model [6].

Figure 2: The ASIF construction. An ASIF model
is defined by two unimodal pretrained encoders and
a collection of coupled embeddings. This is suf-
ficient to compare elements from different modes
through representations made of similarities with
ground-truth pairs: yj is more similar to x∗ than yi.

This introduces several additional challenges,
from reproducibility to the difficulty of en-
suring that an asset owner can remove their
data from the model [7–11]. Overall, these
considerations make large multimodal mod-
els relatively inaccessible to researchers and
practitioners until checkpoints are released or
access to demo is granted. And even then,
the ability to tweak the models by adding or
removing training data or to interpret their re-
sults is limited.

In this paper, we present ASIF, a simple
non-parametric procedure that turns pre-
trained uni-modal image and text encoders
into a multimodal model using a relatively
small1 collection of image-text pairs and no
additional training, as depicted in Figure 1.
The resulting model is functionally equivalent
to CLIP, effectively producing aligned
representations of images and their captions.

Intuition. The key insight is that captions of similar images are themselves similar (Fig. 3), and
therefore a representation crafted using just similarities to ground-truth multimodal pairs is quasi
mode-invariant (Fig. 2).

Figure 3: Captions of simi-
lar images are themselves
similar. Distribution of sim-
ilarities of 100k embedded
pairs in the training set ver-
sus the above image and cap-
tion embeddings. We high-
lighted in orange the 1000
pairs with the highest image
similarity.

The ASIF procedure is not only efficient but also has several intriguing
features built-in. One of the key advantages is the ability to easily edit
the model - adding new image-text pairs or removing outdated ones
is as simple as encoding or canceling the corresponding embeddings.
Furthermore, the multimodal representations are highly interpretable,
as each dimension corresponds to the similarity of the input to a
specific entry in the multimodal dataset.

Contribution. Our results are surprising and raise several questions.
Despite (1) the simplicity of the approach, (2) a multimodal dataset
that is up to 250 times smaller than in prior work and (3) the lack of ac-
tually training the model on multimodal data, ASIF achieves zero-shot
classification accuracy on downstream datasets that is comparable to
CLIP [1, 2]. This raises important questions on the data efficiency in
foundation models, making ASIF a very powerful and cheap baseline
for future work, and opening new doors for data centric AI [12].

In summary, we:

• Introduce the ASIF procedure, which turns two pretrained
unimodal black-box encoders into an interpretable multi-
modal model without tuning a neuron.

• Demonstrate the effectiveness of ASIF models on zero-shot
image classification tasks, where they achieve performance in
the same ballpark of CLIP with significantly fewer image-text
pairs.

• Discuss the unique properties of ASIF, its implications on
the role of memory and retrieval in machine learning, and the
new opportunities it opens.

1CLIP [1] experiments used from 400M to 15M captioned images as training samples, LiT [2] from 901M to
10M. Our experiments use 1.6M.

2



Figure 4: Zero shot classification with ASIF. In this example we determine the best caption for
the image x∗ from the two candidates, yi and yj . a. Compute and store the embeddings of the
multimodal dataset and the test samples. b. Compute the relative representation of the test image and
the candidate captions. c. We consider the relative representation of x∗ with respect to the image
collection x1, . . . , xn as if it was the relative representation of y∗ – the ideal caption for x∗ – with
respect to the corresponding caption collection y1, . . . , yn. d. We choose the candidate caption most
similar to the ideal one.

2 Aligning Pre-Trained Models with ASIF

In the following we present how a collection of captioned pictures implicitly defines a common space
for images and texts through relative representations [13], allowing to build a multimodal model
without training. Here we focus exclusively on vision and language as modalities due to the wider
availability of relevant models and paired data. However, we anticipate that our procedure could
be more generally applicable. Indeed, subsequent research by other teams has already utilized ASIF
as a baseline in other modalities, such as audio [14]. Before delving into the specifics of our method,
we will briefly review existing techniques for establishing this common space.

Contrastive training to build a common space. With multimodal models, we refer to architectures
that embed inputs of diverse modes into the same space. The better is a multimodal model, the
closer are representations of different modes of the same object. So far, this common space has been
obtained as the result of a contrastive training of one [2] or both the neural mode encoders [1, 15].
Using a collection of image-text pairs as training set, a contrastive loss promotes the closeness
of image and text embeddings from the same pair, while spacing out the ones from distinct pairs.
Zhai et al. [2] train just the text encoder to match the image embeddings of a pretrained visual
encoder. Once the encoders are trained, a multimodal model can be adapted to perform any visual
classification task just by crafting a caption for each label and selecting the one with the embedding
closer to the embedding of the input image (zero-shot image classification).

Relative representations. Our idea to build a common latent space is to use a collection of coupled
data as a “rosetta stone” between modalities, and represent each new data point as its similarities to
the points of the same modality in the collection. In other words, we compute a relative representation
for each new data point:

Definition 2.1. Given an encoder E : X → Rd and a subset of samples {x1, . . . , xn} denoted as
anchors, we define the relative representation of x′ as the n-dimensional vector:

x′ = [sim(x′, x1), . . . , sim(x′, xn)]

for some similarity function sim, e.g. the cosine similarity. xi ∈ X are input samples, e.g. images or
texts; xi ∈ Rd are the embeddings of xi obtained with the encoder E, i.e. the absolute representations
of xi; while xi ∈ Rn are the relative representations of xi.
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We observe that when each anchor is available in two or more modalities, we can compute relative
representations of samples from those modalities using the same subset of anchors. Most notably,
these relative representations will all live in the same space, even when they are representing samples
from different modalities. This foundational insight is illustrated in Figure 2.

Relation with Kernel methods. Definition 2.1 may not look surprising to readers familiar with
the literature on kernel methods [16]. Instead of presenting x′ as a kernel, we say it is a relative
representation to stress that (1) we want to explicitly represent the coordinates in our ASIF procedure
as opposed to operating in an implicit feature space and (2) we do not aim at learning regression
parameters, although we note this may help with the inference speed. Instead, we rely on a simpler
procedure that may be interpreted as a hard version of the Watson-Nadaraya [17, 18] regression
with a distance threshold. Nevertheless, it is worth noting that while the ASIF procedure hinges
on the ability to compute similarities between samples, such computation can be achieved using
a kernel function, thus sidestepping the need for explicit representations generated by unimodal
encoders. Although integrating kernel methods could offer benefits, as alluded to earlier, delving
into these prospects is beyond the scope of this paper. Our central focus remains on illustrating how
single-domain pre-trained networks can be aligned without additional training.

ASIF: relative representations inducing a meaningful common space. Consider the embedding
spaces of any two good text and visual encoders, we expect captions of images that are close in the
visual space to be themselves close in the language space. This fact makes a representation defined in
terms of similarities against a set of ground-truth multimodal pairs almost mode-invariant, i.e. an
image and its caption share almost the same representation.

That is why we can assign the best caption to a new image x∗ just by performing nearest neighbors
in this new space: we can consider the relative representation of x∗ respect to the image collection
(x1, . . . , xn) as if it was the relative representation of its ideal caption y∗ with respect to the
counterpart collection (y1, . . . , yn), see Figure 4. The whole procedure to set up an ASIF model
and use it to find the best caption for a new image follows.

ASIF recipe. Ingredients:

• Two good encoders, each mapping a single data modality to a vector space. Let X
and Y be the mode domains, for instance a pixel space and a text space, we need
E1 : X → Rd1 and E2 : Y → Rd2.

• A collection of ground truth multimodal pairs: D = {(x1, y1), . . . , (xn, yn)}, for
instance captioned images.

Procedure to find the best caption among a set of original ones Ŷ = {ŷ1, . . . , ŷc} for a new
image x∗:

1. Compute and store the embeddings of the multimodal dataset D with the en-
coders E1, E2 and discard D. Now in memory there should be just DE =
{(x1, y1), . . . , (xn, yn)};

2. Compute the n-dimensional relative representation for each candidate caption ŷi =
[sim(ŷi, y1), . . . , sim(ŷi, yn)], where sim is a similarity function, e.g. cosine similarity.
Then for each ŷi set to zero all dimensions except for the highest k, and raise them to
p ≥ 1. Finally normalize and store the processed c vectors ŷi. Choose k and p to taste,
in our experiments k = 800 and p = 8;

3. Compute the relative representation of x∗ using the other half of the embedded multi-
modal dataset DE and repeat the same processing with the chosen k and p;

4. We consider the relative representation of the new image x∗ as if it was the relative
representation of its ideal caption y∗, i.e. we define y∗ := x∗. So we choose the
candidate caption ŷi most similar to the ideal one, with i = argmaxi(sim(y∗, ŷi)).

To assign one of the captions to a different image x∗∗ repeat from step 3.
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Properties of ASIF models. The above construction yields several intriguing properties for free:

No training and “data centric”. As we have seen, an ASIF model is built on top of two independently
pretrained encoders and the embeddings of a multimodal dataset, and so without training or finetuning
any neuron. Being deployable or updatable in seconds, an ASIF model is radically “data centric” [12].
For example, it is trivial to adjust the model by adding or forgetting specific samples. The latter use-
case is particularly important, as the right to use specific assets may change over time and removing the
effect of specific samples from a trained network requires sophisticated forgetting techniques, e.g. [7–
11]. In our procedure, the encoders should be pre-trained with established data sets that do not change
over time, while removing the effect of a multimodal pair is as simple as deleting its embeddings.

Data efficiency: Being able to exploit two pretrained encoders, ASIF models require far less ground-
truth multimodal pairs to become effective. As confirmed by our experiments, ASIF reaches competi-
tive zero-shot performance on diverse classification benchmarks by using a fraction of the multimodal
data of its predecessors, reaching a respectable accuracy even with thousands of pairs (we refer to
Section 3 for more details). This is in line with classical work in computer vision, where prototypical
networks [19] are a strong baseline in the extremely few-shot regime.

Interpretability: Sparse relative representations make the ASIF models interpretable classifiers.
In fact, we can trace back every prediction to a small set of data points in the multimodal
dataset –corresponding to the dimensions that are nonzero in both the image and the label relative
representations– accountable for the outcome (at most k), see Figure 6. This enables visualizations of
the relevant samples contributing to a correct or incorrect prediction at no extra cost, in stark contrast
with other approaches that are often costly [20] and fragile [21, 22].

Relation to k-Nearest Neighbors. Like k-NN, ASIF is a non-parametric supervised learning
algorithm that requires an explicit representation of every entry in the training dataset at test time.
Differently from k-NN, ASIF can perform open-ended classification, as shown e.g. in Figure 4 with
two competing brand new captions. Indeed, ASIF is functionally equivalent to CLIP, and can function
as a drop-in replacement in applications using CLIP-like models.

Implementation that scales. Clearly, our method pays the price of avoiding training with a larger
memory footprint and increased computation at inference time, since we need to compute not only
the embeddings but also the cosine similarities against the multimodal dataset. As such, our approach
should not be considered a general one-stop replacement for CLIP, although in our experiments
we managed to scale ASIF to 1.6M pairs while maintaining a reasonable inference speed. Our
non-optimized implementation of ASIF is less than 2x slower than CLIP. On a positive note, there are
two well-established techniques that could radically enhance the efficiency of ASIF and potentially
enable scalability to billions of entries. The memory footprint required to store all the embeddings of
the multimodal dataset can be dramatically reduced using product quantization [23], while inverse
indexing [24] can be used to circumvent the need for computing the cosine similarities against the
entire dataset at test time. These techniques are both implemented e.g. in the FAISS library [25].
Finally, we find that the distribution of pairs chosen during inference is rather short-tailed, presenting
opportunities to massively prune the model even at deployment time, deleting from memory the data
that is never used. It should be noted, however, that the assessment of the performance of large-scale
optimized ASIF models is beyond the scope of this work. While it is an interesting direction for
future research, the focus of our current study is on establishing the potential the ASIF method.

2.1 Design choices and implementation of ASIF models.

Curating the multimodal dataset. While neural models like CLIP or LiT are defined just by the
weights of the two encoders, to univocally identify an ASIF model we also need the embeddings of
the multimodal dataset. Even if two image-text ASIF models rely on the very same encoders, they
comply to different visual understandings of the world if they are based on different collections of
image-text pairs, therefore achieving different performances on the same tasks. Unlike conventional
neural vision models, ASIF enables effective curation of the training dataset through swift iterations,
given the absence of training and the smaller datasets. Furthermore, ASIF provides the means to
assess the impact of each training pair, as demonstrated in Figure 6.

Salient hyperparameters. While using the raw relative representations already produces an ASIF
multimodal model with non-trivial capabilities, we found that two simple treatments greatly improve
performance and efficiency, and also foster interpretability.
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Method Dataset size ImageNet CIFAR100 Pets ImageNet v2
CLIP [1] 400M (private) 68.6 68.7 88.9 -
CLIP [1] 15M (public) 31.3 - - -
LiT [2] 10M (public) 66.9 - - -
CLIP( Zhai et al. 2, uu) 901M (private) 50.6 47.9 70.3 43.3
LiT [2] 901M (private) 70.1 70.9 88.1 61.7
ASIF (sup vis. encoder) 1.6M (public) 60.9∗ 50.2 81.5 52.2
ASIF (unsup vis. encoder) 1.6M (public) 53.0∗ 46.5 74.7 45.9

Table 1: Zero shot classification accuracy of different multimodal designs. CLIP and LiT
implementations vary by dataset and the visual transformer used as image encoder. The first CLIP
and LiT entries use a VITb16 as ASIF, the last CLIP and LiT entries use a VITb32 (larger patch size).
The public dataset of CLIP is a curated subset of YFCC100m [38], while LiT and ASIF use CC12M.
∗We used a subset of the ImageNet validation set to tune the two hyperparameters of ASIF which were then used on the other data sets. The number reported in the
table is a test set. When tuning on different datasets, accuracies stay consistent, see the appendix.

i) Sparsification. We set to 0 all the entries of the n-dimensional relative representation except for the
top k. In our experiments n and k are respectively in the order of millions and hundreds. In this way
we cut off the small noisy signals from the dissimilar entries, that accumulated during comparisons
would destroy the signal from the few similar entries. Furthermore we get highly interpretable
representations that can be efficiently compared, since we have just k nonzero features, each one
linked to a single entry in the multimodal dataset.
ii) Exponentiation. We raise all the nonzeroed similarities sim(x′, xi) to p, with p ≥ 1. This non-
linearity weighs more the contribution of the most similar entries in the relative representation.
Besides the pivotal choice of the ground-truth multimodal pairs, the number of non-zero elements
k and the exponent p are the salient hyperparameters to consider when deploying an ASIF model.
In general, we found that picking a p ̸= 1 may help, while choosing a k ≪ n is always crucial. For
more details see Section 3.

2.2 Closely Related Works

Classics. In [26], Stanley Ulam affirms that a mathematical formalization of the word “as”–on a
par with the connectives “and”, “or”, “implies” and “not”–would be a key milestone to artificial
intelligence. This idea of analogies being at the core of cognition is shared by Hofstadter [27], who
states that a concept is a collection of analogies, in line with what the ASIF procedure prescribes.

Retrieval augmented foundation models. Recent works in NLP enhance unimodal language models
with retrieval to reduce the size of the architectures and the training dataset while also making results
more transparent [28, 29]. Our work is in line with this view, that the ASIF procedure extends to the
multimodal case. Importantly, ASIF offers a new perspective on data centric AI [12], where data and
the external memory implement the alignment between modalities. Networks with discrete Key-Value
bottlenecks [30] are closely related to our approach, with the critical differences that our memory
is not learned and that their decoder is trained for classification. Retrieval and memory-augmented
models have also been successful in Reinforcement Learning [31], physical reasoning [32], and
code generation [33]. Finally, we notice that making predictions on new samples by exploiting the
similarity with a dictionary of previous data points is a common approach in computer vision [19] for
few-shot learning. Our procedure is also related to compressed sensing algorithms where a signal
(in our case an image) is sensed as a sparse combination of fixed atoms [34, 35] with an iterative
projection procedure [36, 37] and only transmitting the coefficients to the receiver (text modality).

Learning multimodal models. Following the intuition outlined by early works on aligning text
and image embeddings [39, 40], today large multimodal models are conquering the computer vision
scene thanks to their wide applicability and easy transfer to new downstream tasks [1, 2, 15, 41].
We identify two key leaps respect to traditional models like ResNet [42]: (i) Free text allows to learn
visual concepts beyond a finite set of predefined categories and to exploit the structure of language
to compose them, as masterfully seen in Dall-E [43]. (ii) The recognition tag transitioned from being
an output pulled out of the image by the neural stack (the label) to become an input that should be
interpreted, and therefore processed by its own encoder (the free text caption). This corresponds
to an epistemological perspective shift, as discussed by Norelli et al. [4]. Data and learning efficiency
are clear challenges for large multimodal models, that often require hundreds of millions of examples.
Efforts such as [2, 29] attempt to reduce this. ASIF presents a different take on this problem, showing
how much can be achieved by simply remembering the training data efficiently.

6



3 Empirical Evidence

In the following we compare ASIF to traditional multimodal models based on contrastive training,
CLIP and LiT. We then take a closer look to the classification of a single image, unpacking the
relative representations and following the classification algorithm step by step. As a prelude to the
above, we start by discussing the pretrained encoders and dataset forming the ASIF models we tested.

Pretrained encoders and multimodal dataset used. For our primary experiment, we utilized vision
transformers as image encoders, pretrained either in a supervised manner (DEIT base, [44]) or in
an unsupervised manner (DINO VITs8, [45]), on Imagenet 1k [46] and 21k [47] respectively. The
embedding size was 768 for DEIT and 384 for DINO. This configuration aligns with that used in
LiT [2], with the sole distinction being that, unlike LiT, we used a pre-trained, frozen text encoder.
Regarding the text encoder, we employed the SentenceT transformer [48], trained on a dataset
comprising more than 1 billion sentences obtained from the internet. We employed the first 1.6M
entries of the Conceptual Caption dataset (CC12M, [49]) as our multimodal dataset. This dataset
amasses images and filtered alt-texts collected from the internet. To optimize performance on a single
Tesla T4 GPU, we limited our analysis to the initial 1.6M pairs. In our “scaling-laws” experiments,
we also utilized DEIT tiny and small vision transformers [44] and two smaller SentenceT encoders.

Zero-shot performance. We assessed the quality of our ASIF multimodal model by comparing its
zero-shot classification performance against CLIP and LiT on four datasets: CIFAR100, Imagenet, Im-
agenetv2, and PETS [46, 50–52]; see Table 1. We crafted label prompts as in Zhai et al. [2, Table 11].

Remarkably, we achieve competitive performance with CLIP and LiT using two frozen pretrained
encoders and a fraction of the image-text pairs.

The two ASIF models reported in Table 1 differ for the vision encoder, that is respectively supervisedly
(DEIT) and unsupervisedly pretrained (DINO). We tuned k and p on the ImageNet validation set,
in both cases we used k = 800 and p = 8. The comparison between the two versions is not
completely fair since the visual transformer architecture of DINO is smaller (e.g. the codings are
384-dimensional rather than 768) but corroborates the effectiveness of ASIF with encoders pretrained
using no supervision. In the appendix we report the results of a wider collection of ASIF models
based on different visual and textual backbones.

Summary: Overall, we observe that our ASIF procedure can achieve competitive zero-shot results
with a fraction of the image-text pairs used in prior work (assuming access to other pre-trained, even
unsupervisedly, unimodal models).

Figure 5: ASIF is a learning algorithm: Im-
agenet accuracy improves smoothly as we in-
crease the size of the multimodal dataset. Colors
show the impact of k and p (non-zeros, val exp).

ASIF scaling laws. In Figure 5 we show the full
zero-shot accuracy trend on Imagenet as the size of
the multimodal dataset grows for different choices
of k and p. ASIF models become effective very
quickly: we reach a non-trivial 18% classification
accuracy using just the first 10,000 pairs in the
multimodal dataset. We recall that building an
ASIF model from scratch still requires a lot of uni-
modal data to pretrain the encoders, but now this
data may come untied and even without any label.

We tested ASIF further with smaller image and
text encoders on multimodal datasets of different
sizes (102 to 106 image-text pairs from CC12M)
to provide early evidence about ASIF scaling laws.
We used DEIT tiny, small, and base vision trans-
formers [44], along with two smaller SentenceT encoders. As we see in Figure 5 and in the appendix,
Imagenet classification accuracy grows smoothly with the size of the multimodal dataset, and per-
formance does not saturate earlier with smaller encoders. These results are promising but still
preliminary, further experiments with larger multimodal datasets are left for future work.

Summary: Our experiments show a steady improvement in ASIF’s performance as the size of the
multimodal dataset increases. Performance deteriorates with smaller encoders, but even then there is
no sign of saturation or plateau.
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Figure 6: ASIF representations are interpretable and amendable. Thorough analysis of the
relative representations –the four vectors in green– produced by ASIF to assign the best caption to a
given image x∗. Every dimension corresponds to the similarity of the input image (text) to a unique
image (text) entry in the multimodal dataset. We can visualize the training samples leading to correct
or incorrect predictions, which is useful to curate better data. For example, the second training sample
is broken, we can remove it and produce an updated ASIF model in seconds.

Adjusting an ASIF model in seconds. Consider classifying EuroSAT [53] satellite images using
ASIF. Initially, the zero-shot performance outperforms random chance but is not impressive (29.4%
unsup. configuration, 10 classes). CLIP, while better, also falls short with a 54.1% performance rate.

Now, imagine we acquire 100 new image-text pairs from EuroSAT. Our goal is to develop a new
multimodal model based on an updated training set, anticipating the need to process more satellite
images in the future. With CLIP, this would require us to fine-tune or retrain the model from
scratch using the updated dataset. In contrast, ASIF requires only to obtain and store the new pairs’
embeddings. The model retains its usability for all the previous images, but it now also makes
accurate predictions for satellite images, achieving an 82.2%± 2.0 accuracy on EuroSAT.2

Similarly, if we need to remove samples from the multimodal training dataset—either because they
are faulty (as shown in Figure 6) or because we have lost the license to use them—the process is as
simple as deleting the corresponding embeddings to get a new model.

Summary: ASIF enables quick model adjustments and data handling without the need for retraining,
unlike traditional models such as CLIP. This demonstrates its practicality in real-world scenarios,
such as the emergence of a new setting or the loss of rights for assets used during training.

Deep dive into a classification. To better understand why and how the ASIF procedure works, we
are going to follow step by step the single classification depicted in Figure 6, showing the entries of
the multimodal dataset used to build the relative representations. For simplicity we assume k = 23.

We want to find the Imagenet label of the upper left image in Figure 6. The first step is to compute
its relative representation with respect to the multimodal dataset, this procedure selects the 23 most
similar images in our collection. The most similar are indeed triumphal archs that–as similarity
decreases–turn to generic structures with archs or ancient monuments. No other image in the
multimodal dataset is involved in the classification, we could replace all the entries in our collection
except for these 23, and as long as no new image is more similar to the input image, every computation
in the classification process would remain the same. This consistency of the ASIF procedure is in
contrast to traditional approaches like CLIP and LiT, where the parameters defining the encoder
computations are shaped by the whole multimodal dataset through contrastive learning.

Now, we approach the pivotal step of the ASIF procedure: jumping into the text space by treating the
relative representation of the input image as if it were the relative representation of its ideal caption.
The vector remains the same, but its meaning changed: now it signifies how much the ideal caption
should be similar to 23 captions.

2Why does CLIP perform better zero-shot? Likely, its 400M pairs have more samples close to satellite images
than ASIF’s 1.6M samples from CC12M, evidenced by ASIF’s drastic improvement with just 100 new samples.
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The efficacy of this jump hinges entirely on the quality of the multimodal dataset. Looking at
the 23 captions in Figure 6, we are confident that the most fitting candidate caption corresponds
to one of the prompts associated with the triumphal_arch label in ImageNet, such as “a photo
of a triumphal arch”. Conversely, a dataset featuring 23 non-informative captions, such as file
names “IMG_20180823.jpg” or camera settings “D90 18.0-70.0 mm f/3.5-4.5”, would not allow
the model to recognize the correct class even with the best image and text encoders. This limitation is
actually a defining feature of the ASIF procedure, as the meaning attributed to the input is ultimately
determined by the multimodal dataset and not by the encoders: by acting just on the image-text pairs,
we have full control over the model’s output.

Summary: Our simple (non-cherry picked) example showcases how the ASIF predictions can be
easily attributed to specific examples in the multimodal training data by construction. This feedback
can be used to explain predictions and grow high quality datasets in data centric AI, for example by
inspecting which examples contribute to incorrect classifications.

4 Discussion

The effectiveness of the ASIF procedure raises questions on the role of memory and retrieval in
machine learning, while at the same time opens new opportunities for products based on multimodal
models, opening many avenues for future works. In the following we will discuss these aspects.

Perception and interpretation disentangled. In ASIF there is no trace of the multimodal data
in the weights of the encoders, which are pretrained on different unimodal datasets. Nonetheless,
the relative representations and the outcome of any classification task fundamentally depend on the
multimodal dataset. This state of affairs reflects the factorization of perception and interpretation
in the two stages constituting an ASIF model; the encoding and the construction of the relative
representations. Such factorization is desirable because it relieves the black-box neural encoders
from the responsibility of attributing meaning to their inputs, as envisaged by Eco [54, Par. 3.3.1.3].
Therefore, we can consider the neural encoders as mere sensors and focus only on the second stage
to analyze, explain, and act on the interpretations of an ASIF model, as shown in Figure 6.

Learning or retrieval? As we have seen, the ASIF procedure requires no training: it does not distill
the multimodal data into any learnable parameter. Rather, it prescribes a rigid memorization of the
embeddings of the multimodal dataset, where each entry has its fixed-size spot, similarly to a retrieval
process. On the other hand it seems impossible to not describe ASIF as a learning algorithm; for
instance it satisfies the fundamental characterization given by Mitchell [55]: the more the multimodal
data the more ASIF improves, as we can clearly see in Figure 5. Ultimately, an ASIF model is
functionally comparable to CLIP. ASIF blurs the border between learning and retrieval by questioning
the effectiveness of storing information only in the weights, and rather advocates to combine learning
representations with external memories. We encourage more work on memory augmented neural
networks and towards understanding the implications of memory for generalization.

Generalization to new distributions. The empirical performance of ASIF calls for a discussion
on zero-shot and out-of-distribution generalization in foundation models trained with huge data sets.
Clearly, the performance of ASIF will depend strongly on the multimodal data used for alignment.
As an example, the good performance on Imagenet may not be particularly surprising in light of the
qualitative evaluation seen in Figure 6. There, our query image might as well had been part of our
multimodal data set, as the semantic gap with its neighbours appears to be small. Despite this, our
choice of downstream evaluation and pre-training data set is identical compared to prior work [2]. As
such, while it appears clear that ASIF should fail when the semantic gap between downstream task
and “training data” is large, it is unclear why it should be different for more standard models like
CLIP [1] and LiT [2]: if a gap does exist, future work should work to address it. In the meanwhile,
we recommend that future foundation models are benchmarked on significantly broader sets of
downstream tasks, ideally with some analysis of the semantic distance between test and training data
(if any). Alternatively, our results may be interpreted in light of the strong performance of unimodal
models. There may be a limited benefit of training from scratch on less curated multimodal data sets
compared to standard and well established unimodal data sets, although we posit that at even larger
scales the difference may be more significant.

Limitations. The simple ASIF procedure presented here offers a strong baseline for multimodal
models, but its performance still falls apart to CLIP and LiT when the mutimodal dataset is abundant
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and the cost of training is not a concern. Additionally, the large dimensionality of the relative
representations, even if sparse, poses challenges for directly applying ASIF to tasks like text-to-image
generation. We recognize that the experiments reported in this paper do not provide a comprehensive
examination of the myriad of downstream tasks multimodal models are known to adeptly handle, it is
important to note that such broad coverage was explicitly out of scope for this work. Our primary
objective here was to introduce and justify the ASIF procedure, illustrating its effectiveness on the
representative task of zero-shot classification. In making this choice we followed [2], that used the
very same datasets to showcase the benefits of a locked image encoder, that is their main claim. We
anticipate and welcome a more extensive evaluation of ASIF in the context of a wider range of tasks
in future research endeavors.

Conclusions. We presented a simple procedure called ASIF to assemble a fully functional multi-
modal model like CLIP from two unimodal pretrained encoders and a collection of image-text pairs
without tuning a single neuron. While achieving competitive zero-shot classification results with its
predecessors using a fraction of the data, the proposed ASIF procedure enriches multimodal models
with editability–a new model based on different pairs can be deployed in seconds–and interpretable
representations. The effectiveness of ASIF models also clashes with the dominant view of a learning
algorithm as a way to distill data into the parameters of a model, and raises questions on the role of
memory and retrieval in machine learning.
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Appendix
In this appendix, we further showcase the interpretability of ASIF models when used for classification
in Figure 7. Then we provide additional details for the scaling laws and EuroSAT experiments
presented in the main paper, and report additional results about the impact of the size of the encoders
(Table 2), and of the image training dataset. We also report further evidence that the ASIF construction
is not overly sensitive to its hyperparameters. Lastly, we discuss more in detail the idea that captions
of similar images are alike in Figure 10.

Figure 7: Interpretability of EuroSAT classifications through ASIF. Analysis of the classification
outcome of two EuroSAT query images using ASIF. The scatter plot shows the samples in the training
set closer to the query image and the candidate caption of the corresponding color. Image and text
similarity are computed through cosine similarity in the visual space of DINO and the text space
of SentenceT. The size of the marks is proportional to the product of the image and text similarity.
The class chosen is the one with the largest total area. Below are shown the corresponding pairs
from the training dataset CC12M. We can notice the distance between the EuroSAT dataset and the
1.6M samples of CC12M we used, many of the closest images are not from satellite and even then
may have misleading descriptions, as image A in the second example. An interactive version of this
plot for any ASIF classification can be obtained using our code demo attached in the supplementary
material.

A Additional details on the scaling laws experiment
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Figure 8: ASIF performance does not saturate earlier
with smaller encoders. Classification accuracy keeps
growing without saturating but is lower for smaller mod-
els. Furthermore, we observe that the quality of the vision
encoder is more relevant than the quality of the text en-
coder with respect to zero-shot Imagenet classification.

Models used in the scaling laws exper-
iments. As discussed in the main pa-
per, we tested ASIF with smaller image
and text encoders to provide early evi-
dence about ASIF scaling laws. We used
three different instances of DEIT [44]
vision transformers, the tiny (5.6M pa-
rameters, 192-dimensional embeddings),
small (22M, 384), and base (87M, 768),
and the original VITb16 vision trans-
former [56] (86M, 768). The DEIT mod-
els were pre-trained on a smaller dataset,
the standard Imagenet1k training set [46],
while VITb16 was pretrained on Ima-
genet21k [47]. As text encoders, we
used smaller versions of SentenceT [48],
with 23M and 33M parameters (both 384-
dimensional embeddings), in contrast to
the 110M parameters of the main model
(768).

Figure 8 shows that, with smaller en-
coders producing smaller embedddings,
we do not observe a performance satu-
ration within 1.6M image-text couples.
Further experiments with larger datasets
are left for future work.

Impact of image pre-training data. In
Table 2 we report the complete results of
ASIF models using DEIT encoders [44].
We observe the expected positive corre-
lation between the size of the encoders
and the classification accuracy. Interest-
ingly, ASIF with the largest instance of
DEIT beats the one based on the stan-
dard VIT pretrained on Imagenet21k on
three out of four of test datasets, while
losing more than 10 points on CIFAR.
These results may be interpreted in light
of the similarity of the datasets we are
using, with features useful to classify CI-
FAR images less overlapping with Ima-
genet1k features with respect to the other
datasets.

B Additional details on the EuroSAT experiment.

EuroSAT, a renowned benchmark for satellite image classification, serves as a testing ground for
out-of-distribution generalization in zero-shot and few-shot scenarios [53]. The dataset contains
27,000 images labeled under ten categories. Our ASIF model with a DINO visual backbone (denoted
as ’ASIF unsup’ in table 1) achieved a zero-shot classification score of 29.4%. While significantly
better than random chance, this modest performance is not surprising considering the scarce presence
of satellite images in the CC12M dataset.

As a further experiment, we randomly selected 100 images from the EuroSAT dataset and incorporated
them into our ASIF training set, raising the total to 1,500,100 image-text pairs and leaving 26,900
images for testing. We created captions for the EuroSAT images using the template “a satellite image
of [CLASS NAME]”. This way the ASIF model improves dramatically, reaching a classification
accuracy of 82.5± 2.8% on EuroSAT (average ± standard deviation of 5 trials).
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ASIF backbones (Params, pre-training data) ImNet CIFAR PETS ImNet-v2
DEITtiny (5.6M, Im1k) - STminiL6 (23M, see Sec. 3) 46.5 37.3 75.6 38.3
DEITsmall (22M, Im1k) - STminiL12 (33M, see Sec. 3) 59.3 46.0 80.4 50.3
DEITbase (87M, Im1k) - STbase (110M, see Sec. 3) 60.9 50.2 81.5 52.2
VITb16 (86M, Im21k) - STbase (110M, see Sec. 3) 55.4 63.3 71.5 45.6

Table 2: Zero shot classification accuracy of ASIF models with different backbones. We observe
that the ASIF procedure remains effective even with smaller encoders pre-trained on reduced visual
datasets such as Imagenet1k.

Contrarily, CLIP [1], while demonstrating better zero-shot accuracy at 54.1%, is trained on a private
dataset comprising 400 million images. This dataset may contain a larger number of satellite images
than our 1.6 million subset of CC12M. Given the substantial improvement observed when we added
just 100 EuroSAT images, it’s reasonable to speculate that CLIP’s enhanced performance might stem
from its larger database of satellite images. However, confirming this theory is impossible due to the
private nature of CLIP’s training set.

We can, nevertheless, examine the presence of satellite images in the CC12M dataset. Using ASIF
models’ unique interpretability property, we can trace the training samples behind each classification.
Figure 7 displays two EuroSAT samples, one classified correctly and the other not, along with the
corresponding CC12M pairs responsible for the classifications. We note that our subset of CC12M is
lacking in satellite images, and the few available often have misleading captions, such as a map of a
drainage network tagged as "a satellite image of a canal, a river, a waterway, or a stream" instead of
an urban area.

The images shown are an adaptation of the interactive plot to analyze any ASIF image classification
we provided in the code demo attached in the supplementary material.

C ASIF sensibility to its hyperparameters

Finally, we present evidence about the sensitivity of the ASIF model to the hyperparameters p and
k. Specifically, we show the hyperparameter search for PETS and CIFAR100 in Figure 9. Table C
with results on the parameters fine-tuned on the two datasets reveals marginal improvements over the
standard choice of k=800 and p=8. This suggests that the ASIF model is relatively insensitive to the
choice of these hyperparameters.

Tuned on Parameters p,k CIFAR PETS
PETS (200,8) 60.9 72.3
CIFAR (1600,6) 64.9 63
ImageNet1K (800,8) 63.3 71.5

Table 3: Hyperparams search: tuning on each dataset per row.

Figure 9: Hyperparameters search over Left Pets, Right CIFAR100. Highlighted in the red square
the performance achieved tuning on Imagenet1K.
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Figure 10: Caption of similar images are themselves similar. For 8 image-text pairs, we show in
the first row the distribution of the image similarities against 100k images in the train set in blue
(CC12M), and highlight the 1000 most similar in orange. The dashed lines indicate the mean of
the two distributions. In the second row, we show the text similarities against the captions of the
same 100k (blue) and 1000 (orange) images. If captions of similar images are themselves similar,
we expect the dashed orange line in the second row to be at the right of the blue dashed line, as we
observe. The average gap between the orange and blue lines in the second row over 10,000 image-text
couples from CC12M is 0.098± 0.070.
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