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Abstract

In this paper, we propose to approximate the softmax output, which is the key
product of the attention mechanism, to reduce its activation memory usage when
training attention-based networks (aka Transformers). During the forward pass
of the network, the proposed softmax output approximation method stores only
a small fraction of the entire softmax output required for back-propagation and
evicts the rest of the softmax output from memory. Then, during the backward pass,
the evicted softmax activation output is approximated to compose the gradient to
perform back-propagation for model training. Considering most attention-based
models heavily rely on the softmax-based attention module that usually takes one
of the biggest portions of the network, approximating the softmax activation output
can be a simple yet effective way to decrease the training memory requirement of
many attention-based networks. The experiment with various attention-based mod-
els and relevant tasks, i.e., machine translation, text classification, and sentiment
analysis, shows that it curtails the activation memory usage of the softmax-based at-
tention module by up to 84% (6.2× less memory) in model training while achieving
comparable or better performance, e.g., up to 5.4% higher classification accuracy.

1 Introduction
Recently, many attention-based networks, aka Transformers [50], are widely used in many natural
language processing tasks such as machine translation [50, 13], sentiment analysis [52, 29, 34], text
classification [52, 54], and question/answering [47, 53, 20]. Due to their superior performance, they
also have become the backbone of many large language and general task-agnostic models, e.g., GPT
series [41, 5], and are actively expanding to other domains ranging from computer vision (Vision
Transformers [12, 49, 38]) to protein structure predictions (AlphaFold [44, 22]). However, the stellar
performance of attention-based networks comes with significant resource requirements in training,
especially massive memory (RAM) usage. For example, the small-size GPT-2 model [41] is known
to require 27.5 GB of peak memory for its training with a mini-batch of size eight [3]. Hence, the
memory bottleneck problem makes training of attention-based models challenging when massive
memory capacity is not available, e.g., BERT [11] takes 16 TPUs [21], each equipped with 32 TB of
built-in memory, for training, and the regular GPT-2 [41] is reported to be trained with 32 TPUs.

During deep model training, it is required to store various components in memory, i.e., model
parameters, input data, optimizer state, etc., along with activation output, i.e., the intermediate output
of each layer. As the activation output of each layer must be stored in memory for gradient-based
back-propagation [42], the memory capacity required to train a model increases proportionally to the
data sequence length (width), depth of the network, and mini-batch size of the model. Consequently,
as the model gets huge and the training data gets bigger, the activation easily becomes to take up more
memory than other components. Especially, it is more evident in NLP (natural language processing)
tasks, as provided in Figure 1(a) [25], which shows the memory composition required for training
four different attention-based model configurations, ranging from 22 billion to 1 trillion parameters.
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For GPT-3 [5] that has 175B parameters, the activation output requires approximately 1.45× more
memory than the parameter and optimizer state, and for MT-NLG [45] that has 530B parameters, it is
about 3.6× more. Therefore, to popularize such large models in practice, it is necessary to reduce the
massive amount of activation memory required in model training.

(a) (b)
Figure 1: (a) The amount of memory required by 1) parameters and optimizer state and 2) activation
memory [25] in training attention-based models (GPT-3 [5] with 22B and 175B parameters and
MT-NLG [45] with 530B and 1T parameters). The dashed red line represents 80GB of memory
capacity available in NVIDIA A100 GPU [35]. (b) The detailed memory composition when training
an attention-based network (blue boxes). The softmax output approximation reduces the activation
memory usage by storing only a small subset of them (e.g. s1, sn, α, β) in memory (red boxes).
In this paper, we propose an approximation method of the softmax output [4] produced in the attention
module [50] to reduce its activation memory requirement in model training, as shown in Figure 1(b).
Instead of storing the entire elements of the softmax output vector that represents attention scores,
it stores only a small subset of the elements and evicts the rest from memory during the forward
pass of the network. Later, during the backward pass, the discarded softmax output elements are
approximated to construct the gradients for back-propagation. As only a small fraction of the softmax
activation output is stored during the forward pass, a substantial amount of memory can be saved.
The proposed method is not to efficienate the computation complexity of the attention module, such
as [9, 48, 31, 51], but to reduce the amount of activation memory used in training by storing only
selected parts of the attention score, i.e., softmax output, in memory, not all of them. Thus, it is
applicable to a softmax output computed from any form of the attention module [9, 48, 31, 51] in a
model-agnostic way. To the best of our knowledge, this is the first and unique attempt to curtail the
activation memory usage of the attention module in training by approximating the softmax output.

The efficacy of approximating the softmax output is substantial because it is the key component of
the attention block used to compute the normalized attention score [48]. Since many attention-based
models repeatedly use multi-head attentions in their encoders and/or decoders [50], the softmax output
can be accounted as the dominant activation in the network. For instance, the softmax operation, i.e.,
Softmax(QKT /

√
dk), takes up 80% of the attention module itself, and 64.7% and 62.2% of the entire

layer activation output during the forward pass of the classic Transformer [50] and BERT [11] model,
respectively. Therefore, streamlining the activation memory requirement of the repeatedly-used
softmax-based attention module is a simple yet effective way of improving the training memory
efficiency of attention-based networks, e.g., the reduced peak-memory usage and memory footprint.

The experiment results demonstrate that the softmax output approximation drastically decreases the
training memory required by the attention module by up to 84% while achieving competitive or im-
proved performance of various attention-based models, i.e., basic Transformer [50], XLNet [52], and
ALBERT [30], e.g., up to 5.4% higher accuracy, on machine translation [13], text classification [54],
and sentiment analysis [34, 46] tasks. It validates that the softmax output approximation 1) can be
readily applied to any existing attention-based models without modifying the network architecture,
2) does not significantly increase computation time for activation memory saving, and 3) enables
models to learn longer sequences with a larger batch size when given the same memory budget. We
implement the proposed softmax output approximation with PyTorch and make it public1.

1https://github.com/eai-lab/SoftmaxOutputApproximation
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2 Training of Softmax Operation

This section discusses the training procedure of the softmax operation and its memory usage.

Softmax. Let z⃗ = [z1, z2, . . . , zn] be a vector in R1×n, where n denotes the sequence length. The
vector z⃗ is obtained from the rows of Z ∈ Rn×n, which is the result of the query/key multiplication
(Z=QKT /

√
dk). Then, the element si in the softmax vector s⃗ = [s1, s2, . . . , sn] is defined as [4].

si =
ezi∑n
j=1 e

zj
for all i = 1, 2, .., n s.t. 0 ≤ si ≤ 1 and

n∑
i=1

si = 1 (1)

Given the definition of softmax in Equation 1, let us assume there is a l-layer DNN (deep neural
network) having a softmax operation at the k-th layer (k < l). To train the network via the gradient
descent [42], the gradient of the loss L(x⃗) is computed with the input x⃗ w.r.t. the weight matrix Wm,
i.e., ∂L(x⃗)/∂Wm, at the m-th layer of the network (m < k). By using the chain rule, we get:

∂L(x⃗)

∂Wm
=

∂L(x⃗)

∂z⃗l

∂z⃗l
∂z⃗l−1

∂z⃗l−1

∂z⃗l−2
· · · ∂s⃗

∂z⃗k−1
· · · ∂z⃗m

∂Wm
(2)

where z⃗l is the output of the l-th layer, z⃗k = s⃗ and z⃗k−1 in the middle is the output and input of the
softmax operation at the k-th layer, respectively. Thus, to get ∂L(x⃗)/∂Wm, the gradient of s⃗ w.r.t. z⃗k−1,
i.e., ∂s⃗/∂z⃗k−1, should be computed.

Gradient Matrix. To obtain ∂s⃗/∂z⃗k−1 in Equation 2, the partial derivative of the i-th softmax
element si w.r.t. its j-th input element zk−1,j is computed as follows:

∂si
∂zk−1,j

= si (1i=j − sj) (3)

where 1i=j is the indicator function. Since it only involves si and sj , not zk−1,j , the gradient matrix
of the softmax vector s⃗ w.r.t. its input vector z⃗k−1 is given by:

∂s⃗

∂z⃗k−1
=


s1(1− s1) −s1s2 · · · −s1sn
−s2s1 s2(1− s2) · · · −s2sn

...
...

. . .
...

−sns1 −sns2 · · · sn(1− sn)

 (4)

which allows the back-propagation of ∂L(x⃗)/∂Wm in Equation 2 if ∂z⃗l/∂z⃗l−1 for all l is available.

Memory Requirement. Thus, to compute ∂s⃗/∂z⃗k−1 in the back-propagation step, the softmax
vector output s⃗ needs to be stored for each input x⃗ as an activation in memory during the forward
pass of the network. Considering that 1) many DNNs, e.g., Transformers [50] and convolutional
networks [26, 18], have deep and wide layers, and 2) back-propagation is usually performed with
multiple examples (mini-batch), the total amount of activation memory required in training increases
linearly to the number and length of softmax layers and the mini-batch size. For example, a network
with l softmax layers of length n trained with a mini-batch consisting of b examples requires a total
of l · n · b of activation memory for a single step of back-propagation.

Memory Saving. Motivated by this observation, we reduce the amount of activation memory required
to back-propagate through a softmax layer by storing only a small subset of softmax output elements
s⃗ = [s1, s2, ..., sn] in memory, while evicting the rest of the elements from memory during the
forward pass of the network. During back-propagation, the evicted elements are approximated such
that the gradient matrix (Equation 4) obtained from the approximated softmax output minimizes
the expected loss of training performance. The amount of activation memory saved by the softmax
output approximation is multiplied by the number of softmax layers l and the mini-batch size b,
i.e., l · (n−m) · b, where n is the total number of softmax output elements (the length of the attention
score), and m is the number of elements to be stored in memory. Also, the input of the softmax, z⃗,
i.e., query/key multiplication QKT /

√
dk, which is the output of the previous layer, can be obtained

from the approximated softmax output from the inverse of Equation 1 as:

zi = ln(si) + ln(
∑n

j=1
ezj ) (5)

Thus, z⃗ of length n can also be removed from the memory, which saves additional memory of l ·n · b.
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3 Softmax Output Approximation
3.1 Approximation Strategy
Given a softmax output vector s⃗ ∈ [0, 1]n, its approximation, s⃗′, is computed with the following steps.
First, among all softmax output elements of s⃗, the m highest and m lowest elements are stored in
memory during the forward pass of the network. Then, the remaining n− 2m elements are discarded
from memory and approximated later in the backward pass. Lastly, using the stored and approximated
elements together, the gradient matrix (Equation 4) is constructed for back-propagation (Equation 2).

Approximated Softmax. Given the softmax output vector s⃗, its approximation s⃗′ is defined as:

s⃗′ = [ h1 h2 ... hm︸ ︷︷ ︸
m highests

s′1 s
′
2 ... s

′
n−2m︸ ︷︷ ︸

n−2m approximations

ℓm ℓm−1 ... ℓ1︸ ︷︷ ︸
m lowests

] (6)

where h1, h2, ..., hm and ℓm, ℓm−1, ..., ℓ1 are the m highest and m lowest elements, respectively, that
are stored intact in memory, and s′1, s

′
2, ..., s

′
n−2m are the rest n− 2m elements that approximate the

non-stored elements, s1, s2, ..., sn−2m. Figure 2 depicts an example of softmax output approximation.

Figure 2: Among a total of n=21 soft-
max output elements sorted in descend-
ing order, the m=3 highest elements
(h1, h2, h3) and the m=3 lowest ele-
ments (ℓ3, ℓ2, ℓ1) are stored in mem-
ory. The remaining n−2m elements
(s′1, ..., s

′
n−2m) are not stored but ap-

proximated by the softmax output ap-
proximation function described below.

3.2 Element Selection for Memory Storing
Keeping the m highest and m lowest softmax output elements in memory minimizes the possible loss
of training performance caused by the softmax output approximation. The following shows doing so
minimizes the difference between the gradient matrix constructed from the original softmax s⃗ and the
gradient matrix constructed from the approximated softmax s⃗′, so that the weight update computed
from the approximated softmax becomes close to the original ones.

Gradient Error. Given a n×n softmax gradient matrix ∂s⃗/∂z⃗k−1 in Equation 4 and its approximate
gradient matrix ∂s⃗′/∂z⃗k−1 obtained from the approximated softmax vector s⃗′, the gradient error
between them is defined as ϵ(s⃗, s⃗′) = | ∂s⃗

∂z⃗k−1
− ∂s⃗′

∂z⃗k−1
|. We first decompose the gradient error ϵ(s⃗, s⃗′)

into each i-th row-wise error ϵi(s⃗, s⃗′) consisting of 1) i-th column element’s error and 2) the sum of
the remaining j ̸= i column element’s errors in the i-th row. Then, the row-wise error ϵi(s⃗, s⃗′) for
all n rows are summed up to obtain the total gradient error, i.e., ϵ(s⃗, s⃗′) =

∑n
i=1 ϵi(s⃗, s⃗

′) as:

ϵ(s⃗, s⃗′) =

n∑
i=1

ϵi(s⃗, s⃗
′) =

n∑
i=1

(
|si(1−si)−s′i(1−s′i)|︸ ︷︷ ︸

i-th element’s error

+

n∑
j=1\i

|sisj−s′is
′
j |︸ ︷︷ ︸

j ̸= i elements’ error sum

)
(7)

Error Bound. The second term
∑n

j=1\i |sisj − s′is
′
j | in Equation 7 is calculated in two cases. The

set S1 comprises indices where sisj − s′is
′
j for j ̸= i is positive, while S2 consists of the opposite.

n∑
j=1\i

|sisj−s′is′j | =

{
|si(1−si)− s′i(1−s′i)|+ 2

∑
j∈S1

sisj−s′is′j if si(1−si) < s′i(1−s′i)
|si(1−si)− s′i(1−s′i)| − 2

∑
j∈S2

sisj−s′is′j if si(1−si) ≥ s′i(1−s′i)
(8)

If sisj − s′is
′
j for all j ̸= i belongs to either S1 or S2, the second term of Equation 8 is bounded by

its maximum value. In the case of S1, it becomes:

2
∑
j∈S1

sisj−s′is′j = 2(si
∑
j∈S1

sj − s′i
∑
j∈S1

s′j) = 2(si(1− si)− s′i(1− s′i)) ≤ 0.5 (9)

We denote the second term of Equation 8 as δ. From Equations 7, 8, and 9, the gradient error ϵ(s⃗, s⃗′)
becomes to be bounded by:

ϵ(s⃗, s⃗′) = 2

n∑
i=1

|si(1−si)− s′i(1−s′i)|+ δ ≤ 2

n∑
i=1

max(si(1−si), 0.25− si(1−si)) + 0.5 (10)
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where the inequality comes from the property of the softmax, i.e., 0 ≤ si(1− si) ≤ 0.25.

Error Minimization. Hence, to minimize the gradient error ϵ(s⃗, s⃗′) in Equation 10, we select a set
of si as close as possible to some constants, i.e., {0, 1} for the first term, si(1− si), and 0.5 for the
second term, 0.25− si(1− si). First, by keeping the highest m and the lowest m elements in s⃗, we
can select elements closest to the first two constants, {0, 1}. Second, similarly, when selecting the
highest element h1 from s⃗, it becomes the one closest to 0.5 among all softmax elements since the
remaining n−1 elements are at most 1−h1 from the properties of softmax (Equation 1). Thus, their
distances from 0.5 become at least |h1 − 0.5|, i.e., |0.5− hi| = |0.5− (1− h1)| ≥ |h1 − 0.5| for all
i ̸= 1. It shows that selecting the m highest and m lowest softmax elements minimizes the gradient
approximation error, ϵ(s⃗, s⃗′), leading to the minimization of possible performance loss in training.

3.3 Approximation Method

During the back-propagation, the elements in the middle of Equation 6, i.e., s′1, s
′
2, ..., s

′
n−2m,

approximate the corresponding original elements, s1, s2, ..., sn−2m, that are evicted from memory.

Exponential Distribution. We use the exponential distribution [43], i.e., λe−λk, for the softmax
approximation because 1) it naturally models a softmax in descending order well, 2) it can properly
represent the non-linear changes of softmax as its slope changes rapidly; its derivative is −λ2e−λk,
and 3) it can be efficiently computed with a small number of parameters. Unlike the original
exponential distribution using a single parameter λ, we introduce two separate parameters α and β to
better represent the characteristics of the softmax operation in our approximation.

Approximation Function. Given the non-stored original softmax output elements sorted in de-
scending order as s1 ≥ s2 ≥ ... ≥ sn−2m that are computed but discarded from memory during the
forward pass of the network, its k-th element sk is approximated as s′k in the backward pass as:

s′k = αe−β·k for k = [0, 1, ..., N − 1] (11)

where N = n− 2m+ 2 is the number of softmax output elements to be approximated, including
hm and ℓm as the first and last reference values of the approximation, i.e., we let s′0 = hm and
s′N−1 = ℓm. The two parameters α and β are given by:

α = hm, β =
1

N

1

1−hm

(
ln

hm

ℓm
+ 2(hm−hm+1)

)
(12)

By using Equations 11 and 12, s′k for k = 0, 1, ..., N − 1 can be computed to construct the gradient
matrix in Equation 4 during back-propagation, while having only 2m values in activation memory,
i.e., the m− 1 highest and m− 1 lowest softmax elements plus the two parameters α and β.

As mentioned above, the two parameters α and β are defined such that the first and last approximation
value becomes to be the same as hm and ℓm, respectively, i.e., s′0 = hm and s′N−1 = ℓm. The
parameter α can be easily obtained as α = hm since s′0 = αe−β·0 = hm. The parameter β consists
of three components, i.e., 1) normalization factor 1

N
1

1−hm
, 2) range value σ, and 3) rate value β̂ as:

β =
1

N

1

1− hm
· σ · β̂ where σ = − 1

β̂
ln

1

α2β̂2
and β̂ =

√
1

hmℓm
· ehm−hm+1 (13)

Range value (σ). The range value σ in Equation 13 is determined to map the domain of the
approximation function, i.e., k = [0, N − 1], to a new domain k′ = [0, σ]. Since the continuous
domain of exponential distribution ranges from 0 to ∞, we define a new finite range of domain from
which the corresponding approximations (codomain) are computed. To determine the range σ, we
set the slope of the softmax approximation function in Equation 11 at k = N − 1 as symmetrical
to the slope at k = 0 to provide the length-invariant domain given an arbitrary length of softmax.
Given the differentiation of s′k = αe−β·k w.r.t. k as ∂s′k/∂k = −αβe−βk, the slope at k = 0
becomes ∂s′0/∂k = −αβe−β·0 = −αβ. By making the slope at k = N − 1 as symmetrical to −αβ,
i.e., ∂s′N−1/∂k = −αβe−β·(N−1) = − 1

αβ , replace N − 1 with new domain σ, the range σ becomes:

σ = − 1

β
ln

1

α2β2
(14)
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Algorithm 1: Model Training with Softmax Output Approximation
Input:M: l-layer model, B: training mini-batch, m: number of softmax elements to be stored in memory
for k ← 1 to l do [forward pass of the modelM]

execute the operation at the k-th layer with B;
if k-th layer == softmax then

foreach training sample in B do
1⃝ store m−1 highest and m−1 lowest softmax output elements and α, β [Eq.12] in memory;

discard the remaining n−2m+2 softmax output elements from memory;
compute and store ln(

∑n
j=1 e

zj ) [Eq.5] in memory;
end

else
store the activation output of k-th layer obtained from B in memory;

end
end
for k ← l to 1 do [backward pass of the modelM]

if k-th layer == softmax then
foreach training sample in B do

2⃝ approximate n−2m+2 softmax output elements using α and β [Eq.11];
make the softmax output vector s⃗′ from 1⃝, 2⃝ [Eq.6];
make the softmax input vector z⃗ from the softmax output vector s⃗′ [Eq.5];
make the gradient matrix ∂s⃗′/∂z⃗k−1 from the softmax output vector s⃗′ [Eq.4];

end
end
perform back-propagation for the k-th layer with its activation output;

end

Normalization Factor. As shown in Equation 13, the range σ is normalized by 1/N , as a total of N
softmax elements are approximated from it so that the discrete domain of k = [0, 1, ..., N − 1] can be
used to approximate the k-th element. Since the approximation function in Equation 11 converges to
0 when k → ∞, σ is additionally multiplied with 1/(1−α) where α = hm (Equation 12) to increase
the range σ inverse proportional to hm based on the property that the sum of a softmax equals to one.

Rate Value (β̂). The rate value β̂ in Equation 13 determines the shape of the approximation function,
playing a similar role to λ in the exponential distribution. To determine β̂, the approximation at
k = σ is set as the same as ℓm given Equation 11 and 14, i.e., we let s′σ = ℓm and obtain β as:

β =

√
1

hmℓm
from s′σ = αe

−β·
(
− 1

β ln 1
α2β2

)
=

1

αβ2
= ℓm (15)

where α = hm as in Equation 12. Since the approximation is based on the exponential distribution,
the convergence rate is proportional to β. To utilize this characteristic, the rate value β̂ is multiplied
by the distance between the hm and hm+1 in the exponential function, which is given by:

β̂ =

√
1

hmℓm
· ehm−hm+1 (16)

By replacing β with β̂ in Equations 14 and 16 to distinguish them from β on the left-hand side of
the first equation in Equation 13, they become equivalent to the right two equations in Equation 13.
Multiplying 1

N
1

1−hm
, σ, and β̂ altogether in Equation 13 gives the final β parameter in Equation 12.

Approximation Overhead. The proposed softmax output approximation 1) sorts the softmax
elements, 2) performs the approximation, and 3) reorders the approximated softmax elements back
to the original sequence, which takes O(n log2 n) of time complexity and n log2 n bits of space
(memory) complexity, respectively, where n is the length of softmax vector. However, these overheads
are negligible in general when compared to the massive amount of the training workload.

3.4 Model Training with Softmax Output Approximation

Algorithm 1 illustrates the model training procedure that uses the proposed softmax output approxi-
mation. Although its primary target is attention-based models (Transformers), it is applicable to any
models having the softmax layers in them without modifying the network architecture. It reduces the
amount of the softmax activation memory without affecting other parts of the network.
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4 Experiment

Implementation. We implement a custom softmax operation that applies the proposed softmax
approximation (Algorithm 1) with PyTorch [39]. Since our implementation is fully compatible with
the existing normal softmax operation, it can be easily applied to any model that uses the original
softmax by just replacing it with our custom softmax without changing any other model components.

Tasks and Models. As the attention mechanism is being widely used and developed primarily in the
field of NLP, we evaluate the proposed softmax output approximation with various NLP tasks, i.e.,
machine translation (Multi30K [13]), text classification (AG News and DBpedia [54]), and sentiment
analysis (SST-2 [29] and IMDb [34]) on different attention-based models, i.e., Transformer [50],
XLNet [52], and ALBERT [30]. The details of each experiment are given below.
4.1 Activation Memory Saving and Model Performance
The first experiment is to evaluate the amount of activation memory reduction in the training process
achieved by the proposed softmax output approximation and the consequent end-to-end model
performance. To better understand its behavior, the models are 1) fine-tuned for down-stream tasks
from a pre-trained model in Table 1, and 2) fully trained from scratch in Table 2 on an RTX A6000
GPU. We recompose the datasets of some tasks by limiting the maximum length of the input sequence
due to the large capacity of attention-based models used in the experiment. The memory usage in
the below three tables (Table 1(a), (b), and Table 2) represents the relative memory usage ratio to
that of the normal softmax 1) without and 2) with the memory overhead incurred to save the softmax
sequence, i.e., n log2 n, described above. We evaluate it with different sets of m given a fixed n in
Equation 6 to restrict the activation memory usage of the softmax module during training and then
measure their performance. The overhead remains constant with respect to n, regardless of m.

Text Classification
Model XLNet XLNet
Task AG News (n=100) DBpedia (n=100)

f1-micro Mem usage (%) f1-micro Mem usage (%)
Normal 0.9323 100% / 100% 0.9889 100% / 100%
m=1 0.9175 1% / 11.9% 0.9743 1% / 11.9%
m=5 0.9205 5% / 15.9% 0.9869 5% / 15.9%
m=10 0.9335 10% / 20.9% 0.987 10% / 20.9%
m=20 0.9353 20% / 30.9% 0.9881 20% / 30.9%
m=30 0.9371 30% / 40.9% 0.9877 30% / 40.9%
m=40 0.9226 40% / 50.9% 0.9855 40% / 50.9%
m=50 0.9869 50% / 60.9% 0.9862 50% / 60.9%

(a) Text Classification result (fine-tuning)

Sentiment Analysis
Model ALBERT XLNet
Task SST-2 (n=100) IMDb (n=100)

f1-micro Mem usage (%) f1-micro Mem usage (%)
Normal 0.8326 100% / 100% 0.8769 100% / 100%
m=1 0.8268 1% / 11.9% 0.8833 1% / 11.9%
m=5 0.8314 5% / 15.9% 0.8843 5% / 15.9%
m=10 0.8211 10% / 20.9% 0.8826 10% / 20.9%
m=20 0.8257 20% / 30.9% 0.8822 20% / 30.9%
m=30 0.8303 30% / 41.9% 0.8840 30% / 41.9%
m=40 0.8360 40% / 50.9% 0.8860 40% / 50.9%
m=50 0.8337 50% / 60.9% 0.8838 50% / 60.9%

(b) Sentiment Analysis result (fine-tuning)
Table 1: Among all n=100 softmax elements, only the m highest and m lowest elements are stored
in memory. ‘Normal’ indicates the normal softmax that stores all output elements in memory.
Text Classification. Table 1(a) shows the relative activation memory usage ratio to the normal
softmax operation and the f1-micro score [15] of two text classification tasks, i.e., AG News [54] and
DBpedia [54]. They are fine-tuned from the pre-trained XLNet model [52]. In the AG News task, the
20.9% memory usage shows a slight difference (0.0012) in the f1-score from the normal softmax,
i.e., 0.9335 vs. 0.9323. In addition, there is an improvement of 0.0546 when using 60.9% activation
memory. The accuracy improvement can be regarded as one of the positive effects of the proposed
approximation method as the approximation errors are broadcasted to the gradient matrix and act as
white noise that can improve the learning performance. Similarly, in the DBpedia task, the 15.9%
memory usage shows a slight difference (0.002) in the f1-score from the normal softmax, i.e., 0.9869
vs. 0.9889. It shows that sufficient training is achieved from a large number of approximated softmax
elements and a small number of memory-stored elements (less than 5%) in text classification tasks.
When the length of input sequence, n, is increased to 1000, the softmax activation output, which
takes 34.33 GB of memory, is reduced to 8.80 GB (AG News task) and 7.08 GB (DBpedia task).

Sentiment Analysis. Table 1(b) shows the relative activation memory usage ratio to the normal
softmax operation and the f1-micro score [15] of two sentiment analysis tasks, i.e., SST-2 [46] and
IMDb [34]. They are fine-tuned from a pre-trained ALBERT [30] and XLNet [52] model, respectively.
In the SST-2 task, the 11.9% memory usage shows a slight difference (0.0058) in the f1-score from
the normal softmax, i.e., 0.8268 vs. 0.8326. When n becomes 1000, the softmax activation output
requiring 34.33 GB of memory space is reduced to 5.70 GB. In the IMDb task, the 11.9% memory
usage shows a slight difference (0.0064) in the f1-score from the normal softmax, i.e., 0.8833 vs.
0.8769. The results of applying the softmax approximation show similar or higher scores to the
normal softmax. They result from a combination of the characteristics of IMDb data, which contains
many unstructured sentences and the noise caused by the softmax approximation.
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Machine Translation
Model Transformer-base
Task Multi30k De-En (n=40) Multi30k En-De (n=40)

BLEU Mem usage (%) BLEU Mem usage (%)
Normal 36.52 100% / 100% 34.05 100% / 100%
m=1 35.53 2.5% / 11.9% 32.76 2.5% / 11.9%
m=2 36.29 5% / 14.4% 33.97 5% / 14.4%
m=4 36.72 10% / 19.4% 34.16 10% / 19.4%
m=8 36.46 20% / 29.4% 34.28 20% / 29.4%
m=12 36.74 30% / 39.4% 33.93 30% / 39.4%
m=16 36.41 40% / 49.4% 33.96 40% / 49.4%
m=20 36.97 50% / 59.4% 33.95 50% / 59.4%

Table 2: Machine translation result (full training). Among all n=40 softmax elements, only the
m highest and m lowest elements are stored in memory. ‘Normal’ indicates the normal softmax
operation that stores all softmax output elements in memory for training.
Figure 3: The train perplexity (left) and test BLEU score (right) in machine translation (Table 2) over
training epochs. The curves of the normal and approximated softmax almost overlap each other.

Machine Translation. Table 2 shows the relative activation memory usage ratio and the BLEU
score [37] of two machine translation tasks, i.e., Multi30K on German-English (De-En) and English-
German (En-De) translations [13]. Transformer basic models [50] are fully trained from scratch for
them. As observed in Table 2, the 14.4% memory usage case shows only a small difference (0.23) in
the BLEU score from the normal softmax, i.e., 36.29 vs. 36.52. When more than 19.4% of memory
is allowed, it starts to outperform the normal softmax. The result demonstrates that the approximated
softmax outputs enable efficient yet effective learning for full training of the Transformer model
while requiring much less activation memory, which can be readily extended to other types of
attention-based models in various architectures and sizes. Figure 3 plots their train perplexity and test
BLEU score over training epochs, which shows almost the same learning trajectory is achieved when
compared to the normal softmax for different m.

4.2 Softmax Output Approximation
The second experiment is to evaluate the approximation performance of the proposed method by
comparing it against the original non-approximated softmax. We analyze the output of the softmax
function over the training epochs. Figure 4(a) shows the comparison between the approximated
softmax (Equation 6) and the normal softmax (Equation 1) at the 1, 8, 15, and 20 epochs. As shown
in the figure, the approximation function effectively emulates the original softmax with low errors,
i.e., only 0.0500 in MAE (mean absolute error) on average, and tends to get more correctly fitted as
the training progresses.

4.3 Gradient Matrix Reconstruction
The third experiment is to evaluate the approximated gradient matrix (Equation 4) obtained from the
approximated softmax output (Equation 6) by comparing it against the gradient matrix constructed
from the original non-approximated softmax (Equation 1). Figure 4(b) depicts the heatmaps repre-
senting the gradient error (Equation 7) measured in MAE between them over the training epochs,
showing the approximated gradient matrices are almost the same as the original non-approximated
ones with consistently low errors. At the beginning of training (epoch 1), the average error is 0.00031,
which is about 0.124% of 0.25, the maximum value that each gradient element can have. As the
training progresses, the average error reduces to 0.088% (epoch 15), and most gradient elements in
the remaining epochs retain low errors around 0.114%. Considering that the value of the gradient
matrix is crucial as it is used in the back-propagation chain to compute the weight parameter update,
it implies that the approximated softmax outputs enable the accurate update of the model weight
parameters in the training process as it effectively reconstructs the gradient matrix with low error.
Additionally, we convert the absolute gradient matrix error to the relative percentage error, i.e., 7.70%
in epoch 1, 13.33% in epoch 8, 8.28% in epoch 15, and 12.74% in epoch 20. The elements of the
gradient matrix range from -0.25 to 0.25, and since it has elements close to 0, the error appears to be
unstable compared to MAE.

5 Related Work
The proposed softmax output approximation takes a unique approach orthogonal to many existing
memory-efficient training techniques summarized below, enabling additional improvement in training
memory efficiency when used on top of them, as they do not curtail the softmax activation memory.
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(a) Comparison of original and approximation (b) The heatmaps of the gradient error (MAE)

Figure 4: (a) An example of the normal softmax (blue lines) and the approximated softmax output
(red lines) sorted in descending order over the training epochs when n=21 and m=3. Among all
21 softmax elements, only 6 elements are stored in memory, while the remaining 15 elements are
approximated with low error. (b) The heatmaps of the gradient error (RE) between the gradient matrix
reconstructed from the approximated softmax outputs and the gradient matrix generated from the
original softmax outputs. The attached plots on the left of each heatmap present the unsorted softmax
output and the corresponding approximated softmax output, showing significant overlap.
Diverse Approaches to Efficient Attention Mechanisms. Efficiency improvements in attention-
based models involve various approaches to streamline the attention mechanism, categorized as
follows: 1) Efficient changes in the matrix-wise calculation of the attention mechanism, e.g., Flash
Attention [9], Performer [8], Linear Attention [23], Random Feature Attention [40], etc. 2) By
compressing the sequence to which the attention mechanism is applied, the size of the attention
matrix is reduced, e.g., Longformer [2], Sparse Transformers [7], Reformer [24], etc. 3) Reducing
the number of tokens in the attention mechanism, e.g., Linformer [51], Luna [33], Perceiver [19], etc.
4) Utilizing quantization for memory-efficient training, e.g., Mesa [36], GACT [32], etc.

Flash attention [9], an efficient matrix-wise calculation method, enhances the efficiency of the
attention mechanism by employing varying memory access rates for each GPU memory layer. It
speeds up memory-bound operations like matmul and softmax, where memory access exceeds
computational requirements. Tiling enhances the efficiency of matrix matmul, whereas softmax is
optimized through recomputation. To save memory and avoid the O(n2) memory requirement for
softmax recalculation, the input is reconstructed after storing softmax normalization statistics. In this
method, the proposed softmax approximation has limited applicability due to the absence of storage
or processing of softmax output.

In Performer [8], an efficient matrix-wise calculation method, the row vectors of the query and key
are mapped from d dimensions to r dimensions using a random feature map ϕ. Then, attention is
computed by taking the inner product of the mapped ϕ(qi) and ϕ(qj). The memory efficiency of this
approach differs from the proposed softmax approximation method since it eliminates the softmax
step in the process of streamlining matrix-wise operations.

Longformer [2], a sequence compression method, utilizes techniques like dilated sliding and global
attention to overcome the limitations of existing methods, which face challenges in learning lengthy
sentences due to their O(n2) complexity. This approach proposes compressing the attention matrix
from a larger size to a smaller one, effectively resolving the issue. In this approach, the operation of
QKT is streamlined, and the attention score is computed using softmax in the same way as existing
attention mechanisms. Based on this, the proposed softmax approximation method can be utilized
in this process. It efficiently approximates the whole from a part of the softmax output, making it
suitable for restoring an already compressed sequence matrix, regardless of the input type.

Linformer [51], a method for reducing the number of tokens, simplifies complexity by decomposing
the attention matrix into low-rank matrices and performing operations on these low-rank matrices.
The results obtained from these low-rank matrix operations are then processed through a softmax
operation to determine the attention scores matrix. This method overlaps with the proposed softmax
approximation method due to the presence of activation memory resulting from the softmax operation.
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Mesa [36], a memory-saving method that employs quantization, utilizes quantization to store low-
precision activation outputs, thereby reducing the memory used for activation storage during forward
propagation. Additionally, during back-propagation, these low-precision activation outputs are
dequantized to compute the gradients. In the context of memory-saving through quantization, it’s
evident that efficiency limitations depend on the physical memory unit. However, differences arise in
the proposed softmax approximation method because it can adapt flexibly based on the sentence.

The various methods described above have been employed to enhance efficiency through hardware-
dependent measures, matrix-wise calculation efficiency, and the compression or removal of segments
within the attention matrix. The softmax approximation proposed in this paper is orthogonal to such
approaches, as it improves activation memory efficiency by approximating the entire softmax output
from a subset. Notably, it can be used without requiring structural modifications to the existing
model or attention mechanism. These distinctions make it easily applicable to many widely used
attention-based models, and it can also be used concurrently with the above-mentioned efficient
methods.

Re-materialization. Instead of saving activation outputs of each layer in memory, re-materialization
methods [6, 10], also referred to as gradient checkpointing [16, 14, 1, 28], generate them on the fly
by re-executing (re-computing) the network. Although a substantial amount of memory can be saved
by re-execution of the network, it comes at the cost of increased computation time (i.e. time-memory
trade-off) as the network is repeatedly re-executed proportional to the number of model layers. Since
1) the complexity of the attention module is high, i.e., O(n2) in general [50], and 2) it appears
multiple times in the network architecture, re-materializing attention-based networks is not feasible
in practice. Also, to handle the time-memory trade-off, an appropriate schedule should be chosen
for a back-propagation graph [27, 17]. Unlike them, the proposed softmax output approximation 1)
saves the activation memory in training without increasing computation as the network is executed
only once, not multiple times, and 2) does not require scheduling a back-propagation graph.

6 Discussions and Limitations
Approximation Overhead. To implement the proposed softmax approximation using the exponential
distribution, which is a decreasing function, the softmax output elements are initially sorted in
descending order. After approximating the sorted softmax output, they are reordered back to their
original sequence to perform back-propagation. In terms of space (memory) complexity, it requires
storing the original sequence of softmax elements in memory, taking n log2 n bits, where n is the
number of softmax elements. When it comes to time (computation) complexity, it involves 1) sorting
the softmax elements, 2) performing the approximation, and 3) reordering the approximated softmax
elements back to the original sequence.

The optimal implementation of the softmax approximation requires a lower-level programming
language, like the CUDA kernel, rather than Python. Thus, the above processes would better be
carried out at the ’CUDA kernel’ level to properly implement the softmax output approximation and
assess the actual overhead. In this paper, we implement the softmax approximation in a non-optimal
way using Python, unlike the original softmax function highly optimized with the CUDA kernel.
Our ongoing work involves further refinements, and one of the objectives is to optimize the softmax
approximation algorithm with CUDA kernels. That said, the aforementioned overheads are negligible
in general when compared to the massive training workload. Hence, with relatively little overheads in
both memory and computation, the proposed method can efficiently approximate the softmax output.

Performance Improvement. In some cases, we have observed that the model’s performance
improves when the proposed softmax approximation is applied. When certain approximation errors
in the softmax output are confined to a small range, they behave like white noise when delivered and
broadcast to the gradient matrix. This white noise effect can have a positive impact on performance.

7 Conclusion
We propose to approximate the softmax output in the attention module to reduce its activation memory
required to train attention-based deep models. By storing only a subset of the softmax output elements
in memory during the forward pass and approximating the evicted elements during the backward pass,
a significant amount of activation memory can be saved in an architecture-agnostic way when training
attention-based deep models. The experiment shows that the proposed softmax output approximation,
which significantly reduces softmax activation memory by up to 84% while maintaining comparable
performance, is likely to be effective for models dealing with large datasets and substantial memory.

10



Acknowledgments and Disclosure of Funding

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (RS-2023-00277383) and Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.2020-0-
01336, Artificial Intelligence graduate school support(UNIST)).

References
[1] Olivier Beaumont, Julien Herrmann, Guillaume Pallez, and Alena Shilova. Optimal memory-aware back-

propagation of deep join networks. Philosophical Transactions of the Royal Society A, 378(2166):20190049,
2020.

[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

[3] Trenton Bricken. Transformer Memory Requirements, 2022. https://www.trentonbricken.com/ Trans-
formerMemoryRequirements/.

[4] John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum mutual
information estimation of parameters. Advances in neural information processing systems, 2, 1989.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

[7] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

[8] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, and Adrian
Weller. Rethinking attention with performers, 2022.

[9] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness, 2022.

[10] Benjamin Dauvergne and Laurent Hascoët. The data-flow equations of checkpointing in reverse automatic
differentiation. In International Conference on Computational Science, pages 566–573. Springer, 2006.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[13] Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multilingual english-german
image descriptions. In Proceedings of the 5th Workshop on Vision and Language, pages 70–74. Association
for Computational Linguistics, 2016.

[14] Jianwei Feng and Dong Huang. Cutting down training memory by re-fowarding. 2018.
[15] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class classification: an overview.

arXiv preprint arXiv:2008.05756, 2020.
[16] Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of checkpointing for

the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software
(TOMS), 26(1):19–45, 2000.

[17] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. Advances in Neural Information Processing Systems, 29, 2016.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[19] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021.

[20] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

[21] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international symposium on computer architecture,
pages 1–12, 2017.

[22] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

[23] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International Conference on Machine Learning, pages
5156–5165. PMLR, 2020.

[24] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

11



[25] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer models, 2022.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

[27] Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient rematerialization for
deep networks. Advances in Neural Information Processing Systems, 32, 2019.

[28] Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, and Masanori Koyama. A graph
theoretic framework of recomputation algorithms for memory-efficient backpropagation. Advances in
Neural Information Processing Systems, 32, 2019.

[29] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A lite BERT for self-supervised learning of language representations. CoRR, abs/1909.11942,
2019.

[30] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Al-
bert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942,
2019.

[31] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198, 2018.

[32] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan
Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin Cheung. Gact: Activation compressed training
for generic network architectures, 2022.

[33] Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettlemoyer.
Luna: Linear unified nested attention, 2021.

[34] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association
for computational linguistics: Human language technologies, pages 142–150, 2011.

[35] NVIDIA. Nvidia a100 tensor core gpu. https://www.nvidia.com/en-us/data-center/a100/,
2020.

[36] Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. Mesa: A memory-saving
training framework for transformers, 2022.

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational
Linguistics.

[38] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. Image transformer. In International conference on machine learning, pages 4055–4064. PMLR,
2018.

[39] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[40] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong. Random
feature attention, 2021.

[41] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[42] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[43] Sheldon M Ross. Introduction to probability and statistics for engineers and scientists. Academic press,
2020.

[44] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli
Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction
using potentials from deep learning. Nature, 577(7792):706–710, 2020.

[45] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yaz-
dani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston, Saurabh
Tiwary, and Bryan Catanzaro. Using deepspeed and megatron to train megatron-turing nlg 530b, a
large-scale generative language model, 2022.

[46] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1631–1642, 2013.

[47] SQuAD Squad. The stanford question answering dataset (2021).
[48] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM

Computing Surveys (CSUR), 2020.
[49] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.

Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, pages 10347–10357. PMLR, 2021.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,

12

https://www.nvidia.com/en-us/data-center/a100/


30, 2017.
[51] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear

complexity. arXiv preprint arXiv:2006.04768, 2020.
[52] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet:

Generalized autoregressive pretraining for language understanding. Advances in neural information
processing systems, 32, 2019.

[53] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv
preprint arXiv:1809.09600, 2018.

[54] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

13


	Introduction
	Training of Softmax Operation
	Softmax Output Approximation
	Approximation Strategy
	Element Selection for Memory Storing
	Approximation Method
	Model Training with Softmax Output Approximation

	Experiment
	Activation Memory Saving and Model Performance
	Softmax Output Approximation
	Gradient Matrix Reconstruction

	Related Work
	Discussions and Limitations
	Conclusion

