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Abstract

The replicability crisis in the social, behavioral, and data sciences has led to the
formulation of algorithm frameworks for replicability — i.e., a requirement that
an algorithm produce identical outputs (with high probability) when run on two
different samples from the same underlying distribution. While still in its infancy,
provably replicable algorithms have been developed for many fundamental tasks
in machine learning and statistics, including statistical query learning, the heavy
hitters problem, and distribution testing. In this work we initiate the study of
replicable reinforcement learning, providing a provably replicable algorithm for
parallel value iteration, and a provably replicable version of R-max in the episodic
setting. These are the first formal replicability results for control problems, which
present different challenges for replication than batch learning settings.

1 Introduction

The growing prominence of machine learning (ML) and its widespread adoption across industries
underscore the need for replicable research [Wagstaff, 2012, Pineau et al., 2021]. Many scientific
fields have suffered from this same inability to reproduce the results of published studies [Begley
and Ellis, 2012]. Replicability in ML requires not only the ability to reproduce published results
[Wagstaff, 2012], as may be partially addressed by sharing code and data [Stodden et al., 2014], but
also consistency in the results obtained from successive deployments of an ML algorithm in the same
environment. However, the inherent variability and randomness present in ML pose challenges to
achieving replicability, as these factors may cause significant variations in results.

Building upon foundations of algorithmic stability [Bousquet and Elisseeff, 2002], recent work in
learning theory has established rigorous definitions for the study of supervised learning [Impagliazzo
et al., 2022] and bandit algorithms [Esfandiari et al., 2023a] that are provably replicable, meaning
that algorithms produce identical outputs (with high probability) when executed on distinct data
samples from the same underlying distribution. However, these results have not been extended
to the study of control problems such as reinforcement learning (RL), that have long been known
to suffer from stability issues [White and Eldeib, 1994, Mannor et al., 2004, Islam et al., 2017,
Henderson et al., 2018]. These stability issues have already sparked research into robustness for
control problems including RL [Khalil et al., 1996, Nilim and Ghaoui, 2005, Iyengar, 2005]. Non-
deterministic environments and evaluation benchmarks, the randomness of the exploration process,
and the sequential interaction of an RL agent with the environment all complicate the ability to make
RL replicable. Our work is orthogonal to that of the robustness literature and our goal is not to reduce
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the effect of these inherent characteristics, such as by decreasing the amount of exploration that an
agent performs, but to develop replicable RL algorithms that support these characteristics.

Toward this goal, we initiate the study of replicable RL and develop the first set of RL algorithms
that are provably replicable. We contend that the fundamental theoretical study of replicability in
RL might advance our understanding of the aspects of RL algorithms that make replicability hard.
In this work, we put on a similar lens as Impagliazzo et al. [2022] and consider replicability as an
algorithmic property that can be achieved simultaneously with exploration and exploitation. First, we
show that it is possible to obtain a near-optimal, replicable policy given sufficiently many samples
from every state in the environment. This notion is then naturally extended to replicable exploration.

Our contributions can be summarized as follows. We provide two novel and efficient algorithms to
• show that stochastic, sample-based value iteration can be done replicably and
• replicably explore the space of an MDP while also finding an optimal policy.

We experimentally validate that our algorithms require much fewer samples than theory suggests.

2 Preliminaries

2.1 Reinforcement learning

We consider the problem of solving a discounted Markov decision process (MDP) M =
{S,A, R, P, γ, µ} with state space S, action space A, reward function R, transition kernel P ,
discount factor γ, and initial state distribution µ. We assume that the size of the state space |S| and
number of possible actions |A| are finite and not too large. Further, we assume that the rewards for
every state-action pair are deterministic, bounded, and known. Relaxing assumptions on the reward
function might not necessarily seem straightforward in our goal of replicable RL, as the stochastic
reward would need to be made replicable. However, the case can be handled by our algorithms with
minor modifications and only constant factor overhead. The goal is to find a policy π : S 7→ A
that maximizes the cumulative discounted reward Jh =

∑∞
k=h γ

k−hRk(s, a). We use the typical
definitions of the value and Q-value functions for the expected cumulative discounted return from a
state or state-action pair, respectively:

Vπ(s) = E
π,P

[Jh|sh = s] Qπ(s, a) = E
π,P

[Jh|sh = s, ah = a] .

To show the various difficulties that come from trying to achieve replicability in RL, we consider two
different settings to examine various components of the problem.

Parallel sampling setting First, we ask whether it is even possible to obtain a replicable policy
from empirical samples without considering the challenges of exploration. For this, we can adopt
the setting of generative models GM, or more precisely, the parallel sampling setting. In the parallel
sampling model, first introduced by Kearns and Singh [1998a], one has access to a parallel generative
sampling subroutine PS(GM). A single call to PS(GM) will return, for every state-action pair
(s, a) ∈ S ×A, a randomly sampled next state s′ ∈ S drawn from P (s′|s, a). The key advantage is
that this model separates learning from the quality of the exploration procedure.

Definition 2.1 (Generative model). Let M denote an arbitrary MDP. Then a generative model
GM((s, a)) is a randomized algorithm that, given a state-action pair (s, a) ∈ S × A, outputs a
deterministic reward R(s, a) and a next state s′ sampled from P (·|s, a).
Definition 2.2 (Parallel sampling). LetM denote an arbitrary MDP. Then a call to the parallel
sampling subroutine PS(GM) returns exactly one sample s′i ∼ GM((si, ai)) for every state-action
pair (si, ai) in S ×A ofM using a generative model.

Episodic setting The second setting we consider is one in which an algorithm does have to explore
the MDP before it can obtain an optimal policy. More precisely, we consider an episodic setting
where, in every episode e ∈ {1, 2, ..., E}, the agent starts in a position s0 ∼ µ and interacts with the
environment for a fixed amount of time H . At any step h ∈ [1, H], the agent is in some state sh,
selects an action ah, receives a reward rh and transitions to a new state sh+1. Gathering a trajectory
τ = (s0, a0, r0, .., sH , aH , rH) of states, actions and rewards under policy π can be thought of as a
draw from a distribution τ ∼ Pπ

M(τ). We will omit the sub-and superscripts when clear from context.
For consistency with the remaining analysis, we work with a γ-discounted version of the problem.
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2.2 Replicability

We build on the recent framework by Impagliazzo et al. [2022], which considers replicability as
a property of randomized algorithms that take as input a dataset sampled i.i.d. from an arbitrary
distribution. They consider an algorithm to be replicable if, on two runs in which its internal
randomness is fixed and its input data is resampled, it outputs the same result with high probability:

Definition 2.3 (Replicability). Fix a domain X and target replicability parameter ρ ∈ (0, 1). A
randomized algorithm A : Xn → Y is ρ-replicable if for all distributions D over X , randomizing
over the internal randomness r of A and choice of samples S1, S2, each of size n drawn i.i.d. from
D, we have: PrS1,S2,r[A(S1; r) ̸= A(S2; r)] ≤ ρ .

Several key tools that were introduced by Impagliazzo et al. [2022] will prove useful or yield
inspiration for the algorithms developed in this work. One of the key observations is that many of the
computations in RL can be phrased as statistical queries, defined as follows:

Definition 2.4 (Statistical query, [Kearns, 1998]). Fix a distribution D over X and an accuracy
parameter α ∈ (0, 1). A statistical query is a function ϕ : X → [0, 1], and a mechanism M answers
ϕ with tolerance α on distribution D if a←M satisfies a ∈ [Ex∼D[ϕ(x)]± α].

We will make direct use of the replicable algorithm for answering statistical queries by Impagliazzo
et al. [2022] which will be useful to obtain replicable estimates of various measurements such as
transition probabilities. We will refer to the replicable statistical query procedure as rSTAT. We
note that Impagliazzo et al. [2022] also proves a lower-bound on the sample complexity required for
replicable statistical queries, showing that the results below are essentially tight.

Theorem 2.1 (Replicable statistical queries, Impagliazzo et al. [2022]). There is a ρ-replicable
algorithm rSTAT such that for any distribution D over X , replicability parameter ρ ∈ (0, 1),
accuracy parameter α ∈ (0, 1), failure parameter δ ∈ O(ρ), and query ϕ : X → [0, 1], letting S be

a sample of n ∈ O
(

log(1/δ)
(ρ−2δ)2α2

)
elements drawn i.i.d. from D, we have that a ← rSTATα,ρ(S, ϕ)

satisfies a ∈ [Ex∼D[ϕ(x)]± α] except with probability at most δ over the samples S.

At a very high level, rSTAT uses its sample to empirically estimate the expected value of the statistical
query on the target distribution. It then uses its internal randomness to pick an evenly-spaced set
of canonical representatives from the [0, 1] interval, and returns whichever canonical representative
is closest to the empirical estimate. We note that the algorithm of Impagliazzo et al. [2022] for
replicably answering statistical queries is not only sample efficient, but also computationally efficient,
as it has runtime polynomial in 1/α, 1/ρ, and log(1/δ).

3 Replicable reinforcement learning

To define replicability for the RL setting, we can adapt Definition 2.3 more or less exactly. The
question that arises is which of the many RL objects should be made replicable? We separate the
difficulty of replicability into three levels: replicability of the MDP, the value function, and the
policy. Since these objects carry different amounts of information [Farahmand, 2011], the following
relationships can be established.

If we are able to replicably (and accurately) estimate an MDP, we can always replicably compute
an (optimal) value function using standard techniques on our estimates, and from replicable value
functions we can obtain the corresponding policies. Note that the inverse is not true as we lose
information when going from MDP to value function and then policy. As a result, we expect that
replicable estimation of MDPs is the hardest setting in stochastic RL, followed by replicable value
function, and then policy estimation.

For replicability of control problems, a sensible measure to ask for is the production of identical
policies, which are the ultimate object of primary interest. We would at least like to ensure that with
high probability, we can obtain identical optimal policies across two runs of our RL procedures:

Definition 3.1 (Replicable policy estimation). Let A be a policy estimation algorithm that outputs a
policy π̂∗ : S 7→ A given a set of trajectories S sampled from an MDP. Algorithm A is ρ-replicable
if, given independently sampled trajectory sets S1 and S2, and yielding policies π̂∗

1 and π̂∗
2 , it holds
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Figure 1: The GridWorld for our experiments (left) and two different policies that were generated
by the Phased Q-learning Algorithm on this gridworld (center and right). Following the first policy
(center) more likely reaches the left goal while following the right policy more likely reaches the
right goal. All states except the goals have 0 reward. The actions are up, down, left and right; there is
a 30% chance that after choosing an action the agent moves left or right of the target direction.

for all states s ∈ S and actions a ∈ A that

PrS1,S2,r[π̂
∗(1)(a|s) ̸= π̂∗(2)(a|s)] ≤ ρ

s.t. π̂∗(1)(a|s)← A(S1; r) ∧ π̂∗(2)(a|s)← A(S2; r) ,

where r represents the internal randomness of A . Trajectory sets S1 and S2 may potentially be
gathered from the environment during the execution of an RL algorithm.

While this definition is the weakest we would like to achieve, the results we present in this paper pro-
vide stronger guarantees. Our Replicable Phased Value Iteration builds on [Kearns and Singh, 1998a]
and ensures replicability of value functions, while our Replicable Episodic R-max follows [Kearns and
Singh, 1998b, Brafman and Tennenholtz, 2003] and provides replicability of full MDPs. Equivalent
formal definitions for replicable value and MDP estimation are given in Appendix A.

Current algorithms for sample-based RL problems will struggle to satisfy Definition 3.1 of replicabil-
ity and output different policies even in simple environments (see Figure 1). In some cases, this may
not be problematic since the resulting policies will still be ε-optimal, but in practice it is often hard to
tell when that is the case. Fixing replicability will support the identification of problematic solutions
and encourage procedures that yield more stable solutions in the long run. Varying policies can, for
example, arise from sample uncertainty, insufficient state-space coverage, or differing exploration.
In order to achieve replicability, all of the aforementioned challenges need to be addressed, which
makes for an intricate but interesting problem. With this in mind, the next section will introduce a
first set of formally replicable algorithms that separate out some of these challenges.

4 Algorithms

4.1 Replicable phased value iteration

The first question we answer positively is whether it is even possible to achieve replicability when the
samples are drawn i.i.d. from the same distribution. For this, we use the parallel sampling model
described in section 2. This model is well-suited for the task as it allows us to analyze sample-based
value iteration independent of the exploration policy that collects the samples.

We provide a replicable version of indirect Phased Q-learning [Kearns and Singh, 1998a], which
was later also referred to as Phased Value Iteration [Kakade, 2003]. In brief, the algorithm iterates T
times and at every iteration makes m calls to PS(GM), computes an approximate value estimate for
every state and does one round of value updates. Kearns and Singh [1998a] provide the following
Lemma 4.1 to show the optimality of the original procedure.
Lemma 4.1 (Phased Q-learning convergence, [Kearns and Singh, 1998a]). Suppose the number of
calls to PS(GM) is chosen such that the value function estimates produced in every round by Phased
Q-learning are sufficiently accurate. For any MDPM, Phased Q-learning converges to a policy π̂∗

whose return is within ε of the optimal policy π∗.

Our algorithm operates similarly, but we would like to achieve replicability on top of optimality.
We use a randomized rounding procedure for statistical query estimation (rSTAT) provided by Im-
pagliazzo et al. [2022] to compute the value estimates at every iteration. For this, we assume that
the value function is normalized to the interval [0, 1]. A detailed description of our algorithm is

4



provided in Algorithm 1. The Replicable Phased Value Iteration (rPVI) algorithm we provide satisfies
Definition 3.1 and produces ε-optimal policies. It goes even one step further and produces not only
replicable policies but replicable value functions. This is formalized in the following Theorem 4.1.
Theorem 4.1. Let ε ∈ (0, 1) be the accuracy and ρ ∈ (0, 1) be the replicability parameter. Let
δ ∈ (0, 1) be the sample failure probability. Set the number of calls to PS(GM) at every iteration to

m = O

(
log2(1/ε)|S|2|A|2

ε2(ρ− 2δ)2
log

(
|S||A|

δ
+ log log(1/ε)

))
where O supresses the dependence on γ. In two runs (1) and (2) with shared internal randomness,
Algorithm 1 produces identical policies, s.t. Pr[π̂∗(1) ̸= π̂∗(2)] ∈ O(ρ). In every run, the produced
policies π̂∗ achieve return at most ε less than the optimal policy π∗ with all but probability O(δ).

Proof Sketch. We give a sketch for the proof of the theorem here and refer the reader to a full proof
in Appendix B.2. Assume that we can get replicable and accurate estimates of the value function
expectations from our rSTAT procedure. One can show by induction that the algorithm consistently
produces the same value functions in every iteration. Lemma 4.2 guarantees the convergence to an
optimal policy. Finally, we can use union and Chernoff bounds to pick a sufficiently large sample for
our rSTAT queries to be replicable and accurate and satisfy our assumption.

An interesting observation is that rPVI discretizes the space of values as a function of the ε-parameter
and γ (see Appendix B.2). As a result, replicability becomes harder for larger values of γ as
discretization intervals become smaller and we require more samples to obtain an equally sized ρ.
This is intuitive as we need to account for more potential future states that might impact our estimates.

The number of samples to compute a replicable value function is at most O(log2(1/ϵ)|S|2|A|2/ρ2)
times larger than computing a non-replicable one [Kearns and Singh, 1998a]. Still, a key observation
of the original Phased Q-learning result was that it is sufficient for every state-action pair to have a
sample size logarithmic in |S||A|, making the procedure cheaper than estimating the full transition
dynamics of an MDP. The cost of replicability is the loss of this property. However, we note that rPVI
does not yield replicable transition probability estimation. Using the idea of rSTAT queries to obtain
transition estimates turns out to be significantly more expensive than the replicable value estimation
done by Algorithm 1 (see Appendix B.2.1). Our results retain the notion that direct value estimation
is much cheaper than estimating the full transition kernel even in the presence of replicability.

4.2 Replicable RL with exploration

Next, we consider the setting of episodic exploration. We show that, despite the stochastic nature of
exploration, it is possible to guarantee replicability while still outputting an ε-optimal policy.

We take the R-max algorithm of Brafman and Tennenholtz [2003] as the starting point for our
replicable algorithm RepRMAX (Algorithm 2). It proceeds in rounds where the agent interacts with

Algorithm 1 Replicable Phased Value Iteration (rPVI)
Parameters: accuracy ε, failure probability δ, replicability failure probability ρ
Input: Generative Model GM
Output: ε-optimal policy π̂∗

Initialize Q̂0(s, a) to 0 for all (s, a) ∈ S ×A
For all s ∈ S, let ϕQ(s) := maxa Q(s, a)
for t = 0, · · · , T − 1 do

S ← (PS(GM))m ▷ do m calls to PS(GM) and store next-states in a map
from state-action pairs (s, a) to next states S[(s, a)].

for (s, a) ∈ S ×A do
V̂ (s′)← rSTAT(S[(s, a)], ϕQ̂t

(s′))

Q̂t+1(s, a)← R(s, a) + γV̂ (s′)
end for

end for
return π̂∗ = argmaxa Q̂T (s, a)
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Algorithm 2 Replicable Episodic R-max (RepRMAX)
Parameters: Accuracy ε, accuracy failure probability δ, replicability failure probability ρ, horizon H
Input: MDPM, maximum reward Rmax

Output: ε-optimal policy πM̂K

Initialize πM̂K
to a random policy, counters for state-visitation n(s, a) to 0

Initialize K, the set collecting known state-action pairs, to the empty set ∅
Initialize S, the set collecting trajectories to be used for estimating transition probabilities, to ∅
Initialize M̂K as P̂K(s′|s, a) := 1[s′ = s] for all (s, a, s′) and R̂K(s, a) := Rmax for all (s, a)
i = 1
while πM̂K

is not ε-optimal do
Collect a sample of trajectories Si ← P (τ)m and add Si to S
Ki ← RepUpdateK(Si,K, {n(s, a)}(s,a)∈S×A), identify new known states
For all (s, a) ∈ Ki, let S[(s, a)] be the multiset of s′ visited from (s, a) for all τ ∈ S
For all s′ ∈ S, let ϕs′(s) := 1[s = s′]

Update M̂K for all (s, a) ∈ Ki: P̂K(s′|s, a) := rSTAT(S[(s, a)], ϕs′), R̂K(s, a) := R(s, a)
K = K ∪Ki

Compute πM̂K
from M̂K

end while
return πM̂K

the environment for multiple episodes. The collection of trajectories encountered during exploration
is used to incrementally build a model M̂ of the underlying MDPM. The algorithm implicitly
partitions the set of state-action pairs S×A into two groups: known and unknown. All (s, a) ∈ S×A
are initialized to be unknown. While a state is unknown, the model M̂ maintains that (s, a) is a
self-loop with probability 1, and that (s, a) has maximum reward, thereby promoting exploration of
unknown states. After a state-action pair (s, a) has been visited sufficiently many times, it is added to
the collection of known states K and its transition probabilities P̂ and reward R̂ are updated with
an empirical approximation of P̂K(s′ | s, a) for all s′ ∈ S and the observed reward R, respectively.
After every update, the policy πM̂K

is computed as the optimal policy of the current model estimate.

While convergence of Algorithm 2 to an ε-optimal policy follows from familiar arguments [Brafman
and Tennenholtz, 2003], proving replicability will require a great deal of additional care. To ensure
that two runs of RepRMAX (with shared internal randomness) converge to the same policy with
high probability, we will show something even stronger: we prove that two such runs will with high
probability perform the same sequence of updates to their respective models M̂K and policies πM̂K

.

To enforce this property, we introduce a sub-routine in Algorithm 3 which replicably identifies
state-action pairs that should be added to the collection of known states. Guaranteeing that at each
iteration the set of known states K will be the same for two independent runs of the algorithm helps
ensure that the models of the MDP M̂K , and consequently the policies πM̂K

learned at each iteration,
will also be identical. To provide replicability, we will want to avoid using a fixed threshold for the
number of times a state-action pair (s, a) must be visited before it is considered “known”. Under
small deviations in realized transitions, a fixed threshold might lead to some (s, a) becoming known
in one run of the algorithm and not another. Instead, we use a randomized threshold.

In a call to Algorithm 3, the sample drawn at that round is used to estimate the expected number
of visits to (s, a) in a single trajectory, for every (s, a). This estimate is added to the count n(s, a),
which maintains the sum, over all iterations thus far, of the estimated expected visits to (s, a) from a
single trajectory of the policy πM̂K

at that iteration. A new threshold k′ is then sampled uniformly
from [k, k+w]. If n(s, a) ≥ k′, it is added to the set of known states K. From standard concentration
arguments, we know that for two runs of Algorithm 2 with independent samples, the estimates of the
total number of expected visits n(s, a) will both be close to the true total number of expected visits,
and therefore close to each other. Algorithm 3 will only make different decisions about adding an
(s, a) pair to the set of known states if the threshold k′ is chosen to fall between the two estimated
values n(s, a) from the two runs. Here, the concentration of n(s, a) and the fact that k′ is randomized
allows us to bound the probability that the threshold k′ is chosen to fall between the different n(s, a)
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values. We show in Theorem 4.2 that so long as the sample size m that is used to estimate expected
visits, and the window w from which the randomized threshold in sampled, are taken to be large
enough, the update to the set of known states at each round will be replicable.

Algorithm 3 RepUpdateK
Parameters: Accuracy failure probability δ, replicability failure probability ρ
Input: Sample of trajectories Si, set of known states K, set of state-visit counts {n(s, a)}(s,a)∈S×A
Output: List of new known state-action pairs Ki

Ki = {(s, a) : (s, a) ∈ S ×A and (s, a) ̸∈ K}
k′ ← U [k, k + w]
for (s, a) ∈ Ki do

ĉs,a = 1
|Si|
∑

τ∈Si

∑H
h=1 1[(sh, ah) = (s, a)]

n(s, a) = n(s, a) + ĉs,a
if n(s, a) < k′ then

Remove (s, a) from Ki

end if
end for
return Ki

Now that we have understood the intricacies on an intuitive level, we will prove convergence
(Lemma 4.2) and replicability (Theorem 4.2) of Algorithm 2.
Lemma 4.2 (Convergence). Consider A to be Algorithm 4. Let ε ∈ (0, 1) be the accuracy parameter,
ρ ∈ (0, 1) the replicability parameter, and δ ∈ (0, 1), be the sample failure probability, with δ < ρ/4.
Let T ∈ Θ(H|S||A|

ε + H2 log(1/δ)
ε2 ) be a bound on the number of iterations of Algorithm 2. Suppose

1− γ >
√
ε

H|A| and let m ∈ Õ
(

|S|2|A|2T 4 log(1/ρ)
ρ2

)
be the number of trajectories per iteration. Let

k = H be the lowest expected visit count of a state-action pair before it is known. Let w ∈ O(k)
define the window [k, k + w] for sampling the randomized threshold k′. Then with all but probability
δ, after T iterations, A yields an ε-optimal policy.

The proof of convergence is similar to those found in [Kearns and Singh, 1998b] and [Brafman and
Tennenholtz, 2003], so we defer the proof to Appendix B.3. We continue here with the final theorem
statement that summarizes the properties of our RepRMAX algorithm.
Theorem 4.2. Let parameters be set as in Lemma 4.2. Then with all but probability δ, A converges
to an ε-optimal policy in T iterations and samples mT trajectories, each of length H , for a total
sample complexity of O

(
|S|7|A|7H6 log(1/ρ)

ρ2ε5 + |S|2|A|2H10 log5(1/δ) log(1/ρ)
ε10

)
. Further, let S1 and S2

be two trajectory sets, independently sampled over two runs of A with shared internal randomness,
and let π(1)

M̂K
(a|s)← A(S1; r) and π

(2)

M̂K
(a|s)← A(S2; r). Then

PrS1,S2,r

[
πM̂K

(1)(a|s) ̸= πM̂K

(2)(a|s)
]
∈ O(ρ).

Proof. Lemma 4.2 gives us that, for our settings of k and T , Algorithm 2 converges to an ε-optimal
policy in T iterations, except with probability δ. The sample complexity follows immediately from
the bound on T and the setting of m, so it remains to analyze replicability. Our analysis will
make use of some additional shorthand. We use ρK ∈ O(ρ/(T |S||A|)) to denote the replicability
parameter for the decision to add a single (s, a) to K, in a single call to Algorithm 3. We similarly
use ρSQ ∈ O(ρ/(|S|2|A|)), αSQ ∈ O(ε(1 − γ)2/|S|), and δSQ ∈ O(δ/(|S|2|A|)) to denote the
replicability, accuracy, and failure parameters for the rSTAT queries made during the updates to
P (s′|s, a). We use t ∈ O(wρK

T ) ∈ O( Hρ
|S||A|T 2 ) to denote a high probability bound on the difference

between the empirical estimates for the expected visits to a given (s, a) in a trajectory across two runs
of Algorithm 3, i.e. |ĉ(1)s,a − ĉ

(2)
s,a| ∈ O(t). We are now ready to prove the following stronger claim:

Claim 4.1. If two runs of Algorithm 2 begin iteration i with M̂(1)
K = M̂(2)

K , π(1)

M̂K
= π

(2)

M̂K
, and

|n(s, a)(1) - n(s, a)(2)| ∈ O(it) ∀(s, a), then at the end of i, M̂(1)
K = M̂(2)

K , π(1)

M̂K
= π

(2)

M̂K
, and

|n(s, a)(1) - n(s, a)(2)| ∈ O(it+ t) ∀(s, a), with all but probability O(ρK |S||A|+ ρSQ|K1||S|).
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We take the initialization of Algorithm 2 as the base case for our inductive proof. Before the first
iteration, πM̂K

is initialized randomly and shared internal randomness yields π(1)

M̂K
= π

(2)

M̂K
. We

deterministically initialize M̂K and all n(s, a), and so M̂(1)
K = M̂(2)

K and n(s, a)(1) = n(s, a)(2).

Next, we prove the inductive step. We begin by showing that, at the end of the ith iteration,
|n(s, a)(1) − n(s, a)(2)| ∈ O(it+ t) ∀(s, a), with all but probability O(ρK |S||A|).

Our inductive hypothesis gives us that |n(s, a)(1) − n(s, a)(2)| ∈ O(it), so it suffices to show
that, for a single (s, a), ĉ(1)s,a − ĉ

(2)
s,a ∈ O(t) except with probability O(ρK). To obtain high prob-

ability bounds on |ĉ(1)s,a − ĉ
(2)
s,a|, we will rely on our assumption that at the start of the iteration,

π
(1)

M̂K
= π

(2)

M̂K
. It follows that, for every state-action pair (s, a), the expected number of visits

to (s, a) in a single episode is the same for both iterations. That is, for every (s, a), defining
cs,a := Eτ∼P (τ)

[∑H
h=1 1[(sh, ah) = (s, a)]

]
, we have c

(1)
s,a = c

(2)
s,a.

For a particular (s, a), Chernoff bounds applied to the average observed counts ĉ(1)s,a and ĉ
(2)
s,a show

that they must both be close to their (shared) expectation with high probability. We draw a sample of

m ∈ O
(

|S|2|A|2T 4 log(1/ρ)
ρ2

)
∈ O

(
H2 log(1/ρ)

t2

)
∈ Õ

(
H2 log(1/ρK)

t2

)
trajectories, and each cs,a ∈ [0, H], so except with probability 4 exp

(
−2t2m2

H2m

)
∈ O(ρK),

|ĉ(1)s,a − ĉ(2)s,a| ≤

∣∣∣∣∣ 1m ∑
τ∈S

(1)
1

H∑
h=1

1[τh = (s, a)]− c(1)s,a

∣∣∣∣∣+
∣∣∣∣∣ 1m ∑

τ∈S
(2)
1

H∑
h=1

1[τh = (s, a)]− c(1)s,a

∣∣∣∣∣ ∈ O(t),

where τh := (sh, ah). Union bounding over all s ∈ S and a ∈ A shows that the stated bound holds
for all (s, a) except with probability ρK |S||A|.

We now show that M̂(1)
K = M̂(2)

K at the end of the iteration, except with probability O(ρK |S||A|+
ρSQ|Ki||S|). Observe that M̂(1)

K = M̂(2)
K at the end of the iteration unless at least one of the

following two events occurs: 1) K(1)
1 ̸= K

(2)
1 - the set of new known (s, a) pairs differs across the

two runs. 2) The updates to P̂K(s′|s, a) and R(s, a) differ for at least one (s, a). The first event
occurs exactly when k′ falls in between n(s, a)(1) + ĉ

(1)
s,a and n(s, a)(2) + ĉ

(2)
s,a. We have already

shown that
|n(s, a)(1) + ĉ(1)s,a − n(s, a)(2) − ĉ(2)s,a| ∈ O(it+ t) ∈ O(tT ),

for a single (s, a), except with probability O(ρK). We have sampled k′ uniformly at random from an
interval of width w, so it follows that Prk′,S1,S2

[(s, a) ∈ K
(1)
i △K

(2)
i ] ∈ O(ρK + tT/w). We took

t ∈ wρK

T , so by union bound over S ×A, the probability of the first event is at most O(|S||A|ρK).

To bound the probability of the second event conditioned on the first event not occurring, it suffices
to bound the probability that the updates to P̂K(s′|s, a) for (s, a) ∈ Ki differ across both runs, By
the conditioning, we have K

(1)
1 = K

(2)
1 , so it suffices to show that each call to rSTAT returns the

same value for both runs. Taking ρSQ, αSQ, and δSQ as the replicability, tolerance, and failure
parameters respectively gives that a sample of size s ∈ O(|S|2 log(1/δSQ)/((ε(ρSQ − 2δSQ))

2(1−
γ)4) is sufficient, by Theorem 2.1. Furthermore, we have assumed that 1 − γ >

√
ε log1/4(1/δ)

H|A| log1/4(1/ρ)
,

δSQ < ρSQ/4, and ρSQ ∈ O(ρ/|S|2|A|), so a sample of size s ∈ O
(

|S|6|A|6H4 log(1/ρ)
ε4ρ2

)
will also

suffice. Each (s, a) is added to Ki only if it was visited at least km times. We have taken k = H ,
m ∈ O

(
|S|2|A|2T 4 log(1/ρ)

ρ

)
, and T ∈ Ω

(
|S||A|H

ε

)
. It follows that mk ∈ O

(
|S|6|A|6H5 log(1/ρ)

ε4ρ2

)
and therefore S[(s, a)] comprises at least s i.i.d. samples from P (· | s, a), as desired. Union bounding
over the |Ki||S| queries in the ith iteration gives a bound of |Ki||S|ρSQ on the probability of the
second event, conditioned on the first event not happening.

We now assemble our inductive argument into a proof of the theorem. At the start of itera-
tion i, the inductive hypothesis holds except with probability

∑i−1
j=1 ρK |S||A| + ρSQ|Kj ||S|.
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Noting that
∑T

j=1 |Kj | ≤ |S||A|, and recalling that we have taken replicability parameters
ρK ∈ O(ρ/(T |S||A|)) and ρSQ ∈ O(ρ/(|S|2|A|)), ensures we achieve a replicability parameter ρ
after the T iterations of Algorithm 2.

4.3 Limitations

As mentioned previously, our bounds lose some of the properties that standard RL results provide,
such as the ability to estimate value functions with only a logarithmic dependence on relevant
parameters. We expect that some of the sample complexity overhead from achieving replicability is
inevitable, as seen in the statistical query lower-bound of Impagliazzo et al. [2022]. Nonetheless, we
hope that future work can improve on the sample-complexities of our algorithms.

Our work is in part motivated by the recent replicability concerns in deep RL [Islam et al., 2017,
Henderson et al., 2018]. However, establishing formal guarantees in these highly complicated settings
is often not easy. As such, our algorithms suffer the weakness that many theoretical results in RL
have to deal with, namely their lack of immediate applicability to real-world problems. Yet, our
empirical evaluation in section 5 will show that there is hope for practical application.

5 Experiments

While our asymptotic bounds have sample complexity overhead from the introduction of replicability,
we would like to analyze the actual requirements in practice. We introduce a simple MDP in Figure 1
that contains several ways of reaching the two goals. We analyze the impact of the number of calls
to PS(GM) on replicability for rPVI. In theory, our dependence on the number of calls is not
logarithmic with respect to |S||A| but we would like to see if can draw a sample that is much smaller,
maybe even on the order of the logarithmic requirement. We choose accuracy ε = 0.02, failure rate
δ = 0.001 and replicability ρ = 0.2. The number of calls that would be required by standard Phased
Q-learning is at most m ≈ 13000 (ignoring γ factors). We take several multiples of m and measure
the fraction of identical and unique value functions, treating the rSTAT ρSQ as a hyperparameter.

The results are presented Figure 2, revealing that the number of samples needed to replicably produce
the same value function can be several orders of magnitude lower than suggested by our bounds and
that it is feasible to use a larger ρSQ than theoretically required. This should allow us to scale to
more complex problems in the future. The algorithm quickly produces a small set of value functions
that may not be identical but, with a little more data, minor differences are removed. Note that
using a replicable procedure naturally incurs overhead, which is expected. However, the overhead is
significantly better than the theoretically required sample-size with squared |S||A| dependence. In
the rSTAT procedure, taking smaller values for ρSQ for a fixed sample should improve replicability
at the cost of accuracy of query responses, by increasing the width of each subinterval of the partition
so that there are fewer partition elements overall. The experiments highlight that, as long as sample
sizes are sufficiently large and ρSQ is chosen small enough, we achieve high replicability.

6 Related work

Our work builds upon the foundational ideas by Impagliazzo et al. [2022], who introduce formal
notions of replicability that are strongly related to robustness, privacy, and generalization [Bun et al.,
2023, Kalavasis et al., 2023]. Building on these formal definitions of replicability, researchers have
provided algorithms for replicable bandits [Esfandiari et al., 2023a] and replicable clustering [Esfan-
diari et al., 2023b]. Ahn et al. [2022] introduce algorithms for convex optimization using a slightly
different notion of replicability. Our paper presents the first results for formally replicable algorithms
in a control setting.

A concurrent and independent work by Karbasi et al. [2023] also studies formal replicability of
reinforcement learning. They also study the setting of discounted tabular MDPs, with access to a
generative model, and show the same sample complexity upper-bounds for achieving replicable policy
estimation in this setting that we prove in our work. Additionally, they provide a matching lower
bound. They go on to consider two relaxed notions of replicability that allow them to provide improved
sample complexity upper-bounds in the generative model setting. Our work instead considers a
second setting, providing a first algorithm for replicable policy estimation in the episodic exploration

9



m 4m 8m 16m
Number of Calls to PS

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n 
of

 U
ni

qu
e 

 V
al

ue
 Fu

nc
tio

ns
Value for SQ: (| || |)2 | |2 | |

m 8m 16m 32m
Number of Calls to PS

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 Id

en
tic

al
 

 V
al

ue
 Fu

nc
tio

ns
↑

better

replicability threshold 1− ρ

The largest percentage of identical value functions
across 150 runs. With more data, the quantity in-
creases and the choice of ρSQ becomes less important.

m 8m 8m 16m
Number of Calls to PS

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 U

ni
qu

e 
 V

al
ue

 Fu
nc

tio
ns better

↓

The percentage of unique value functions across 150
runs. Varying ρSQ has negligible impact, while more
samples quickly reduce it.

Figure 2: The rPVI algorithm evaluated on varying numbers of calls to PS(GM), with several values
for the internal rSTAT parameter ρSQ. Results are provided across 150 runs with different random
sampling seeds. The number of calls is set to constant factor multiples of m = 13000. The dotted
green line denotes the replicability threshold of 1− ρ. The results show that, in practice, the number
of samples needed for replicability can be orders of magnitude lower than our bounds suggest.

setting. We also provide experimental validation of the practical feasibility of our Replicable Phased
Value Iteration algorithm.

From an RL perspective, our work is strongly related to understanding exploration in MDPs [Kearns
and Singh, 1998b, Brafman and Tennenholtz, 2003, Kakade, 2003]. In the finite-horizon episodic
setting, researchers made progress on upper bounds for exploration Auer and Ortner [2006], Auer et al.
[2008], Jaksch et al. [2010] that ultimately led to the development of a near-complete understanding
of the problem [Azar et al., 2017, Zanette and Brunskill, 2019, Simchowitz and Jamieson, 2019].
Lower bounds are provided in other works [Dann and Brunskill, 2015, Osband and Roy, 2016].
Further, Jin et al. [2020], Kaufmann et al. [2021] provide results on a reward-free framework that
allows for the optimization of any reward function. While a good amount of progress has been made
on understanding the base problem, the notion of replicability is not considered in any of them.

Given the connections of replicability and robustness, our work is related but orthogonal to that of the
study of worst-case optimal policies and value functions. These worst-case results are often obtained
via the study of robust Markov decision processes, first introduced by Nilim and Ghaoui [2005],
Iyengar [2005]. One line of work here has focused on relaxation of assumptions and combatting
conservativeness in robust MDPs [Wiesemann et al., 2013, Mannor et al., 2016, Petrik and Russel,
2019, Panaganti and Kalathil, 2022]. Others have focused on various new formulations such as
distributional robustness [Xu and Mannor, 2010, Yu and Xu, 2016]. However, all of the above work
focuses on understanding worst-cases and finding policies that do not have to be replicable.

Finally, our work is related to efforts in practical RL to ensure replicability, such as benchmark
design [Guss et al., 2021, Mendez et al., 2022] and robust implementation [Nagarajan et al., 2018,
Seno and Imai, 2022] and evaluation [Lynnerup et al., 2020, Jordan et al., 2020, Agarwal et al., 2021].

7 Conclusion & future work

We introduced the notion of formal replicability to the field of RL and established various novel
algorithms for replicable RL. While these first results might have sub-optimal sample complexities,
they highlight the crucial fact that replicability in RL is hard and requires study of the various
aspects that impact it. We hope that future work can alleviate some of these efficiency challenges. A
general open question is if replicable RL might simply be harder by nature than standard RL? This
question needs to be posed on various levels because, as we argue in Section 3, finding a replicable
policy might be easier than requiring the value function to be replicable. Finally, we believe the
development of replicable algorithms for other settings such as the non-episodic setting as well as
practical application are of great importance.
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