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Abstract

Automated assembly of 3D fractures is essential in orthopedics, archaeology, and
our daily life. This paper presents Jigsaw, a novel framework for assembling physi-
cally broken 3D objects from multiple pieces. Our approach leverages hierarchical
features of global and local geometry to match and align the fracture surfaces.
Our framework consists of four components: (1) front-end point feature extractor
with attention layers, (2) surface segmentation to separate fracture and original
parts, (3) multi-parts matching to find correspondences among fracture surface
points, and (4) robust global alignment to recover the global poses of the pieces.
We show how to jointly learn segmentation and matching and seamlessly integrate
feature matching and rigidity constraints. We evaluate Jigsaw on the Breaking Bad
dataset and achieve superior performance compared to state-of-the-art methods.
Our method also generalizes well to diverse fracture modes, objects, and unseen
instances. To the best of our knowledge, this is the first learning-based method
designed specifically for 3D fracture assembly over multiple pieces. Our code is
available at https://jiaxin-lu.github.io/Jigsaw/.

1 Introduction

The task of assembling 3D fractures has extensive applications across numerous fields. For instance,
orthopedic doctors need to realign dislocated bone fragments, and subsequently create bone plates
and screws to heal compound fractures. Archaeologists, on the other hand, need to recreate the
original shape and functionality of unearthed artifacts by assembling the fractures. These procedures
demand significant expertise, are prone to errors, and can be tedious. Even in the context of daily
life, furniture assembly can be a challenging and exhausting task that requires an understanding of
mechanical structures and component matching. In the past two decades, many efforts attempted
to address the challenge of automatic assembly. Traditional methods apply hand-crafted geometric
features to detect the fracture surfaces and optimize pairwise matching among these surfaces [1, 2].
Recently the availability of large scale 3D datasets [3, 4, 5, 6] have boosted learning based frameworks
for solving 3D assembly tasks. Semantic-aware methods [7, 8, 9, 10, 11, 12] target at assembly
from semantically segmented parts and predict semantic labels as matching priors. Geometry based
methods [13, 14, 15] leverage fracture shapes and continuity of textures in the procedure of piece
matching.

However, in the context of fracture assembly for restoring broken objects, there is no guarantee
that individual pieces will retain semantic meanings. Texture information may also be either non-
accessible or lacking, such as on glass bottles or worn artifacts. This calls for a general 3D assembly
solver that utilizes hierarchical features of both the global piece surfaces and local geometry shapes
of fractures. In this work, we introduce a Joint Learning of Segmentation and Alignment Framework
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(Jigsaw), for assembling objects damaged or shattered due to physical impact or force. Given a set
of fractured pieces represented as point clouds without texture, our method recovers the global pose
of each piece to restore the underlying object.

Our Jigsaw framework consists of four parts: (1) A front-end feature extractor with self-attention
and cross-attention layers for local geometric feature extraction. (2) Categorize the surface of each
fractured piece into two segments: the indiscernible fracture surface and the visible original surface.
(3) A novel formulation for multi-piece assembly that learns a bipartite matching among points on the
fracture surface from all pieces. (4) Recover pairwise pose based on the learned correspondences and
perform robust global alignment to compute the global poses of all pieces. Key features of Jigsaw
are that 1) it learns two correlated tasks, i.e., segmentation and matching among all involving pieces,
jointly, and 2) it seamlessly integrates feature matching and the rigidity constraint among consistent
features, We evaluate the effectiveness of our framework on Breaking Bad [4]. Experimental results
demonstrate the effectiveness of our method in surface segmentation, fracture point matching, and
significantly outperforming state-of-the-art methods[8, 16]. The main contribution includes the
following:

• We propose Jigsaw, a novel joint learning framework tailored for multi-part fracture assembly.
Our approach embodies an attention-based feature extractor network to accurately capture local
geometry features of each point. Additionally, we introduce a primal-dual descriptor that effectively
captures viewpoint-dependent characteristics for surface matching.

• Jigsaw incorporates fracture point segmentation to capture intrinsic features, employs a novel
multi-part matching formulation to establish automatic piece positioning within one object, and
utilizes global alignment for accurate global pose alignment.

• Experimental evaluation on the multi-part assembly Breaking Bad dataset demonstrates the superior
performance of Jigsaw compared to baseline models, showcasing its strong generalization ability to
unseen objects. We further highlight the limitations of baseline models that rely on global features,
which we argue are too abstract for this task and lack generalizability.

• To the best of our knowledge, Jigsaw is the first learning-based method specifically designed for
the assembly of multiple pieces from physically broken 3D objects.

2 Related Works

Feature matching. Early works apply hand-crafted features over fracture surfaces for fracture
matching between different pieces [17, 1, 2, 18]. These features are also used to identify the fractured
part from the entire surface [17, 1, 2]. However, hand-crafted features are in lack of robustness for
assembly tasks over large datasets due to different materials and fracture patterns of objects. In
recent years, deep learning methods have gained significant traction in matching problems. Methods
utilizing CNN, GNN, and attentions have found successful applications in various domains, such as
image registration [19, 20] and graph or multi-graph matching on images [21, 22, 23, 24, 25]. While
their efficacy in these scenarios is noteworthy, the majority of these methods predominantly focus on
simpler settings and have not adequately addressed the challenges in multi-part 3D fracture assembly.

Part assembly. Semantic-aware learning methods have been highly successful in the task of part
assembly. [9, 11] are designed for assembling specific CAD mechanics. For categorical everyday
objects, [26, 10, 27, 12, 28] generate the missing parts based on the accumulated shape prior to
completing the entire object, which can result in shape distortion from the input parts. [8, 7] apply
graph learning to predict part labels and assembly orders. All of these methods require the input
objects decomposed in a semantically consistent way and need specific training for each category
of objects. Fracture assembly poses unique challenges due to the variety of objects and the lack of
semantic meanings associated with individual pieces, adding to the complexity of the task.

Geometry based learning methods. Recent approaches have aimed to capture geometry information
using deep features for piece matching. [13, 15] combine local geometry with textures for feature
generation, but may suffer when texture information is not accessible, as in most point cloud
representations. [14] apply a transformer for local shape encoding and an adversarial network to help
generate a plausible assembly of two pieces. However, for multiple fracture assembly, objects can
break into 5 pieces or more, with the largest piece smaller than half of the original object. Under this
setting, training an adversarial network to evaluate the quality of assembly becomes less effective.
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Figure 1: Overall pipeline for Jigsaw (mesh used only for visualization). The method consists of
four parts: front-end feature extractor, surface segmentation, multi-part matching, and global fracture
alignment. In the front-end feature extraction, we use a multi-scale grouping PointNet++ [31], and one
self-attention layer followed by one cross-attention layer to extract features for each point. Surface
segmentation is used to locate all fracture points in one broken object, and multi-part matching finds
correspondences of fracture points among multiple pieces. The matching results will be used for
pairwise pose recovery and joint alignment to retrieve an assembled object. More detail about each
part will be discussed in Section 3.

Low-overlap 3D registration. Another relevant research field is low-overlap 3D registration. Recent
works have shown the potential of data-driven methods in registration tasks with approximately 30%
overlap [29, 16, 30]. [16, 30] learn a classifier to determine the overlapped sections and predict
inter-piece point matching inside the sections, while [29] using object semantic to guide registration.
The fracture assembly task can be viewed as an even more extreme case of registration, where the
overlap between pieces can fall below 4%.

3 Joint learning framework for 3D fracture assembly

Given a set of fractured pieces P = {P1, P2, · · · , Pn} represented as point clouds uniformly
distributed on the surface, our goal is to recover the 6-DoF pose {T1, T2, · · ·Tn} in SE(3) for each
piece and restore the underlying objectO = T1(P1)∪T2(P2)∪· · ·∪Tn(Pn), where Ti(·), 1 ≤ i ≤ n
is the operator to recover Pi to its original position by transformation Ti. In the fracture assembly
setting, the object O is a rigid body, and the pieces are the result of physical cracking or breakage
without any deformation. Also, no pieces are lost, which ensures that the restored pieces can
approximately reconstruct the entire object O.

To handle this challenge, we propose Jigsaw, a learning-based framework that jointly optimizes
surface segmentation and fracture matching among all pieces of the object. The entire assembly
network consists of a segmentation module and a matching module that shares a front-end feature
extractor. The segmentation module uses only the intrinsic shape information of each piece to
separate the fracture surface from the original surface. The matching module exploits the primal
dual descriptor of the affinity metric to propagate mutual information among all pieces and establish
the matching between fracture points (that is, points on the fracture surface) of different pieces via
Sinkhorn [32]. With the fracture point matching predicted by the network, we recover the pairwise
transformations and perform global alignment with standard approaches. The complete pipeline of
our framework is shown in Fig. 1. Note that this design ensures that segmentation and matching
are performed jointly. In the subsequent part of this section, we will first introduce the front-end
extractor, then delve into the details of the segmentation module, followed by the multi-part matching
module and post-processing for pose recovery.

3.1 Front-end Feature Extractor

In contrast to previous methods [33, 4] that utilize global piece-wise descriptors for assembly, we
focus on geometric features. As illustrated in Figure 7 of the PointNet paper [34], a global descriptor
remains the same as long as the piece lies between the learned critical point set and the upper-bound
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point set. This indicates that global descriptors are coarse and insufficient to represent the intricate
geometry of the fracture surface, which is crucial for our task. To address this limitation, we employ
a multi-scale grouping PointNet++ [31] as the backbone of our feature extractor to capture local
geometry features, denoted as fp ∈ RD from each point p ∈ Pi.

Furthermore, We emphasize the significance of relative positional information between points
and pieces for identifying the non-smooth fracture surfaces, enforcing rigidity during matching,
and accurately placing the pieces. To facilitate the integration of such intra-piece and inter-piece
information, we leverage transformer layers. Specifically, we introduce both self-attention and
cross-attention layers as tools to reason about the relative information between points.

For the self-attention within a piece, we employ a single point transformer layer [35]. The self-
attention mechanism is defined as follows:

fsp =
∑

fq∈N (p)

softmax(MLP_s((W s
Qfp −W s

Kfq + penc)))� (W s
V fq + penc) (1)

Here, W s
Q,W

s
K ,W

s
V ∈ RD×D are weights for query, key, value in the attention layer, penc represents

the positional encoding for point pi, obtained using a Multi-Layer Perceptron (MLP). Unlike the
standard dot-product attention layer, it employs vector weights: MLP_s is a mapping function
that produces the weight vector, softmax(·) normalizes the weights, and � denotes element-wise
multiplication. N (p) ∈ Pi represents the neighborhood of point p, calculated using k-nearest
neighbors for local feature aggregation.

For cross-attention, we use standard multi-head attention with position-wise feed forward over the
entire object to facilitate the communication of local features among different pieces. Let Fs ∈ RN×D

pack all the point features of one object after the self-attention, and Fc ∈ RN×D denote the point
features produced by cross-attention,

Fc = FFN(Wm
O (cat(head1, . . . , headh))), where headi = Attention(Wm

Q i
Fs,Wm

K iF
s,Wm

Q i
Fs)

and Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

(2)
Here, Wm

Q i
,Wm

K i,W
m
V i ∈ RD×dh ,Wm

O ∈ Rhdh×D denote the weights for projection. The function
FFN(·) consists of two linear functions with ReLU activation in between, followed by a LayerNorm
as normalization.

3.2 Surface segmentation

The fracture assembly problem can be viewed as a special case of the 3D registration problem, where
the overlapping between adjacent pieces only lies in the fracture surface between them. Let P f

i ⊂ Pi

be the subset of points on fracture surfaces of Pi and let Pij ⊂ P f
i denote the subset of points on the

fracture surface between Pi and Pj for arbitrary two pieces Pi, Pj . For pieces Pi and Pj adjacent
in their original pose Ti(Pi) and Tj(pj), we have Pij 6= ∅, Pji 6= ∅. Under the assumption that the
point clouds are uniformly distributed, we can approximate the relative pose T ?

ij = T−1j Ti between
Pi, Pj with

T ?
ij = argmin

Tij∈SE(3)

d (Pji, Tij(Pij)) , (3)

where d(·, ·) is some distance function between two point clouds. (3) becomes the standard formula-
tion for point cloud registration with perfect prior for the overlapping. Before we can optimize (3)
directly, we need to figure out the overlapping part Pij and Pji for each pair (Pi, Pj). Although Pij

is dependent on both pieces, previous studies [17, 1, 2] have demonstrated that the segmentation of
fracture surfaces P f

i of Pi is an intrinsic property that can be inferred from the local shapes of each Pi

individually. However, these methods require a continuous smooth surface to compute hand-crafted
shape features for accurate classification. To capture local geometric properties under the discrete
point cloud setting where surface normal and curvature are no more available, we introduce our deep
surface segmentation module to handle the surface segmentation task.

The surface segmentation module can be viewed as a binary classifier of each point. Let cp be the
indicator function that determines whether a point p of a point cloud P ∈ P is a fracture point.
For each 3D model uniformly sampled as N =

∑n
i=1Ni points, the surface segmentation module
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takes the position of the points Pi ∈ RNi×3 of a piece Pi ∈ P and predicts a confidence score ci to
segment a point p ∈ Pi into the fracture surface.

Our front-end feature extractor introduced in Section 3.1 has extracted local geometry feature
fp ∈ RD for each point. Next, we use two MLP layers to reduce the number of channels to 1,
followed by a sigmoid function to predict the confidence cp for labeling p as a fracture point. We set
the segmentation loss Lseg to be a negative log-likelihood loss, which is supervised by the ground
truth label cp for every point p as

Lseg = − 1

N

∑
p∈O

cp log c̃p + (1− cp) log(1− c̃p). (4)

The ground truth label cp for each point p ∈ Pi is constructed by examining its distance to its nearest
neighbor in other parts:

cp =

{
1 Dis(p,NN(p,P\Pi)) ≤ η,
0 otherwise.

(5)

where Dis(·) is a distance function and NN(·, ·) is to find the nearest neighbour of one point in a
point set.

Although the fraction of the fracture surface area may differ between objects, and the positive and
negative samples in (4) may be unbalanced, we have found that adding two MLP layers after feature
encoding help to yield good performance for the segmentation task. The segmentation module is able
to accurately predict fracture points even in cases with a large number of pieces or very small fracture
surfaces, and we leave the evaluation details of this module in the appendix A.

3.3 Multi-part Matching

One key aspect of Jigsaw is its ability to combine multiple pieces. Traditional approaches to
assembling pieces rely on pairwise matching, which involves assessing the compatibility of two
parts, identifying corresponding points within them, and aligning those points. However, this method
is prone to cumulative errors, and a single mistake can ruin the entire assembly task. In addition,
matching small pieces with limited geometry information solely based on pairwise information is
extremely challenging. Consequently, the pairwise information in the multipart fracture assembly
dataset may not be comprehensive enough to capture the true matching possibilities between all the
pieces involved in the assembly process. Even advanced low-overlap 3D registration methods like
PREDATOR [16], which share a similar structure, have failed to handle assembly tasks effectively, as
shown in Section 4.2. Thus, alternative approaches are needed to address the limitations of pairwise
matching, and we introduce our multipart matching module.

Primal-dual Descriptor

Primal Descriptor

Dual Descriptor

Fracture Piece

Figure 2: Illustration of Primal-dual descriptor:
The red region and points represent the target
fragment piece and the points, respectively. The
purple feature (primal descriptor) on the left
learns the local convex shape of the piece, while
the blue feature (dual descriptor) on the right
captures the concavity observed from the out-
side. The primary and dual descriptors on both
sides will be matched in the matching module.

Facilitated by the global fracture points of a seg-
mented object in Section 3.2, we present a global
view to match all its pieces simultaneously. We
observe that each fracture surface should have one
precise match within a broken object, which is a
rule that applies specifically to the fracture piece
assembly task. Therefore, we learn the matching
among all pieces without specifying their pairwise
relationship. This allows each fracture point to
automatically find a similar counterpart on a dif-
ferent piece solely based on local geometry. More-
over, the correspondences highlight the assembly
regions, avoiding the need for costly predictions
of fine-grained pairwise overlapping areas.

Primal-dual Descriptor. Intuitively, when an ob-
ject has been broken into two pieces by physical
force, the two pieces should exhibit complemen-
tary geometry. Conventional feature representa-
tion is used to find similar geometry and, there-
fore, would match two identical surfaces, which
becomes undesirable in the context of fracture assembly. With this concern, we propose the primal-
dual descriptor, designed to capture the essence of complementary geometry (see Fig. 2).
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Let {f̂ ci }
nc
i=1 be the selected features of the fracture points extracted from the backbone network.

These features encode the local geometry of the fracture surfaces. We apply MLP layers and a
normalization layer to f̂ ci and get the primal descriptor f̂pi and dual descriptor f̂di :

f̂pi , f̂
d
i = norm(MLP_aff(f̂ ci )). (6)

The primal-dual descriptor learns surface features that capture the characteristics of a local surface
from both directions. It promotes the robustness and reliability of surface matching and avoids
learning biased features based on a single viewing direction. We leave more detailed analysis to the
appendix B.

Affinity Metric. Let F̂p, F̂d ∈ RN̂×d collect all the fracture points features extracted from descrip-
tors, we compute the global affinity matrix M ∈ RN̂×N̂ and the respective doubly-stochastic matrix
X̃ ∈ [0, 1]N̂×N̂ as follows:

M = exp

(
F̂p>

AF̂d

τ

)
, X̃ = Sinkhorn(M), (7)

Here, A ∈ Rd×d consists of learnable affinity weights, and τ denotes the temperature parameter [36].
We then apply the Sinkhorn layer [32], which is a differentiable operation, to obtain a doubly
stochastic matrix X̃ ∈ [0, 1]N̂×N̂ . This matrix represents the soft matching predicted by the multipart
matching module.

Matching Loss. Given the ground truth position of each part, we construct the ground truth matching
matrix Xgt ∈ {0, 1}N̂×N̂ . Here, xgtij = 1 if and only if the j-th fracture point is the nearest neighbor
of the i-th fracture point and both points belong to different pieces; otherwise, xgtij = 0. To compute
the matching loss, we employ the cross entropy between X̃ and Xgt:

Lmat = −
1

N̂

∑
1≤ij≤N̂

xgtij log x̃ij + (1− xgtij ) log(1− x̃ij) (8)

With the ground truth matrix Xgt generated based on finding the nearest neighbor of each point, the
matching loss will also enforce a global rigidity guidance that each node should be matched to its
neighbor.

Rigidity Loss. As 3D fracture assembly is applied to rigid objects, we further enforce the rigidity
loss over the pairs of matched pieces. Let X̃ij ∈ RN̂i×N̂j be the submatrix of X̂ that indicates the
likelihood between the fracture points on the piece Pi and Pj . For a fracture point p in Pi, X̃ij

matches it to a point p′ computed as the weighted average of all the matchable points in Pj :

p′ =
X̃ij(p)Pj

‖X̃ij(p)‖1
, (9)

where X̃ij(p) ∈ R1×N̂j is the row in X̃ij that contains matching likelihood from p to Pj . We
optimize the transformation T̃ij from Pi to Pj by minimizing the weighted mean squared error
between the matched fracture points

R̃ij , t̃ij = argmin
R,t

∑
p∈Pi

‖X̃ij(p)‖1‖R(p) + t− p′‖2. (10)

where R̃ij , t̃ij are the rotation and translation part of T̃ij and R(·) is the rotation operator. (10) has a
closed-form solution:

(U,Σ, V >) = SVD

∑
p∈Pi

‖X̃ij(p)‖p>p′
 , R̃ij = UV >, t̃ij = −

∑
p∈Pi

‖X̃ij(p)‖1 (R(p)− p′)∑
p∈Pi

‖X̃ij(p)‖1
. (11)

The rigidity loss is computed as:

Lrig =
∑

1≤i,j≤n

Rij , whereRij =
∑
p∈Pi

‖X̃ij(p)‖1‖R̃ij(p) + t̃ij − p′‖2. (12)
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To avoid numerical instability and improve efficiency in (11) during training, we compute T̃ij in each
iteration without involving back-propagation and only set X̃ij as the learnable variable.

The loss for training is composed as:

L = αLseg + βLmat + γLrig. (13)

Multi-part Matching With the doubly-stochastic matrix X̃ , computing multi-part matching results
becomes straightforward. Given the fact that the primal and dual feature represents the surface looked
from a different viewpoint, they should be distinct and not assigned good confidence for matching.
Therefore, we can directly pass X̃ to a Hungarian layer [37]. This yields a binary permutation matrix
X , representing a bipartite matching among all fracture points:

X = Hungarian(X̃) (14)

As mentioned, the resulting matching matrix X , along with the affinity matrix M and soft matching
matrix X̃ , captures the local geometry similarity across different pieces. Additionally, they quantify
the confidence level of how well the pieces fit together. This information enables an accurate
positioning and alignment of the fractured components.

3.4 Global Fracture Alignment

To efficiently and robustly recover the global poses of each fractured piece of object O, we adopt
a two-step pipeline based on the bipartite matching X ∈ {0, 1}N̂×N̂ predicted by the multipart
matching module.

In the first step, we compute pairwise transformations between each pair of pieces (Pi, Pj) to remove
outlier matches. Let Xij ∈ RN̂i×N̂j denote the submatrix of X , which establishes the correspon-
dences between the fracture points from Pi and Pj . We apply the RANSAC algorithm [38] to compute
the transformation T̃ij from P̂i, P̂j and Xij . This step ensures reliable pairwise transformations for
subsequent alignment.

In the second step, we perform robust global alignment using the computed pairwise transformations.
We model the global alignment configuration as a factor graph [39], denoted as G = (V, E), where
the global poses T̃i are optimized on the vertices V and the pairwise transformations T̃ij are set as
constraints on the edges E . The information matrix I(e) over the edge e = (i, j) is set to |Xij |−2Fro · I6,
with I6 being the 6× 6 identity matrix. We employ Shonan averaging [40], a state-of-the-art 6-DoF
global alignment method, to optimize global poses over G. The global alignment method takes
pairwise transformations between potentially adjacent pieces as input and outputs a pose for each
piece up to a global transformation over the coordinate system. To avoid such an ambiguity, we
anchor the coordinate system to the canonical one of the largest pieces in our experiment and measure
the errors over all other pieces of the fractured object. Further technical details of this module can
be found in the references [41, 42, 43]. Please refer to those sources for more information, as it is
beyond the scope of our main contribution.

4 Experiments

We demonstrate the effectiveness of our 3D fracture assembly framework through experimental
evaluations on a large-scale fracture assembly dataset. Our results show that Jigsaw significantly
outperforms the baseline methods both quantitatively and qualitatively. Additionally, we conduct
ablation studies to analyze the contributions of each module in our framework. All experiments
are conducted on a Linux workstation with 4 Tesla V100-SXM2-32GB GPUs, Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz CPUs, and 480GB Memory. Table 1 lists the configurations of the
parameters in our experiments. A comparison of the training/testing time is included in Appendix D.

4.1 Protocols

Dataset. We leverage the Breaking Bad dataset (Sellan et al., 2022), a novel data set of multiple
fracture assemblies featuring synthetic physical breaking patterns. Our training was on everyday
subset and the testing was on both everyday and artifact subsets for a fair comparison with
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Table 1: The detailed experiment parameters. We follow the parameters provided in [16, 33, 4] to
reproduce their results. Training, model, and dataset parameters are included.

Jigsaw Predator[16] DGL [33] LSTM [33] Global [33] description

epoch 250 200 200 200 200 training epochs
bs 4 16 32 32 32 batch size
lr 0.001 0.01 0.001 0.001 0.001 learning rate

optimizer Adam SGD Adam Adam Adam optimizer during training
scheduler Cosine Exponential Cosine Cosine Cosine learning rate scheduler

min_lr 1e-5 - 1e-5 1e-5 1e-5 minimum learning rate for Cosine scheduler

α 1.0 - - - - segmentation loss ratio
β / e 1.0 / 10 - - - - matching loss ratio change at epoch e
γ / e 1.0 / 200 - - - - rigidity loss ratio change at epoch e
τ 0.05 - - - - temperature paramter for affinity

sampling by object piece piece piece piece sampling strategies for point clouds
points (N) 5000/o 800/p 1000/p 1000/p 1000/p points sampled per object (/o) or piece (/p)

η 0.025 0.025 - - - segmentation ground truth label threshold

baselines. Everyday consists of 498 models and 41,754 fracture patterns, and is split into a training
set (34,075 fracture patterns from 407 objects) and a test set (7,679 fracture patterns from 91 objects).
Artifact consists of 3651 fracture patterns from 40 uncategorized objects. The average diameter of
the objects in the training and testing dataset was 0.8. Categorical information was concealed during
all the experiments.

The input was uniformly sampledN points on the surface of the object as a point cloud. In composing
the point cloud, two sampling strategies are considered, sampling by piece and object. Sampling
by piece, as used in the Breaking Bad benchmark [4], equally samples points in each fragment,
which would cause point density imbalance. To better reflect real-world scanning, we opt for
“sampling by object”, sampling a fixed number of points in each object, while sampling points for
each fragment based on its surface area. We ensure at least 30 points per fragment for multi-part
matching. Additional processing details can be found in the Appendix C.1.

Baseline Approaches. As learning to assemble multiple fractured objects is a novel task, there is a
dearth of existing methods for direct comparison. Therefore, we have selected a set of established
methods that primarily address similar challenges in 3D alignment and assembly, and employ them
as baselines for comparative evaluation. Global [26, 10] extracts per-piece features, which are
combined with global shape descriptors to regress the pose of each piece in one shot. LSTM applies a
bidirectional LSTM similar to [27] and estimates the pose of each piece in sequential style. DGL [8]
is a state-of-the-art approach for the assembly task of parts and can also be adapted to the assembly
task of fractures. It leverages an iterative graph neural network to reason about the relationships
among pieces. Additionally, we take PREDATOR [16] as a minor competitor, which is a state-of-
the-art approach for 3D registration with low overlapping rates. It employs a multitask transformer
to estimate the overlap between pairs of pieces in conjunction with their relative pose. All baseline
approaches use textureless point clouds as input and are trained under the everyday object subset of
the Breaking Bad dataset.

Evaluation Metrics. We adopt the same evaluation schemes for 3D assembly tasks used in [4, 14, 10].
We report the mean absolute error (MAE) and the root mean square error (RMSE) for the rotations
and translations of the estimated global poses. Additionally, we include the part accuracy (PA)
metric proposed in [33], which measures the ratio of perfectly assembled pieces based on an average
Chamfer distance of less than 0.01 for each point between the assembly results and the ground truth.

4.2 Performance

Overall Performance. We report the performance of Jigsaw and all the baseline methods over the
3D fracture assembly task on both everyday and artifact object subsets. An overall quantitative
comparison of the evaluation metrics is presented in Table 2. For PREDATOR we apply the evaluation
metrics on pairwise transformations since it only supports overlapped pairs of pieces as input.

Jigsaw significantly outperformed all the baselines across all the evaluation metrics. On everyday,
we achieved an average rotation error of 36.3◦ over all pieces, which was a 46% reduction compared
to the top-performing baseline method, DGL. Our transformation error was also outstanding, with
an average of 8.7 × 10−2, surpassing the best baseline method with an error of 11.8 × 10−3. We
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Table 2: Quantitative results of baseline methods and Jigsaw on the Breaking Bad dataset.
Method Original RMSE (R) ↓ MAE (R) ↓ RMSE(T) ↓ MAE (T) ↓ PA ↑

Task degree degree ×10−2 ×10−2 %

Results on the everyday object subset.

Global [26, 10] assembly 82.4 69.7 14.8 11.8 21.8
LSTM [27] assembly 84.7 72.7 16.2 12.7 19.4
DGL [8] assembly 80.6 67.8 15.8 12.5 23.9
DGL(5000/o) [8] assembly 81.1 68.1 15.4 12.3 25.5

PREDATOR [16] registration 82.8 71.2 12.5 10.2 1.3

Jigsaw (Ours) assembly 42.3 36.3 10.7 8.7 57.3
Results on the artifact object subset.

Global [26, 10] assembly 86.9 75.3 17.5 14.5 5.6
LSTM [27] assembly 85.6 74.1 18.6 15.2 4.5
DGL [8] assembly 86.3 74.3 18.0 14.9 9.6

PREDATOR [16] registration 86.0 74.8 13.4 10.9 1.1

Jigsaw (Ours) assembly 52.4 45.4 22.2 19.3 45.6

Ground 

Truth

LSTM

Global

DGL

Jigsaw

Everyday Artifact

Figure 3: Qualitative results of baseline methods and Jigsaw on the Breaking Bad dataset (mesh
used only for visualization). The coordinate system of the green piece is set as the global coordinate
system. Better viewing with color and zooming in.

successfully restored over 57% of the pieces to their original pose while baseline methods restored
only half of us. We also show that change in sampling strategy has had no impact on the outcome of
baseline methods through a sampling by object version of DGL. Our method exhibited remarkable
generalizability on artifact, showing a slight increase of 10.1◦ in average rotation error and
achieving a part accuracy of 44%. In contrast, all baseline methods completely failed to handle new
categories of models that were not present in the training dataset. The PREDATOR model failed
to accurately identify the pairwise overlap region, resulting in erroneous predictions of complete
overlap between the two pieces. While this may seem to yield a small translation error, it failed to
perform adequately in the assembly scenario. Hence, we exclude it from further discussion.

Detailed distribution of each metric. Fig. 4 presents a comprehensive analysis of each metric for
all assembly models. Regarding rotation and translation metrics, a larger surface area under the curve
indicates better performance. Jigsaw exhibits a significantly larger number of samples with small
rotation and translation errors, as illustrated in the figure. Although Jigsaw reports a slightly larger
translation error than the baseline models on the artifact object subset, the distribution results
reveal that this is primarily due to a few extreme cases, leading to an undesirable accumulation of the
translation error. In terms of part accuracy, a larger surface area above the curve signifies superior
results. Notably, Jigsaw demonstrates a higher proportion of correctly positioned pieces.

Visualization. The qualitative comparison of different models is shown in Fig. 3. We plot the
recovered object from different models. It demonstrates that our model could find the position of
the fracture pieces and recover a good pose of each piece. Visualization of objects from different
categories also implies our model has good generalization ability and it doesn’t require object-level
information as assembly guidance.
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Figure 4: The discretized distributions of metrics evaluated over the test data of everyday (up) and
artifact (bottom) object subset in the Breaking Bad dataset.

Ablation Study. We conducted an ablation study to assess the effectiveness of each component in
our Jigsaw model. The baseline model consists of a segmentation module and a multi-part matching
module, trained separately using separate backbones and without incorporating transformers. The
plain joint training model was trained using the same loss function as the Jigsaw model, but without
using two transformer layers. The effectiveness of the rigidity loss regularization was evaluated over
the complete network with both joint training and transformer layers.

Table 3: Ablation study of Jigsaw.

Components RMSE
(R)

MAE
(R)

RMSE
(T)

MAE
(T) PA

Joint
Training Attention Rigidity degree degree ×10−2 ×10−2 %

51.9 44.6 32.4 27.2 45.7
X 51.7 44.4 12.7 10.2 47.0
X X 42.3 36.3 10.9 8.9 57.2
X X X 42.3 36.3 10.7 8.7 57.3

As presented in Table 3, the joint training model
outperformed the baseline in transformation met-
rics. This is due to a more favorable initializa-
tion for the matching module achieved through
pretraining the backbone with the segmentation
module. Joint training also aided the matching
module’s convergence to better optimum. Atten-
tion layers significantly reduced rotation errors:
the self-attention layer embedded geometric information into point features, while the cross-attention
layer improved multi-part matching by incorporating information from other parts. Applying rigidity
loss as a refinement additionally brought an improvement of 2 × 10−3 in translation. Even the
baseline method outperformed previous works, highlighting the effectiveness of our segmentation
and multi-part matching modules.

5 Conclusion and Limitations

In this study, we propose a novel geometry-aware framework to address the 3D fracture assembly
task. Our approach involves a joint learning model that effectively extracts local geometry features
from the backbone and enables the simultaneous learning of piecewise fracture surface segmentation
and global fracture point matching. Experimental evaluations and thorough analyses substantiate the
exceptional performance of our method in terms of accurately recovering piece poses and restoring
the original object. Furthermore, we demonstrate the generalizability of our approach across objects
of diverse categories. One limitation of our approach lies in that as the number of fractured pieces
increases, the accuracy of pose estimation tends to decrease due to potential ambiguities in fracture
matching caused by local geometric features. Future research directions may include exploring
matching pruning techniques for pairwise pose estimation to prevent penetration between fractured
pieces and enforcing smoothness constraints to enhance pose accuracy.
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Appendix

A Details of Network Architecture
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Figure 5: Detailed structure of the at-
tention layers.

We provide additional information about our network ar-
chitecture. The backbone of our network is based on a
standard PyTorch implementation of multi-scale grouping
PointNet++. It is followed by a single MLP layer that ex-
tracts a D-dimensional feature for each point. In our imple-
mentation, we set D = 128.

The detailed structure of the transformer module can be seen
in Fig. 5. The self-attention layer follows the official code of
the point transformer layer, while the cross-attention layer
employs a multi-head attention mechanism with position-
wise feed-forward networks. In our configuration, we set
the number of attention heads to h = 8, the head dimen-
sion to dh = 16, and use k-nearest neighbor sampling with
k = 16. The inner layer of the feed-forward network has a
dimensionality of di = 256.

Regarding the primal-dual descriptor, we set its feature dimension to d = 256.

B Analysis on Primal-dual Descriptor
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Figure 6: Comparison between the doubly-stochastic soft matching matrix X̃ computed by different
types of descriptors.

We conducted an analysis to compare the results obtained using the primal-dual descriptor and the
standard single-view descriptor. Before passing the affinity metric computed from the single-view
descriptor to the Sinkhorn layer, a common practice is to mask out the diagonal sub-matrix to prevent
self-self alignment. For clarity, we refer to the masked and unmasked versions of the primal-dual and
single-view descriptors to denote whether this masking operation has been applied or not.

In Fig. 6, we provide a visualization of the doubly-stochastic matrix X̃ computed by the Sinkhorn
algorithm using four types of descriptors: (1) the unmasked primal-dual descriptor, (2) the masked
primal-dual descriptor, (3) the unmasked single-view descriptor, and (4) the masked single-view
descriptor. The visualization depicts an example object with 3 pieces and 58 fracture points. The X̃
obtained from the primal-dual descriptor clearly demonstrates its ability to differentiate between the
two viewpoints and avoid aligning a point to itself. In contrast, the single-view descriptor exhibits
a diagonal peak, resulting in self-self alignment. Even when the diagonal sub-matrix is masked
to prevent self-self alignment, the soft matching computed from the single-view descriptor is less
distinct compared to that computed from the primal-dual descriptor.

Furthermore, we conducted evaluation on the everyday object subset of Breaking Bad dataset, using
the unmasked primal-dual descriptor and the masked primal-dual descriptor. The results indicate that
the unmasked primal-dual descriptor achieves comparable performance to the masked one, with only
a slight difference: a decrease of 0.2◦ in rotation error (MAE(R)) and an improvement of 0.7× 10−2

in translation error (MAE(T)). We attribute this minor difference to the fine characteristics of the
primal-dual descriptor that prevent self-self alignment, thus resulting in consistent performance.
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C Experiment Details

C.1 Dataset

We leverage Breaking Bad dataset [4] to evaluate our method and all baseline methods. As we have
stated in section 4, the training of all methods were on the training subset of everyday, and testing
were on the testing subset of both everyday and artifact object. Each object within the dataset has
been fragmented into pieces, represented by triangle meshes, and all the pieces are in their original
poses. By assembling these pieces together directly, the surface of the original object is seamlessly
restored. The triangle meshes of the pieces solely consist of exterior faces that are visible from the
outside.

In generating the point cloud for our experiments, we employ two sampling strategies for the compared
methods: “sampling by piece” and “sampling by object”. The “sampling by piece” strategy, originally
utilized in the Breaking Bad benchmark [4], involves sampling an equal number of points within each
fragment. However, this approach leads to excessively dense sampling on small fragments, while
larger fragments suffer from sparser point distributions, resulting in an imbalance in the representation
of point density across fragments. To better mirror real-world scanning technology, we opt for the
“sampling by object” strategy. With this approach, we sample a fixed number of points within each
object, and the number of sampled points for each fragment is determined based on its surface area.
In essence, smaller fragments receive fewer points, whereas larger ones receive more, ensuring a
more realistic representation. Additionally, we ensure that each fragment is sampled with a minimum
of 30 points to include even the tiniest fragments in multi-part matching. Detailed parameter settings
can be found in Table 1. Our analysis of the average fragment numbers and experiments conducted
using DGL [8] indicate that the choice between the two sampling strategies has negligible impact on
the baseline performance.

Figure 7: An example of surface segmen-
tation over the point cloud of a bottle bro-
ken into 7 major pieces. Fracture points
are marked with green in the predicted
result of our method (left) and red in the
ground-truth (right).

For each sampled point p on Pi, its fracture label cp is
determined by the distance from p to its nearest neighbor
q among points from all other pieces:

cp = 1

(
min

q∈O\Pi

‖p− q‖2 < η

)
(15)

where η is set to 0.02 for all the objects. The ground-truth
matching point q̂ of a fracture point p̂ ∈ P̂i is set to

q̂ = argmin
q̂′∈Ô\P̂i

‖p̂− q̂′‖2. (16)

where Ô, P̂i denotes the set of fracture points in O and Pi.
During the training process, cp was applied to segment
the fracture points and during testing the predicted c̃p was
used instead. An example is shown in Fig. 7.

After the ground-truth labeling and matching were com-
puted based on the pieces at their original pose, all pieces were recentered to the origin and a random
rotation was applied to each piece.

To ensure a fair comparison with baseline methods [26, 10, 27, 8], we adopted the same implemen-
tation as of the benchmark code of [4], which sampled the same number of point each piece. For
PREDATOR, we applied the same sample routine as the baseline methods, and we paired the adjacent
pieces for training and testing.

C.2 Evaluation Metrics

The mean absolute error MAE(R) and square-rooted mean squared error RMSE(R) of rotation were
computed as

MAE(R) =
1

3
||R̃−Rgt||1,

RMSE(R) =
1√
3
||R̃−Rgt||2,

(17)
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Table 4: Comparison of training and influence time with Tesla V100 GPUs. For Jigsaw, the time used
in the forward is 1.30s/batch and the rest of the time is used on Hungarian and global alignment.

Jigsaw Predator[16] DGL [33] LSTM [33] Global [33]

Training Time / GPUs 120H / 4 96H / 4 11H / 1 16H /1 21H / 1
Influence Speed (s/batch) / batch size 7.67(1.30) / 8 1.28 / 28 2.46 / 32 1.63 / 32 1.65 / 32

Table 5: Detailed quantitative results of Jigsaw on Breaking Bad dataset (mean and STD by 3 runs).
Method RMSE (R) ↓ MAE (R) ↓ RMSE(T) ↓ MAE (T) ↓ PA ↑

degree degree ×10−2 ×10−2 %

Results on the everyday object subset.

Jigsaw 42.3 ± 0.03 36.3 ± 0.06 10.7 ± 0.02 8.7 ± 0.02 57.3 ± 0.012

Results on the artifact object subset.

Jigsaw 52.4 ± 0.09 45.4 ± 0.14 22.2 ± 0.05 19.3 ± 0.04 45.6 ± 0.015

for each piece, where R̃ and Rgt were predicted rotation and ground-truth rotation represented in
Euler angles. The error over each object was computed as the mean error of all the pieces and the total
error was the mean error of all the object. For translation, MAE(T) and RMSE(T) were computed in
the same way

MAE(T) =
1

3
||̃t− tgt||1,

RMSE(T) =
1√
3
||̃t− tgt||2,

(18)

where t̃ and tgt were the predicted translation and ground-truth translation.

D Implementation Details

D.1 Additional Configuration of parameters

For PREDATOR [16], we carefully follow the parameters presented in its open sourced code, and the
threshold for overlap recall to add saliency loss is set to be 0.3. For Jigsaw, we start training with only
the segmentation loss. We add matching loss after first 10 epochs, and rigidity loss after 200 epochs.

D.2 Running time

Our framework is implemented in Pytorch. All methods are trained over Tesla V100-SXM2-32GB
GPUs and distributed data parallel strategy is applied for multi-GPU training. The training and
influence time for Jigsaw and baseline methods are shown in Table 4.

E Additional Results

E.1 Detailed Quantitative Results

Fig. 8 gives a detailed distribution of each error metric with respect to the number of fractured pieces.
Our approach exhibits a clear advantage in each of the metrics evaluated, and this advantage becomes
more pronounced as the number of pieces decreases.

In addition, we present the mean and standard deviation (STD) of three runs of our method in Table 5.
These values demonstrate the stability of our method across different random seeds and variations in
the sampled point cloud. The consistent performance and low standard deviation affirm the robustness
of our proposed approach.
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Figure 8: Detailed analysis of the quantitative results obtained by each method on the everyday
object subset. We provide results for each metric, categorized by the number of pieces involved.
The shadowed area in the figures represents the distribution of each metric across the corresponding
number of pieces. The horizontal line indicates the mean value of the metric for that specific number
of pieces. Different hues represent different methods.

E.2 More Qualitative Results

We collect additional visualizations of the assembled objects in Fig. 9. Even with a large number of
pieces to assemble, our method remains robust in restoring major pieces to their original pose.

E.3 Additional Registration Baseline

We have received advice to consider GeoTransformer [30] as a state-of-the-art baseline for low
overlap registration. However, training GeoTransformer proves to be exceedingly slow (about 15
days over 4 V100 GPUs), primarily due to the significant scale of Breaking-Bad in comparison
to the 3D registration datasets on which it was originally tested. On pairwise transformations
GeoTransformer achieves MAE(R)=72.4(degree), RMSE(R)=84.8(degree), RMSE(T)=14.3(×10−2),
MAE(T)=11.6(×10−2), PA=3.1%. These findings align with the claims we’ve put forth in our paper,
and we believe that presenting the full results of PREDATOR adequately reflects how registration
baselines perform on the assembly task.
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Figure 9: More visualization of assembly results.
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