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Abstract

Real-world scenarios are usually accompanied by continuously appearing classes
with scarce labeled samples, which require the machine learning model to in-
crementally learn new classes and maintain the knowledge of base classes. In
this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods
either introduce extra learnable components or rely on a frozen feature extractor
to mitigate catastrophic forgetting and overfitting problems. However, we find a
tendency for existing methods to misclassify the samples of new classes into base
classes, which leads to the poor performance of new classes. In other words, the
strong discriminability of base classes distracts the classification of new classes.
To figure out this intriguing phenomenon, we observe that although the feature
extractor is only trained on base classes, it can surprisingly represent the semantic
similarity between the base and unseen new classes. Building upon these analyses,
we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to
enhance the discriminability of new classes by fusing the new prototypes (i.e.,
mean features of a class) with weighted base prototypes. In addition to standard
benchmarks in FSCIL, TEEN demonstrates remarkable performance and consis-
tent improvements over baseline methods in the few-shot learning scenario. Code
is available at: https://github.com/wangkiw/TEEN

1 Introduction

Deep Neural Networks (i.e., DNNs) have achieved impressive success in various applications [16,
19, 36, 55, 54, 5], but they usually rely heavily on static and pre-collected large-scale datasets
(e.g., ImageNet [11]) to achieve this success. However, the data in real-world scenarios usually
arrive continuously. For example, the face recognition system is required to authenticate existing
users, and meanwhile, new users are continually added [30]. The scene where the model is required
to continually learn new knowledge and maintain the ability on old tasks is referred to as Class-
Incremental Learning (CIL) [41]. The main challenge of CIL is the notorious catastrophic forgetting
problem [14], where the model forgets old knowledge as it learns new ones.

Many methods have been designed to overcome catastrophic forgetting in CIL from different
perspectives, e.g., knowledge distillation [35], parameter regularization [22, 53], and network expan-
sion [50, 47, 46]. These methods require new tasks to contain sufficient labeled data for supervised
training. However, collecting enough labeled data in some scenarios is challenging, making the
conventional CIL methods hard to deploy [30]. For example, the face recognition system can only
collect very few facial images of a new user due to privacy reasons. Therefore, a more realistic and
practical incremental learning paradigm, Few-Shot Class-Incremental Learning (FSCIL) [42], is
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proposed to address the problem of class-incremental learning with limited labeled data. Figure 1a
gives a detailed illustration of FSCIL.
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(b) An illustration of the semantic similarity.

Figure 1: (a) The base session contains sufficient sam-
ples of base classes for training. The incremental ses-
sions (i.e., sessions after the base session) only contain
few-shot samples of new classes. FSCIL aims to obtain
a unified classifier over all seen classes. Notably, the
data from previous sessions are unavailable. (b) For ex-
ample, considering the new classes “Plain”, “Plate” and
“Porcupine” in CIFAR100 [23], the corresponding most
similar base classes selected by the similarity can depict
the really semantic similarity. The three most similar
base classes are selected by computing the cosine sim-
ilarity between base prototypes and novel prototypes.
The results show the feature extractor only trained on
the base classes can also well represent the semantic
similarity between the base and new classes.

In addition to the catastrophic forgetting prob-
lem [14], FSCIL will suffer the overfitting prob-
lem because the model can easily overfit the
very few labeled data of new tasks. Previous
works [57, 58, 61] have adopted prototype-based
methods [40, 33] to conquer the limited data
problem. These methods freeze the feature ex-
tractor trained on base classes when dealing
with new classes and use the prototypes of new
classes as the corresponding classifier weights.
The frozen feature extractor can alleviate the
catastrophic forgetting problem and the proto-
type classifier can circumvent the overfitting
problem. However, the inherent problem of
learning with few-shot data is challenging to
depict precisely the semantic information of a
new category with limited data, making pro-
totypes of new classes inevitably biased [27].
An intuitive reason for the biased prototypes
is that the feature extractor has not been opti-
mized for the new classes. For example, the
feature extractor trained on “cat” and “dog” can
not precisely depict the feature of a new class
“bird” especially when the instances of “bird”
are incredibly scarce 2. Many prototype adjust-
ment methods [27, 57, 58, 15, 61, 1, 24] are
dedicated to rectifying the biased representa-
tions of the new classes. These methods usually
focus on designing complex pre-training algo-
rithms to enhance the compatibility of represen-
tations [58, 59, 10], or complicated trainable
modules that better adapt the representation of
the new classes [57, 15, 61, 1], all of which rely
on significant training costs in exchange for improved model performance.

However, we find that although existing methods perform well on the widely used performance
measure (i.e., the average accuracy across all classes), they usually exhibit poor performance on new
classes, which suggests that the calibration ability of existing methods could be improved. In other
words, existing methods neglect the performance of new classes. A direct reason for this negligence
is the current unified performance measure is easily overwhelmed by the dominated base classes (e.g.,
60 base classes in the CIFAR100 dataset). However, the more recent tasks are usually more crucial in
some real-world applications. For example, the new users in the recommendation system are usually
more important and need more attention [45]. The important yet neglected new classes’ performance
inspires us to pay more attention to it.

To better understand the performance of current FSCIL methods [42, 6, 9, 58, 57], we explicitly
evaluate and analyze the low performance of existing methods on new classes and empirically
demonstrate the instances of new classes are prone to be predicted into base classes. To further
understand this intriguing phenomenon, we revisit the representation of the feature extractor and find
that the feature extractor trained only on base classes can already represent the semantic similarity
between the base and new classes well. As shown in Figure 1b, although the novel classes are
unavailable during the training of the feature extractor, the semantic similarity between the base and
novel classes can also be well-represented. However, existing methods have been obsessed with
designing complex learning modules and disregard this off-the-shelf semantic similarity.

2 “new class” and “novel class” in this paper mean the classes emerging after the base session.
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Based on the above analysis, we propose to leverage the overlooked semantic similarity to explicitly
enhance the discriminability of new classes. Specifically, we propose a simple yet effective Training-
frEE prototype calibratioN (i.e., TEEN) strategy for biased prototypes of new classes by fusing
the biased prototypes with weighted base prototypes, where the weights for the base prototypes are
class-specific and semantic-aware. Notably, TEEN does not rely on any extra optimization procedure
or model parameters once the feature extractor is trained on the base classes with a vanilla supervised
optimization objective. Besides, the excellent calibration ability and training-free property make it a
plug-and-play module.

Our contributions can be summarized as follows:

• We empirically find that the lower performance of new classes is due to misclassifying the
samples of new classes into corresponding similar base classes, which is intriguing and
missing in existing studies.

• We propose a simple yet effective training-free calibration strategy for new prototypes, which
not only achieved a higher average accuracy but also improved the accuracy of new classes
(10.02% ∼ 18.40% better than the runner-up FSCIL method).

• We validate TEEN on benchmark datasets under the standard FSCIL scenario. Besides,
TEEN shows competitive performance under the few-shot learning scenario. The consistent
improvements demonstrate TEEN’s remarkable calibration ability.

2 Related Works

2.1 Class Incremental Learning

The model in the Class-Incremental Learning (i.e., CIL) scenario is required to learn new classes
without forgetting old ones. Save representative instances in old tasks (i.e., exemplars) and replay
them in new tasks is a simple and effective way to maintain the model’s discriminability ability on
old tasks [20, 2, 37]. Furthermore, knowledge distillation [17, 35, 25, 49] is widely used to maintain
the knowledge of the old model by enforcing the output logits between the old model and the new
one to be consistent. iCaRL [35] uses the knowledge distillation as a regularization item and replays
the exemplars when learning the feature representation. Many methods follow this line and design
more elaborate strategies to replay exemplars [29] and distill knowledge [21, 12]. Recently, model
expansion [28, 50, 47, 46, 39, 60] have been confirmed to be effective in CIL. The most representative
method [50] saves a single backbone and freezes it for each incremental task. The frozen backbone
substantially alleviates the catastrophic forgetting problem.

2.2 Few-Shot Learning

The model in Few-Shot Learning (i.e., FSL) [48] scenario is required to learn new classes with
limited labeled data. Existing methods usually achieve this goal either from the perspective of
optimization [13, 31, 3] or metric learning [40, 43, 26, 27, 56]. The core thought of optimization-based
methods is to equip the model with the ability to fast adaptation with limited data. The metric-based
methods focus on learning a unified and general distance measure to depict the semantic similarity
between instances. Besides, [51] proposes to use Gaussian distribution to model each feature
dimension of a specific class and sample augmented features from the calibrated distribution. Based
on these augmented features, [51] train a logistic regression and achieve competitive performance.
However, TEEN can outperform [51] in most settings and without any training cost when recognizing
new classes.

2.3 Few-Shot Class-Incremental Learning

The model in Few-Shot Class-Incremental Learning (i.e., FSCIL) [42] scenario is required to incre-
mentally learn new knowledge with limited labeled data. Many existing methods are dedicated to
designing learning modules to train a more powerful feature extractor [58] or adapting the representa-
tion of the instances of new classes [57, 9, 61, 1]. Besides, TOPIC [42] utilizes a neural gas network
to alleviate the challenging problems in FSCIL. [8] adopts word embeddings as semantic information
and introduces a distillation-based FSCIL method. IDLVQ [6] proposes to utilize quantized reference
vectors to compress the old knowledge and improve the performance in FSCIL. However, all these

3



methods overlook the abundant semantic information in base classes and the poor performance in
new classes. In this study, we aim to take a small step toward filling this gap. The most related
work to TEEN is [1]. However, it relies on optimizing a regularization-based objective function to
implicitly utilize the semantic information. As opposed to [1], TEEN takes advantage of the empirical
observation and gets rid of the optimization procedure and is thus more efficient and effective.

3 Preliminaries

3.1 Definition and notations

In FSCIL [42], we assume there exists T sessions in total, including a base session (i.e., the first ses-
sion) and T − 1 incremental sessions (i.e., sessions after the first session). We denote the training data
in the base session as D0 and the training data in the incremental sessions as {D1,D2, . . . ,DT−1}.
For the training data Di in the i-th session, we further notate it with {(xj , yj)}Ni

j=1 and corresponding
label space with Ci. Note that only training data Di is available in the i-th session. Accordingly,
the testing data and testing label space in session i can be denoted as Dtest

i and Ctest
i . To better

evaluate the model’s discriminability on all seen tasks, the testing label space Ctest
i of i-th session

contains all seen classes during training, i.e., Ctest
i =

⋃i
j=0 Cj . An incremental session can also

be denoted as a N -way K-shot classification task, i.e., N classes and K labeled examples for
each class. Note that the training label spaces between different sessions are disjoint, i.e., for any
i, j ∈ [0, T − 1] and i ̸= j, Ci

⋂
Cj = ∅.

Compared to conventional CIL, FSCIL only requires the model to learn new classes with limited
labeled data. On the other hand, compared to conventional Few-Shot Learning (FSL), FSCIL requires
the model to continually learn the knowledge of new classes while retaining the knowledge of
previously seen classes. We introduce the related works on CIL, FSL and FSCIL in supplementary
due to the space limitation.

The model in FSCIL can be decoupled into a feature encoder ϕθ(·) with parameters θ and a linear
classifier W . Given a sample xj ∈ RD, the feature of xj can be denoted as ϕθ(xj) ∈ Rd. For a N -
class classification task, the output logits of a sample xj can be denoted as Oj = W⊤ϕθ(xj) ∈ RN

where W ∈ Rd×N .

3.2 Prototypical Network

ProtoNet [40] is a widely used method in few-shot learning problems. It computes the mean feature
ck of a class k (e.g., class prototype) and uses the class prototype to represent the corresponding class:

ck =
1

Numk

∑
yj=k

ϕθ(xj) (1)

Numk denotes the number of samples in class k. For a classification task with N classes, the classifier
can be represented by the N prototypes, i.e., W = [c1, c2, . . . , cN ]. Following the [58, 57, 61, 1], we
freeze the feature extractor ϕθ trained on the base task and plug the class prototype into the classifier
while dealing with a new class. The frozen feature extractor can alleviate catastrophic forgetting and
the plug-in updating of the classifier can circumvent the overfitting problem relatively.

4 A Closer Look at FSCIL

In this session, we comprehensively analyze current FSCIL methods from a decoupled perspective.
Although the previous updating paradigm of extractor-frozen and prototypes-plugged can achieve
adequate average accuracy in all classes, there also exist some shortcomings in it. In this section, we
empirically show that the current methods (e.g., [57, 58]) are generally not effective in new classes.
Furthermore, we take a step toward understanding the reason for the low performance in new classes.

4.1 Understanding the reason for poor performance in new classes

To better understand the performance of existing methods, we first measure the performance by
average accuracy on all classes, base classes and new classes, respectively. As illustrated in Figure 2,
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Table 1: Detailed prediction results of False Negative Rate/False Positive Rate (%) on CIFAR100 [23] dataset.
The analysis results are from session 1 because new classes do not exist in session 0. Exceedingly high FPR
and relatively low FNR show the instances of new classes are easily misclassified into base classes and the
instances of base classes are also easily misclassified into base classes. TEEN can achieve relatively lower FPR
than baseline methods, which demonstrates the validity of the proposed calibration strategy. Please refer to the
supplementary for results on miniImageNet and CUB200.

Session 1 2 3 4 5 6 7 8

FNR/FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

ProtoNet [40] 2.13 67.40 4.42 67.40 6.68 60.67 8.28 58.90 10.25 56.68 11.70 54.47 12.57 51.66 13.78 51.80
CEC [57] 2.32 70.40 4.38 66.20 6.18 62.20 7.50 58.65 9.72 56.00 11.30 53.60 12.12 51.40 13.48 51.78
FACT [58] 2.05 66.60 3.88 61.70 5.58 56.80 7.23 55.05 8.85 53.64 9.83 51.13 10.45 48.83 11.75 49.27

TEEN 4.03 57.40 7.40 52.50 9.35 45.00 11.58 40.75 14.00 40.80 15.78 39.23 16.33 36.91 18.75 36.65

Table 2: Detailed prediction results of TNR/TBR (%) on CIFAR100 [23] dataset. The analysis results are from
session 1 because new classes do not exist in session 0. For new classes, we only consider the 10 most similar
base classes out of 60 base classes. For base classes, we suppose Ci new classes exist in the current incremental
session i. We only consider the most similar ⌊20%× Ci⌋ new classes. Class similarity adopts cosine similarity
between different class prototypes. TEEN can achieve relatively lower TBR than baseline methods, which
demonstrates the validity of the proposed calibration strategy. Please refer to the supplementary for results on
miniImageNet and CUB200.

Session 1 2 3 4 5 6 7 8

TNR/TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR

ProtoNet [40] 3.47 73.01 5.02 61.79 7.06 55.05 8.08 52.95 7.14 53.27 8.56 51.96 8.53 49.18 9.21 50.91
CEC [57] 2.87 71.70 4.53 61.08 5.66 58.26 6.35 55.16 6.07 54.12 6.92 52.53 8.24 49.96 8.20 51.64
FACT [58] 2.33 70.00 3.32 61.01 5.50 55.17 6.88 50.55 6.57 50.52 7.72 49.30 8.88 46.99 9.31 48.48

TEEN 2.16 66.77 2.53 55.14 3.55 44.87 3.85 37.68 3.57 39.47 4.02 37.07 4.76 33.83 4.85 35.04

our first observation is that the average accuracy across base classes is extremely higher than the
accuracy in new classes. The inconsistent performance between the base and new classes is caused
by the frozen feature extractor and biased new prototypes. The former forces the model to overfit
base classes and the latter causes the model to underfit the new classes.
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Figure 2: The perfor-
mance of FACT [58]
on CIFAR100 dataset.
NAcc,BAcc,AvgAcc mean
the average accuracy on
new classes, base classes,
and all classes, respectively.

To determine the real cause of the low performance on new classes, we
further investigate “What base classes are the new classes incorrectly
predicted into?” and get our second observation.

Our second observation is that the prototype-based classifier misclas-
sifies the new classes to their corresponding most similar base classes
with high probability, i.e., many instances of new classes are closer to
their nearest base prototype than corresponding target prototypes

To verify this observation, we first analyze the detailed prediction results
from a decoupled perspective. Specifically, we treat all base classes as
a “positive class” and all new classes as a “negative class” and transform
the FSCIL problem into a two-class classification task. We compute the
false negative rate (i.e., FNR) and false positive rate (i.e., FPR) of each
binary prediction task on each incremental session. The FNR and FPR
in the confusion matrix is defined as follows:

FNR =
FN

TP + FN
× 100%, FPR =

FP
FP + TN

× 100% (2)

As shown in Table 1, the FPR is far greater than FNR illustrating new classes are generally mis-
classified into base classes but the base classes are generally misclassified into base classes. On the
basis of this conclusion, we further explore the details of misclassification. To better illustrate the
analysis, we define “misclassified To most similar Base classes Ratio” (i.e., TBR ) for new classes
and “misclassified To most similar New classes Ratio” (i.e., TNR ) for base classes. Specifically,
considering the misclassified instances in base classes and new classes respectively, the TBR and
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(a) An qualitative illustration of the calibration

Incremental Session 1 2

Sample type UC W→R R→W UC W→R R→W

Base Class 93.08 8.51 76.92 87.51 7.95 68.03
New Class 6.92 91.49 23.08 12.49 92.05 31.97

(b) An quantitative illustration of the calibration

Figure 3: (a) The ⃝ represents the samples of new classes and the △ represents the samples of base classes.
The dotted lines between samples and prototypes (i.e., cn,cbasen ,c̄n) represent the corresponding classification
results. Blue and purple dotted lines represent samples that are correctly classified, and red dotted lines represent
misclassification. The yellow circles (i.e., W→R samples) and green triangles (i.e., R→W samples) in the
right figure are samples with prediction changes after calibration. (b) The detailed ratio (%) of base and new
classes with regard to three types of samples(i.e., UC samples, W→R samples, R→W samples). Only two
incremental sessions (i.e., session 1 and session 2) of CIFAR100 are listed here for convenience. Please refer to
the supplementary for results on more incremental sessions and more datasets.

TNR are defined as follows:

TBR =
Mb

Nn
× 100%, TNR =

Mn

Nb
× 100% (3)

Nn means the number of misclassified instances of new classes. Mb is the number of instances
misclassified into most similar base classes in Nn samples. Mn and Nb have similar meaning. As
shown in Table 2, the TBR is higher and the TNR is relatively low, which strongly underpins our
second observation. To our knowledge, we are the first to explain the reason for the low performance
of new classes in existing methods and observe that the samples of new classes are easily misclassified
into the most similar base classes.

To summarize, we empirically demonstrate that existing methods perform poorly on new classes and
find that this is because the model tends to misclassify new class samples into the most similar base
classes. Combining existing analysis (i.e., the samples of new classes tend to be classified into the
most similar base classes) and observations (i.e., the well-trained feature extractor on base classes
can also well represent the semantic similarity between the base and new classes), we propose to use
the frozen feature extractor as a bridge and calibrate the biased prototypes of new classes by fusing
the biased new prototypes with the well-calibrated base prototypes.

5 Similarity-based Prototype Calibration

Based on the common assumptions in FSCIL [42], sufficient instances of base classes are available
during the training of the feature extractor. We argue the sufficient data in the base session contains
abundant semantic information (i.e., a sufficient number of classes) and the base prototypes are
well-calibrated (i.e., a sufficient number of instances for each class). The above analysis leads to a
natural question:

Can we leverage the well-calibrated prototypes in the base session for a new prototype calibration?

As the previous methods overlook the low performance of new classes caused by the corresponding
biased prototypes, we propose to explicitly calibrate these biased prototypes with the help of the
well-calibrated base prototypes. The off-the-shelf semantic similarity serves as a bridge between
the base prototypes and the new ones. In the following sections, we introduce the details of fusing
the well-calibrated base prototypes and ill-calibrated new prototypes to calibrate the biased ones.
Afterwards, we analyze the effects of this training-free prototype calibration on new classes and base
classes, respectively.

5.1 Fusing the biased prototypes with calibration item

We assume there exist B classes in the base session and C classes in an incremental session, e.g.,
B = 60, C = 5 in the CIFAR100 dataset. Without loss of generality, we only consider the base
session and the first incremental session for simplification. Other incremental sessions can be obtained
in the same way. Following the notations in section 3.1, the empirical prototype of i-th class can
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be notated as ci. Therefore, the base prototypes are cb(0 ≤ b ≤ B − 1) and the new prototypes are
cn(B ≤ n ≤ B + C − 1). As the base session contains sufficient classes and sufficient samples for
each class, the model trained on the base session can capture the distribution of base classes and
obtain well-calibrated prototypes for base classes. Generally, the empirical prototype of base classes
can be regarded as approximately consistent with the expected class representation. However, due to
the limited data in incremental sessions, the empirical prototypes of the novel classes are considered
to be severely biased.

Based on the analysis of prototypes, we only calibrate biased prototypes in incremental sessions.
Given a new class prototype cn(B ≤ n ≤ B + C − 1), the calibrated new prototype c̄n can be
notated by:

c̄n = (1− α)cn + α∆cn (4)

The calibration item ∆cn is a component of base prototypes. The hyperparameter α controls the
calibration strength of biased prototypes. Smaller α means the calibrated prototype reflects more of
the original biased prototype, while larger α means the calibrated prototype heavily incorporates the
base prototypes. Motivated by the observations in section 4.1, the similarity between well-calibrated
base prototypes and ill-calibrated new prototypes contains auxiliary side information about the new
classes. Therefore, we use weighted base prototypes to represent the calibration item ∆cn and
enhance the discriminability of biased prototypes. Specifically, we compute the cosine similarity Sb,n

between a new class prototype cn and a base prototype cb:

Sb,n =
cb · cn

∥cb∥ · ∥cn∥
· τ (5)

where τ (τ > 0) is the scaling hyperparameter controlling the weight distribution’s sharpness. The
weight of a new prototype cn with respect to a base prototype cb is the softmax results over all base
prototypes:

wb,n =
eSb,n∑B−1

i=0 eSi,n

(6)

Finally, the calibration of biased prototypes of new classes can be formulated as follows:

c̄n = (1− α) cn + α∆cn = (1− α) cn + α

B−1∑
b=1

wb,ncb (7)

Notably, the above prototype rectification procedure is a training-free calibration strategy because
it does not introduce any learning component or training parameters. Figure 3a gives an intuitive
description of the calibration effect.

5.2 Effect of calibrated prototypes

Intuitively, wb,n is larger when a new prototype cn and base prototype cb are more similar. Given a
new prototype cn, we assume the most similar base prototype with cn is the base prototype cbasen .
Therefore, given a new prototype cn,

∑B−1
b=1 wb,ncb ≈ cbasen when the scaling hyperparameter τ is

large enough. From the perspective of a biased prototype, a calibrated prototype c̄n will be aligned to
its most similar base prototypes cn with a proper τ .

To further comprehend the effect of TEEN on the predictions of base and new classes respectively,
we define three types of test samples according to whether the prediction results change after TEEN:
with unchanged predictions (i.e., UC samples), with prediction going from right to wrong (i.e., R→W
samples), with predictions going from wrong to right (i.e., W→R samples). We analyze the specifics
of these three types of samples in detail.

Intuitively, some calibrated prototypes of new classes are aligned to base prototypes and reduce the
discriminability of base prototypes. Oppositely, aligning the biased prototype to most similar base
prototypes can calibrate the prediction of new classes. As shown in Table 3b, we observe the W→R
samples are mainly from new classes and the R→W samples are mainly from base classes. Besides,
extensive comparison results on the benchmark datasets (i.e., Table 3 and Figure 4) show that the
negative effect of TEEN is negligible due to the significance of TEEN.
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Table 3: Detailed average accuracy of each incremental session on miniImageNet dataset. Please
refer to the supplementary for results on CUB200 and CIFAR100. The results of compared methods
are cited from [42, 57, 58]. ↑ means higher accuracy is better. ↓ means lower PD is better.

Method Accuracy in each session (%) ↑ PD ↓ ∆ PD
0 1 2 3 4 5 6 7 8

iCaRL [35] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 44.10 +22.65
EEIL [4] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 41.73 +20.28
Rebalancing [18] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 47.14 +25.69
TOPIC [42] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 36.89 +15.44
Decoupled-NegCosine [26] 71.68 66.64 62.57 58.82 55.91 52.88 49.41 47.50 45.81 25.87 +4.42
Decoupled-Cosine [43] 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 24.74 +3.29
Decoupled-DeepEMD [56] 69.77 64.59 60.21 56.63 53.16 50.13 47.79 45.42 43.41 26.36 +4.91
CEC [57] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37 +2.92
FACT [58] 72.56 69.63 66.38 62.77 60.6 57.33 54.34 52.16 50.49 22.07 +0.62
TEEN 73.53 70.55 66.37 63.23 60.53 57.95 55.24 53.44 52.08 21.45
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Figure 4: Top-1 average accuracy on all seen classes in each incremental session. We annotate the performance
gap between TEEN and the runner-up method by ↑.

6 Experiments

In this section, we first introduce the main experiment details of FSCIL in section 6.1, which include
the implementation and performance detail. Subsequently, we introduce the FSL performance of
TEEN in section 6.2, which consistently shows the effectiveness of TEEN. Finally, we evaluate
TEEN by a comprehensive ablation study in section 6.3.

6.1 Main experimental details of FSCIL

6.1.1 Implementation Details

Datasets and baseline details: Following previous methods [42, 57, 58], we evaluate TEEN on
CIFAR100 [23], CUB200-2011 [44], miniImageNet [38]. We keep the dataset split consistent with
existing methods [57, 58]. Notably, each benchmark dataset is divided into subsets containing
nonoverlapping label space. For example, CIFAR100 is divided into 60 classes for the base session
and the left 40 classes are divided into eight 5-way 5-shot few-shot classification tasks. To validate the
performance of TEEN , we compare TEEN with popular CIL methods [35, 4, 18], FSL methods [26,
56, 43], and FSCIL methods [42, 57, 58]. Please refer to the supplementary material for more datasets
and baseline details.

Training details: All experiments are conducted with PyTorch [32] on a single NVIDIA 3090.
The training of the feature extractor uses vanilla cross-entropy loss as the objective function. It
does not evolve any extra complex pretraining module [58, 59, 10, 57], thus making TEEN more
efficient and elegant. In addition, we adopt the cosine similarity to measure the similarity between
the instances and class prototypes. Following [42, 57, 58], we use ResNet20 [16] for CIFAR100,
pre-trained ResNet18 [16] for CUB200 and randomly initialized ResNet18 [16] for miniImageNet.
All compared methods use the same backbone network and initialization for a fair comparison. We
set α = 0.5, τ = 16 for miniImageNet and CUB200, α = 0.1, τ = 16 for CIFAR100. We train the
feature extractor on CUB200 with a learning rate of 0.004, batch size of 128, and epochs of 400.
Please refer to the supplementary for more training details on CIFAR100 and miniImageNet.
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Table 4: Detailed results of HMean and NAcc on miniImageNet. The best results are in bold and the runner-up
results are in underlines. The ∆ measures the performance gap between the best and second-best results on the
corresponding session. Due to space limitations, the performance on only six incremental sessions is presented.
Please refer to the supplementary for more detailed results on CUB200 and CIFAR100.

Session 1 2 3 4 5 6

HMean/NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc

CEC [57] 30.72 19.60 30.05 19.10 29.86 19.00 29.41 18.65 27.15 16.88 27.36 17.07
FACT [58] 30.60 19.20 27.84 17.10 25.89 15.67 23.85 14.20 22.01 12.92 20.65 12.00

TEEN 50.04 38.00 46.67 34.60 44.72 32.67 43.53 31.55 41.75 29.80 39.22 27.37
∆ +19.32 +18.4 +16.62 +15.5 +14.86 +13.67 +14.12 +12.9 +14.6 +12.92 +11.86 +10.3

6.1.2 Comparison results

In this section, we conduct overall comparison experiments on different performance measures.
These different performance measures focus on different aspects of the methods. For example, the
widely-used average accuracy across all classes (i.e., AvgAcc) is difficult to reflect the performance
of new classes because the base classes take a large percentage of all classes (e.g., 60 base classes of
100 classes in CIFAR100). Following [58], the Harmonic mean (i.e., HMean) is used to evaluate the
balanced performance between the base and new classes. Besides the above performance measures,
we also additionally evaluate the different methods of their performance on new classes (i.e., NAcc).
Following [42, 57, 58], we also measure the degree of forgetting by the Performance Dropping Rate
(i.e., PD). The PD is defined as PD = Acc0 −Acc−1, i.e., the average accuracy dropping between
the first session (i.e., Acc0) and the last session (i.e., Acc−1). The detailed comparison results of PD
and AvgAcc are reported in Table 3, and the detailed comparison results of NAcc and HMean are
reported in Table 4. These experimental results from different performance measures all demonstrate
the effectiveness of TEEN. Besides, significantly lower FPR and TBR in Table 1 and Table 2 also
verify the effective calibration of TEEN.

Notably, many previous state-of-the-art FSCIL methods (e.g., [57, 58]) usually design complex
pretraining algorithms to enhance the extendibility of feature space, which may harm the discrim-
inability of base classes. This elaborate pretraining stage may lead to an inconsistent but negligible
performance in the base session. Besides, PD↓ and ∆PD in Table 3 are not affected by the pretrained
results and also show TEEN outperforms previous state-of-the-art methods.

6.2 Comparison results of FSL
Table 5: Few-Shot Leaning performance of classification accu-
racy (%) on miniImageNet and CUB. The results of compared
methods are cited from [51]. 5w1s and 5w5s mean 5way-1shot
and 5way-5shot, respectively. The best results are in bold and
the runner-up results are in underlines.

Methods miniImageNet CUB
5w1s 5w5s 5w1s 5w5s

ProtoNet [40] 54.16 73.68 72.99 86.64
NegCosine [26] 62.33 80.94 72.66 89.40
LR with DC [51] 68.57 82.88 79.56 90.67
TEEN 65.70 83.11 81.44 91.04

FSL can be approximated as measuring
only the performance of the new classes
in the first incremental session of FSCIL.
Besides, FSL itself also faces the chal-
lenge of biased class prototypes due to
the few-shot data. Therefore, we vali-
date TEEN in the setting of FSL and
report the compared results in Table 5.
To ensure a fair comparison, we strictly
followed the experimental setup of [51].
The comparison results in Table 5 show
that TEEN can easily outperform the previous state-of-the-art method [51] in several experimental
settings. Notably, TEEN does not involve any additional training cost when recognizing new classes,
and the only time cost lies in feature extraction. Therefore, once the sample features are extracted, the
inference cost of TEEN can be considered negligible compared to previous methods that require
heavy training.

6.3 Ablation Study

The influence of α and τ : Notably, the proposed TEEN does not involve additional training-based
modules or procedures after pretraining on base classes. When TEEN incrementally learns new
classes, only the scaling temperature τ and the coefficient of calibration item α need to be determined.
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Figure 5: (a) and (b) show the influence of α and τ on the last session’s average accuracy in all classes (i.e.,
AvgAcc) and new classes (i.e., NAcc), respectively. (c) and (d) show the influence of similarity-based weight
in TEEN on the last session’s average accuracy in all classes (i.e., AvgAcc) and new classes (i.e., NAcc),
respectively. It demonstrates that replacing the softmax-based weight with a hard one-shot weight will drastically
reduce the performance of TEEN.

Specifically, we select τ from {8, 16, 32, 64} and α from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
Figure 5a and Figure 5b show how the hyper-parameters α and τ influence the average accuracy
on all classes and new classes, respectively. It also demonstrates that a proper α can improve the
performance of new classes, which confirms the base prototypes can benefit the performance of new
classes. Compared with larger τ , relatively smaller τ can smooth the weight distribution. The smaller
τ with stronger performance further confirm the effectiveness of utilizing the abundant semantic
information from base classes.

The influence of similarity-based weight: To further validate the effectiveness of the semantic
similarity between the base and new classes, we remove the Equation 6 and directly align the new
prototypes to their corresponding K most similar base class prototypes, i.e., c̄n = α cn + (1 −
α)

∑K
k=1 ck. We denote this Simple version of TEEN without similarity-based weight as SimTEEN.

We select K from {1, 3, 5, 7, 9}. Figure 5c and Figure 5d show how the similarity-based weight (i.e.,
Equation 6) influences the average accuracy on all classes and new classes, respectively. Notably,
as shown in Figure 5d, there is a significant drop, particularly on new classes, after removing the
similarity-based weight. This phenomenon confirms that TEEN can achieve calibration of new
prototypes with the help of well-represented semantic similarity between the base and new classes.

7 Conclusion

Few-shot class-incremental learning is of great importance to real-world learning scenarios. In this
study, we first observe existing methods usually exhibit poor performance in new classes and the
samples of new classes are easily misclassified into most similar base classes. We further find that
although the feature extractor trained on base classes can not well represent new classes directly, it
can properly represent the semantic similarity between the base and new classes. Based on these
analyses, we propose a simple yet effective training-free prototype calibration strategy (i.e., TEEN)
for biased prototypes of new classes. TEEN obtains competitive results in FSCIL and FSL scenarios.

Limitations: The FSCIL methods mentioned in this paper all select the base and new classes from
the same dataset. In other words, current FSCIL methods assume the model pre-trains in the same
domain, increasing the restrictions on pre-training data collection. Therefore, a more realistic scenario
is to pre-train on a dataset that is independent of the subsequent data distribution and then perform
few-shot class-incremental learning on a target dataset that we expect. The intricate problem of
cross-domain few-shot class-incremental learning will be thoroughly investigated in our future works.
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Supplementary materials

A Discussion

A.1 Implicit Semantic Similarity

Notably, TEEN demonstrates that the off-the-shelf feature extractor is already capable of representing
semantic similarity without the need for any additional training costs or auxiliary side information
(e.g., the textual information of the class name [8]).

A.2 Efficiency

The only time cost in TEEN is the pre-training cost on the base classes. Furthermore, the training cost
of the vanilla cross-entropy loss function is relatively small compared to other more complex training
paradigms. Additionally, the calibration in TEEN does not evolve any training cost and update
procedure. Therefore, the cost of incrementally learning new classes of TEEN can be considered
negligible compared with existing methods.

A.3 Combination with better representation

In addition to combining with existing prototype-based methods, TEEN can also be combined with
more powerful pre-trained models (e.g., self-supervised pre-trained model [7]). Notably, the recent
popular vision-language models (e.g., CLIP [34]) can also be seen as a powerful pre-trained model
and provide better representation.

B A Closer Look at FSCIL

In this section, we show the observations (i.e., Section 3 of the main paper) on more datasets. As
shown in Table 10, the existing prototype-based FSCIL methods are extremely prone to misclassify
new classes into base classes. Considering the misclassified instances of base classes, we quanti-
tatively show that the samples of new classes are usually misclassified into base classes. These
observations in the additional benchmark dataset are consistent with observations in the main paper,
which further confirms the universality of our observation.

To further understand the aforementioned observation, we further analyze the question What base
classes are the new classes incorrectly predicted into? and come to our second observation: The
prototype-based classifier misclassifies the new classes to their corresponding most similar
base classes with a high probability. The detailed analysis results in Table 11 further verify the
correctness of our observation.

Table 6: Detailed average accuracy of each incremental session on CIFAR100 dataset.The results of
compared methods are cited from [42, 57, 58]. ↑ means higher accuracy is better. ↓ means lower PD
is better.

Method Accuracy in each session (%) ↑ PD ↓ ∆ PD
0 1 2 3 4 5 6 7 8

iCaRL [35] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 50.37 +28.09
EEIL [4] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 48.25 +25.97
Rebalancing [18] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 50.56 +28.28
TOPIC [42] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 34.73 +12.45
Decoupled-NegCosine [26] 74.36 68.23 62.84 59.24 55.32 52.88 50.86 48.98 46.66 27.70 +5.42
Decoupled-Cosine [43] 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 26.87 +4.59
Decoupled-DeepEMD [56] 69.75 65.06 61.20 57.21 53.88 51.40 48.80 46.84 44.41 25.34 +3.06
CEC [57] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 23.93 +1.65
FACT [58] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 22.50 +0.22
TEEN 74.92 72.65 68.74 65.01 62.01 59.29 57.90 54.76 52.64 22.28
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Table 7: Detailed average accuracy of each incremental session on CUB200 dataset.The results of
compared methods are cited from [42, 57, 58]. ↑ means higher accuracy is better. ↓ means lower PD
is better.

Method Accuracy in each session (%) ↑ PD ↓ ∆ PD
0 1 2 3 4 5 6 7 8 9 10

iCaRL [35] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 47.52 +29.39
EEIL [4] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 46.57 +28.44
Rebalancing [18] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 48.81 +30.68
TOPIC [42] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.26 42.40 +24.27
Decoupled-NegCosine† [26] 74.96 70.57 66.62 61.32 60.09 56.06 55.03 52.78 51.50 50.08 48.47 26.49 +7.36
Decoupled-Cosine [43] 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 26.21 +8.08
Decoupled-DeepEMD [56] 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 27.75 +9.62
CEC [57] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 23.57 +5.44
FACT [58] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 18.96 +0.83
TEEN 77.26 76.13 72.81 68.16 67.77 64.40 63.25 62.29 61.19 60.32 59.31 18.13

Table 8: Detailed results of HMean and NAcc on miniImageNet. The best results are in bold and the runner-up
results are in underlines. The ∆ measures the performance gap between the best and second-best results on the
corresponding session. Due to space limitations, the performance on only six incremental sessions is presented.
Please refer to the supplementary for more detailed results on CUB200 and CIFAR100.

Session 1 2 3 4 5 6 7 8

HMean/NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc HMean NAcc

CEC [57] 47.04 34.80 40.35 28.10 36.01 24.13 36.49 24.65 36.56 24.84 37.07 25.40 36.41 24.83 35.49 24.08
FACT [58] 43.04 30.00 38.77 26.10 34.70 22.60 34.44 22.45 34.55 22.64 35.44 23.47 33.79 22.06 33.05 21.48

TEEN 47.77 34.82 42.99 30.10 40.19 27.53 39.52 27.00 39.66 27.28 39.65 27.37 37.71 25.57 37.11 25.13
∆ +0.73 +0.02 +2.64 +2.00 +4.18 +3.40 +3.03 +2.35 +3.10 +2.44 +2.58 +1.97 +1.30 +0.74 +1.62 +1.05

C Experiments

C.1 Details of experiments

Dataset details: Following previous methods [42, 57, 58], we evaluate TEEN on CIFAR100 [23],
CUB200-2011 [44], miniImageNet [38]. CIFAR100 [23] contains 100 classes and each class contains
500 images for training and 100 images for testing. The image size of CIFAR100 is 3× 32× 32. The
CUB200-2011 [44] is a widely-used fine-grained dataset and is also a benchmark dataset of few-shot
image classification. It contains 200 classes and all images of these classes belong to birds. The
miniImageNet [38] are sampled from the raw ImageNet [11] and contains 100 classes.

In FSCIL, each benchmark dataset is divided into different subsets. Each subset contains specific
classes and the label space of different subsets is nonoverlapping. Specifically, CIFAR100 is divided
into 60 classes for the base session and the remaining 40 classes are divided into eight 5-way 5-shot
few-shot classification tasks. CUB200 is divided into 100 base classes for the base session and the
remaining 100 classes are divided into ten 10-way 5-shot few-shot classification tasks. miniImageNet
is divided into 60 base classes for the base session, and the remaining 40 classes are divided into
eight 5-way 5-shot few-shot classification tasks. The splitting details (i.e., the class order and the
selection of support data in incremental sessions) follow the previous methods [42, 57, 58]. Notably,
no old samples are saved to assist in maintaining the discriminability of previous classes.

Baseline details: Following previous methods [42, 57, 58, 61], we compare TEEN with popular CIL
methods, FSL methods, and FSCIL methods. For CIL methods, we select iCaRL [35], EEIL [4] and
Rebalancing [18] as our baseline methods. For methods based on few-shot, we adopt Decoupled-
NegativeCosine [26], Decoupled-Cosine [43] and Decoupled-DeepEMD [56] as our baseline methods.
For FSCIL methods, we adopt TOPIC [42], CEC [57] and FACT [58] methods as our baseline
methods.

Training details: The training of the feature extractor uses vanilla cross-entropy loss as the objective
function. In addition, we adopt the cosine similarity to measure the feature of instances to class
prototypes. Following [42, 57, 58], we use ResNet20 [16] for CIFAR100, pre-trained ResNet18 [16]
for CUB200 and randomly initialized ResNet18 [16] for miniImageNet. All compared methods use
the same backbone network and same initialization for a fair comparison.

For the hyperparameters setting, we set α = 0.5, τ = 16 for miniImageNet and CUB200, α =
0.1, τ = 16 for CIFAR100. We train the feature extractor on CUB200 with a learning rate of 0.004,
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batch size of 128, and epochs of 400. We train the feature extractor on CIFAR100 and miniImageNet
with a learning rate of 0.1 and batch size of 256. The cosine scheduler is used to adjust the learning
rate. Before computing the cross-entropy loss, a widely-used temperature scalar is used to adjust the
distribution of output logits. For example, the original output logits of instance xj are denoted as
Oj ∈ RC . The logits used to compute cross-entropy loss are denoted as Ojτo. The τo is set to 16 for
the CIFAR100 dataset and 32 for miniImageNet and CUB200 datasets.

C.2 More comparison results

In the main paper, we compare different methods in overall performance measures: performance
drop rate, average accuracy across all classes, harmonic mean accuracy and average accuracy on new
classes. In this session, we report the detailed comparison results of the aforementioned performance
measures on CIFAR100 [23] and CUB200 [44]. Besides the main results in Table 6 and Table 7, we
also report the accuracy across new classes and harmonic mean accuracy in Table 8. The consistent
performance improvement demonstrates the effectiveness of TEEN’s calibration ability.

D Empirical Analysis

D.1 Effects of TEEN

In the main paper, we only show the effect of calibration prototypes on the CIFAR100 dataset. In
this supplementary material, we report more detailed results in Table 9. The results further confirm
our conclusion in the main paper: the proposed TEEN can well calibrate the biased prototype of
new classes. Although TEEN leads to misclassifying some instances of base classes, the average
accuracy across all classes is always very competitive.

Table 9: The detailed ratio (%) of base and new classes about three types of samples(i.e., UC samples,
W→R samples, R→W samples) of miniImageNet

Incremental Session 1 2 3 4

Sample type UC W→R R→W UC W→R R→W UC W→R R→W UC W→R R→W

Base Class 93.84 0.00 99.99 88.87 0.00 95.78 84.15 0.00 94.20 79.65 0.00 91.03
New Class 6.16 100.00 0.01 11.13 100.00 4.22 15.85 100.00 5.80 20.35 100.00 8.97

D.2 Combination of TEEN with existing methods

Due to the flexibility of proposed TEEN , it can be seen as a plug-and-play module to calibrate the
biased prototypes of new classes. For a more in-depth understanding of the TEEN , we combine
TEEN with FACT [58] and show the performance on different performance measures in Figure 6,
Figure 7 and Figure 8. We empirically find that combining the TEEN with FACT has little effect on the
average accuracy across all classes (i.e., the left figures in Figure 6, Figure 7 and Figure 8). However,
the TEEN can improve the average accuracy of new classes and the harmonic mean accuracy. In
other words, the existing prototype-based methods (i.e., FACT) benefit the well-calibration effect of
TEEN and achieve better-balanced performance between the base and new classes. We believe more
methods (e.g., [52]) can benefit from the flexibility of TEEN.

E Broader impact

Our proposed method can significantly improve the accuracy of new classes in FSCIL and FSL
scenarios, leading to a better understanding of the low performance of new classes. Furthermore, the
analyses in this study are first proposed in the FSCIL and FSL fields, which point out that we should
pay more attention to the performance of new classes. In addition to this, our method may also have
potential heuristic effects on the expectation estimation of the distribution.
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Figure 6: We compare FACT without (i.e., FACT in figures) and with TEEN (i.e., FACT w/ TEEN on
CUB200 dataset. The FACT benefits from the well-calibration effect of TEEN and achieves better-balanced
performance between the base and new classes
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Figure 7: We compare FACT without (i.e., FACT in figures) and with TEEN (i.e., FACT w/ TEEN on
miniImageNet dataset. The FACT benefits from the well-calibration effect of TEEN and achieves better-balanced
performance between the base and new classes
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Figure 8: We compare FACT without (i.e., FACT in figures) and with TEEN (i.e., FACT w/ TEEN on
CIFAR100 dataset. The FACT benefits from the well-calibration effect of TEEN and achieves better-balanced
performance between the base and new classes

Table 10: Detailed prediction results of False Negative Rate/False Positive Rate (%) on miniImageNet dataset.
The analysis results are from session 1 because new classes do not exist in session 0. Exceedingly high FPR and
relatively low FNR show the instances of new classes are easily misclassified into base classes and the instances
of base classes are also easily misclassified into base classes. TEEN can achieve relatively lower FPR than
baseline methods, which demonstrates the validity of the proposed calibration strategy.

Session 1 2 3 4 5 6 7 8

FNR/FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

ProtoNet [40] 2.55 71.60 3.98 67.30 4.83 66.07 5.83 62.05 6.48 59.16 7.18 58.17 7.93 54.83 8.85 52.23
CEC [57] 3.45 68.40 5.60 65.50 7.03 61.93 7.73 58.30 8.47 56.68 9.58 54.50 10.22 52.54 10.93 50.05
FACT [58] 2.07 72.40 3.42 70.60 4.22 70.13 4.55 69.40 4.97 68.28 5.12 68.17 5.33 66.51 5.58 66.55

TEEN 8.02 46.40 11.35 38.60 13.12 37.53 15.32 35.20 16.47 32.48 17.38 31.57 18.63 28.03 19.97 26.35
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Table 11: Detailed prediction results of TNR/TBR (%) on miniImageNet dataset. The analysis results are from
session 1 because new classes do not exist in session 0. For new classes, we only consider the 10 most similar
base classes out of 60 base classes. For base classes, we suppose Ci new classes exist in the current incremental
session i. We only consider the most similar ⌊20%× Ci⌋ new classes. Class similarity adopts cosine similarity
between different class prototypes. TEEN can achieve relatively lower TBR than baseline methods, which
demonstrates the validity of the proposed calibration strategy.

Session 1 2 3 4 5 6 7 8

TNR/TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR TNR TBR

ProtoNet [40] 3.47 73.01 5.02 61.79 7.06 55.05 8.08 52.95 7.14 53.27 8.56 51.96 8.53 49.18 9.21 50.91
CEC [57] 2.87 71.70 4.53 61.08 5.66 58.26 6.35 55.16 6.07 54.12 6.92 52.53 8.24 49.96 8.20 51.64
FACT [58] 2.33 70.00 3.32 61.01 5.50 55.17 6.88 50.55 6.57 50.52 7.72 49.30 8.88 46.99 9.31 48.48

TEEN 2.16 66.77 2.53 55.14 3.55 44.87 3.85 37.68 3.57 39.47 4.02 37.07 4.76 33.83 4.85 35.04
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