
A Supplemental Documentation

This paper recommends best practices does not construct a new dataset or benchmark; thus not all
parts of the recommended supplemental material (e.g. a model card or datasheet) are applicable.
However, since we host an implementation and plan to distribute artifacts and code, we address
similar relevant concerns:

• URL, landing page, and demo: dataportraits.org
• Code: to be released through the site above. Open source code will be hosted on GitHub.
• Hosting and Preservation: We will maintain the existing interactive web interfaces for at

least one year from publication. Code will be available for long-term distribution through
GitHub.

B Sketch Misses

In Figure 2, consider the query string: defg. This string lies on the boundary of the n-grams split
during corpus processing. No stride 1 width 4 ngrams extracted from that query will match the
database. However, if the query string were expanded to length 2 · width � 1, note that it would
necessarily intersect at least one of the hashed n-grams. For example, defghij will match at fghi.
In this way, given a long enough query string, our query protocol guarantees that at least one match
will be found if the query string of interest does occur in the corpus.

C Adversarial Matches

We describe a protocol for chaining matches together. In Figure 2, the three matches of bcde,
fghi, jklm occur separated by width indexes. Therefore we infer the whole string (formed by
concatenating the three n-grams) was present in the corpus. However, this might not be true. If
an adversary knew the details of the sketch width (and initial offset into the sequence), they could
construct a document that embeds n-grams in different locations, such that a query string would
appear to be present according to our protocol. For example, the sketch in Figure 2 would falsely
infer that the string fghibcde is present in the corpus, since it is composed of two chosen matches.
This is very unlikely in practice, given appropriately chosen widths and sketch resolutions. This is
essentially a permutation attack, and a similar approach could be used to fool a BM-25 index.

D WMT Documents

Table 5 lists the full test set, doc id, and approximate longest match results from Figure 3.

E Counting Expected Matches

Consider a string of interest S, with length N that is embedded in a larger document D. Matching S
with a strided Bloom filter with width w will yield a chain of something around N

w tiles (substrings
of length w). For example, take a sketch with width w = 50 and a string with N = 150. If the tiles
in D are perfectly aligned on the boundaries of S, the Bloom filter will find 150/50 = 3 matches.
Perfectly aligned means that string S begins at an offset in D that is a multiple of w — so when
breaking D into non-overlapping chunks (tiles) of size w, the start of some tile is also the start of S.

This perfect alignment might happen by chance, but most likely there will be some parts of S that
hang over the tile boundaries, meaning only some inner part of S will match the hashed tiles. In
Figure 2 the query string S = abcdefghijklmn is not perfectly aligned. a and n hang over and thus the
only complete tiles are the inner bcde, fghi, jklm tiles match.

Given the width and length of a string, we can calculate the expected number of matches for any
possible alignment of the string. Note that there are w possible alignments and each is equally likely.

A string of length N modulo the tile width w can be written as N = aw + b where a is the number
of full tiles and b is the remainder. Consider alignments other than the perfect one boundary. We have

14

https://dataportraits.org

Table 5: Full WMT overlap information.
Test Set doc_id Longest

wmt13.en-fr.ref lemondefr/2012/12/01/275696 700
wmt16.en-fi.ref kaleva.fi.29723 400
wmt16.en-de.ref tagesspiegel.de.65447 350
wmt20.en-iu.ref nunatsiaq-20190930 300
wmt12.en-de.ref noroeste/2011/11/15/78596.html 250
wmt16.en-de.ref borkenerzeitung.de.56604 250
wmt14.en-fr.ref 4bb85eb6281e0b19986de1d4f867e3ff 250
wmt15.en-ru.ref 893-kommersant 200
wmt18.en-fi.ref karjalainen.fi.65284 200
wmt18.en-ru.ref kommersant.324314 200
wmt14.en-fr.ref cd085bbb218a7afc1255b2b60a06692a 200
wmt15.en-de.ref 14428-abendzeitung-muenchen.de 200
wmt15.en-ru.ref 115-aif 200
wmt16.en-ru.ref lgng.30237 150
wmt16.en-ro.ref ziare.ro.17378 150
wmt15.en-ru.ref 1375-rg.ru 150
wmt14.en-fr.ref 90c566f54bf1076e6f539875d45d673c 150
wmt17.en-ru.ref izvestiya.51251 150
wmt16.en-ro.ref hotnews.ro.8884 150
wmt14.en-fr.ref 96e21a07ed57d79665a35a548ef7d841 150
wmt16.en-de.ref abendzeitung-nuernberg.de.12297 150
wmt17.en-de.ref dw.47065 150
wmt18.en-de.ref handelsblatt.com.180784 150
wmt17.en-de.ref frankfurter-rundschau.70094 150
wmt13.en-fr.ref cyberpresse/2012/12/01/1564248 100

b+ 1 alignments that produce a matching tiles. We will also have w� b� 1 alignments that produce
a�1 tiles. Summing and cancelling terms, we have (b+1)a+(w� b�1)(a�1) = aw�w+ b+1
possible matching tiles. Substituting the length of the string simplifies to N �w+1 possible matches,
and since each w alignment is equally likely, the expected number of matches is E(N,w) = N�w+1

w .
The 4 possible alignments with 11 possible matching strings in the Figure 2 example are:

[abcd , efgh , i j k l] (m i s s i n g mn)
[bcde , f g h i , jk lm] (m i s s i n g a , n)
[cdef , g h i j , klmn] (m i s s i n g ab)
[defg , h i j k] (m i s s i n g abc , lmn)

15

