
A Experiment Details and Complete Results

A.1 Computing Environment.

All experiments were carried out concurrently on a cluster of NVIDIA Tesla p100 GPUs using
Tensorflow and Keras.

A.2 Model Architectures

In this section we describe in detail each of the model architectures we use in our experiments.

Small ConvNet. Our small ConvNet consists of the following layers:

• A convolutional layer with 32 kernels of size 3× 3 and ReLU activation.
• A max pooling layer with pool 2× 2.
• A convolutional layer with 64 kernels of size 3× 3 and ReLU activation.
• A max pooling layer with pool size 2× 2.
• A flatten layer.
• A dropout layer with drop rate 0.5.
• A dense output layer with 1 unit and sigmoid activation.

For inputs of shape 32× 32× 3, this model has 21,697 parameters.

Large ConvNet. Our large ConvNet model consists of the following layers:

• A convolutional layer with 32 kernels of size 3× 3, padding, and ReLU activation.
• A convolutional layer with 32 kernels of size 3× 3 with ReLU activation.
• A max pooling layer with pool size 2× 2.
• A dropout layer with drop rate 0.25.
• A convolutional layer with 64 kernels of size 3× 3, padding, and ReLU activation.
• A convolutional layer with 64 kernels of size 3× 3 and ReLU activation.
• A max pooling layer with pool size 2× 2.
• A dropout layer with drop rate 0.25.
• A flatten layer.
• A dense layer with 512 units and ReLU activation.
• A dropout layer with drop rate 0.5.
• A dense output layer with 1 unit and sigmoid activation.

For inputs of size 32× 32× 3, this model has 1,246,241 parameters.

Resnet-11. We use the standard Resnet-11 [9] architecture which, for inputs of size 32× 32× 3
and binary output has 296,865 parameters.

Higgs DNN. Following Baldi et al. [3], we use a DNN consisting of the following layers:

• A dense layer with 300 units and ReLU activation.
• A dense layer with 300 units and ReLU activation.
• A dense layer with 300 units and ReLU activation.
• A dense layer with 300 units and ReLU activation.
• A dense layer with 1 unit and sigmoid activation.

This model has 279,901 parameters. Note that Baldi et al. [3] use tanh activations on the hidden layers
and a small amount of regularization, but we did not find this to improve instance-level performance
in our experiments.

13

UCI Adult NN. For the UCI Adult dataset, we use a neural network with the following layers:

• A dense layer with 32 units and ReLU activation.
• A dense layer with 1 unit and sigmoid activation.

This model has 3,521 parameters.

A.3 DA Details

Section 3.2 of [8] defines a combinatorial loss that attempts to guess the true labels of each example
in a bag based on the current model. Translating into our notation and specializing to the binary case,
for a bag B = {x1, . . . , xk} with label proportion α, the loss of predictions ŷ1, . . . , ŷk ∈ [0, 1] is
given by

`comb(ŷ1, . . . , ŷk, α) = min
t1,...,tk∈{0,1}

α

n

k∑
i=1

`(ŷi, ti) + (1− α) div

(
1

k

k∑
i=1

ti, α

)
,

where6 ` is the original loss, t1, . . . , tk are “guessed labels”, and div is a notion of divergence between
two distributions (e.g., the KL divergence).

The main method proposed by Dulac-Arnold et al. [8] is to optimize a convex relaxation of `comb

because the multiclass version of the above objective is computationally expensive to evaluate.
However, they observe that in the special case of binary classification, the optimization can be solved
exactly by sorting the data in increasing order according to `(yi, 1) − `(yi, 0). After sorting, the
optimal solution over the guessed labels t1, . . . , tk always sets ti = 1 for a prefix of the sorted list. In
particular, the optimum can be found in linear time by trying all possible prefix lengths. The overall
running time of this approach is O(k log k) per bag.

We implement the sorting-based version of the combinatorial loss and set div(p, q) to be the sym-
metrized KL-divergence between Bernoulli distributions with parameters p and q. As discussed in the
main body, in each application of DA we tune both the learning rate and the value for the α parameter
using a grid search.

A.4 EASYLLP Double Hinge Loss

As discussed in the main body, the variance computed in Theorem 4.3 becomes large when the loss is
binary cross-entropy and the model makes confident predictions (close to 0 or 1). Intuitively, this is
because the soft-label corrected loss estimate is a weighted combination of the loss if the true label
had been zero and if the true label had been one. For the cross-entropy loss, as the model becomes
more confident, one of these two terms diverges (both when estimating the loss and its gradient). In
this section we describe an alternative loss function that achieves high accuracy with EASYLLP in
some cases where the binary cross-entropy performs poorly.

Let ẑ be the logit output by a model for an example with label y. We define the double hinge loss as

`DHL(ẑ, y) = max(0, 1−m,m− 2), where m = ẑ(2y − 1) =

{
ẑ if y = 1

−ẑ if y = 0.

Figure 3 compares `DHL to the binary cross-entropy as a function of the margin m.

This loss function is designed so that that for any predicted logit ẑ, the scale of `DHL(ẑ, 0) and
`DHL(ẑ, 1) is roughly the same (and so are the derivatives w.r.t. ẑ). Recall that the soft-label corrected
loss can be written as w0 · `DHL(ẑ, 0) + w1 · `DHL(ẑ, 1) where w0 and w1 are (possibly negative)
weights that sum to one. When `DHL(ẑ, 0) and `DHL(ẑ, 1) have comparable scales, this weighted sum
also has a comparable scale.

In Appendix A.5 we plot the performance of EASYLLP for every task using the double hinge loss.
For CIFAR-10 Animal-vs-Machine and MNIST Even-vs-Odd, EASYLLP using the double hinge
loss has much closer performance to PROPMATCH (the best performing method) than EASYLLP
using the binary cross-entropy loss. The only learning task where the double hinge loss performs
significantly worse than the binary cross-entropy is UCI Adult with a linear model.

6Dulac-Arnold et al. [8] only consider the binary cross-entropy loss, but the generalization to other losses is
straightforward.

14

Figure 3: Left: Comparison between the double hinge loss and the binary cross-entropy as functions
of the margin 2ẑ(y − 1). Right: The components `DHL(ẑ, 0) and `DHL(ẑ, 1). For all values of ẑ, the
magnitude of the loss (and the derivative w.r.t. ẑ) are comparable.

A.5 Complete Experimental Results

In this section we present our empirical results for all combinations of LLP method, dataset, model,
and bag size. Figure 4 shows the results for the CIFAR-10 Animal-vs-Machine task. Figure 5 shows
the results for the MNIST Even-vs-Odd task. Figure 6 shows the results for the Higgs dataset. Finally,
Figure 7 shows the results for the UCI Adult dataset.

For all datasets, we include two variants of EASYLLP. The first, labeled EASYLLP MSE minimizes
the mean squared error on the training data (rather than the binary cross-entropy). Similarly, the
second, labeled EASYLLP DHL minimizes the double hinge loss defined in Appendix A.4.

In addition to our remarks in Section 7, we observe that the DA method has relatively low performance
compared to other methods particularly when we train models with low complexity. In particular,
when training linear models on every dataset, the accuracy of DA drops much earlier than the other
methods. The combinatorial loss optimized by DA reinforces the current model’s predictions. A
possible explanation for the relatively poor performance with simple models is that, if the model is
incapable of making accurate predictions, the loss will often be reinforcing incorrect labels. More
broadly, this issue should arise for any DA-like method that attempts to use the model’s current
predictions to guess the labels of examples within a bag.

A.6 Loss tracking

In this section, we show that the EASYLLP soft-label corrected loss closely tracks the model’s actual
training loss, while the losses optimized by PROPMATCH and DA do not. This close agreement
between the EASYLLP loss estimates and the true training loss makes transferring a practitioner’s
domain expertise from the non-LLP version of a learning problem easier.

We train the Higgs DNN model with a bag size of 32 using the optimal parameters from our grid
search for EASYLLP, PROPMATCH, and DA. For each minibatch, we compute the value of the loss
being minimized by each method on that minibatch, as well as the actual training loss of the model
using the original (non-proportion) labels. Figure 8 depicts sliding window averages of the loss each
method optimizes together with the actual training loss. The window size is 2000 minibatches, so
each point on the curve is the average of the loss over the previous 2000 minibatches.

We find that there is close agreement between the EASYLLP loss estimates and the actual loss. The
proportion matching loss decreases as training proceeds, but at a much slower rate than the actual
loss. Finally, for DA, the value of the combinatorial loss is very close to zero throughout training,
likely due to the fact that the loss constructs synthetic labels that agree with the model predictions.

B Proofs

Throughout this appendix, we denote by 1A the indicator function of the predicate A at argument.

15

Figure 4: Experimental results for CIFAR-10 Animal-vs-Machine with various models.

Figure 5: Experimental results for MNIST Even-vs-Odd with various models.

16

Figure 6: Experimental results for Higgs with various models.

Figure 7: Experimental results for UCI Adult with various models.

Figure 8: Comparison of the loss values optimized by the EASYLLP, PROPMATCH, and DA methods
and the actual training loss of the model (evaluated from event-level access to the data). Results are
averaged over a sliding window of 2000 steps.

B.1 Missing proofs from Section 3

Theorem 3.2. AssumeH is such that the function h∗ : x 7→ P(y = 1|x) is inH. Let ` : R×R→ R+

be such that, for any random variable Z, q = E[Z] is the unique solution of minr∈R EZ [`(r, Z)].
Then, h∗ is a minimizer of (2). Moreover, every other minimizer h satisfies P(h(x)=h∗(x)) = 1.

Proof. We begin by showing that h∗ is minimizer of the objective. To do so, we lower bound the
objective in (2) as follows:

min
h∈H

EB,α

[
`

(
1

k

∑
x∈B

h(x), α

)]
≥ EB

[
min
h∈H

Eα

[
`

(
1

k

∑
x∈B

h(x), α

)∣∣∣∣∣B
]]

≥ EB
[
min
r∈R

Eα [` (r, α)| B]

]
,

17

The inequality follows from the fact that the image of the the mapping h 7→ 1
k

∑
x∈B h(x) is only a

subset of R. We now use the property of the loss function to see that the last expression is equivalent
to

EB [Eα [` (E[α|B], α)| B]] = EB,α [` (E[α|B], α)] .

But since α is the average label of examples in the bag it follows by linearity of conditional expectation
that E[α|B] = 1

k

∑
x∈B P(y = 1|x) = 1

k

∑
x∈B h

∗(x). Putting everything together we see that

min
h∈H

EB,α

[
`

(
1

k

∑
x∈B

h(x), α

)]
≥ E

[
`

(
1

k

∑
x∈B

h∗(x), α

)]
.

Since h∗ ∈ H it follows that h∗ is a minimizer of the proportion matching loss. We proceed to
demonstrate that it is the unique minimzer. Let h0 be a hypothesis such that P(h0(x) 6= h∗(x)) >
0. Note that since E[α|B] = 1

k

∑
x∈B h

∗(x) is the unique solution of minr∈R Eα [` (r, α)| B], if
we prove that PB(1

k

∑
x∈B h0(x) 6= 1

k

∑
x∈B h

∗(x)) > 0, then h0 cannot be a minimizer of the
proportion matching loss. This follows from the following simple observation:

PB

(
1

k

∑
x∈B

h0(x) 6= 1

k

∑
x∈B

h∗(x)

)
= PB

(
1

k

∑
x∈B

h0(x) >
1

k

∑
x∈B

h∗(x)

)
+ PB

(
1

k

∑
x∈B

h0(x) <
1

k

∑
x∈B

h∗(x)

)
≥ P(h0(x) > h∗(x) ∀x ∈ B) + P(h0(x) < h∗(x) ∀x ∈ B)

= P(h0(x) > h∗(x))k + P(h0(x) < h∗(x))k

> 0 ,

where we used the independence of examples in the bag for the last equality, and the fact that
P(h0(x) > h∗(x)) + P(h0(x) < h∗(x)) = P(h0(x) 6= h∗(x)) > 0

for the last inequality.

Corollary 3.3. LetH satisfy the conditions of Theorem 3.2. Then h∗ as defined above is the unique
minimizer for the proportion matching loss when ` is the square loss or the binary cross-entropy loss.

Proof. Let Z be an arbitrary random variable and let `(p, Z) = (p−Z)2. It is a well known fact that
E[Z] is the unique minimizer E[`(p, Z)].

We now focus on the binary cross entropy loss. Fix k > 0 and consider a random variable Z taking
values on the set {i/k : i = 0, . . . , k}. Let ` now denote the cross entropy loss given by:

`(p, Z) = −Z log p− (1− Z) log(1− p)
Then E[`(p, Z)] = −E[Z] log p− (1−E[Z]) log(1− p). Taking the derivative with respect to p and
setting it to zero, shows that the unique minimizer is given by p = E[Z].

B.2 Proof of Proposition 4.2

Proposition 4.2. Given a sample (x1, y1), . . . , (xk, yk) drawn i.i.d. according to D, let (B, α) be
the corresponding labeled bag of size k, for some k ≥ 1. Let g : X × Y → Rd be any (measurable)
function, for some output dimension d ≥ 1, and g̃ : X × [0, 1] → Rd be its associated soft-label
corrected function. Then for every element xj ∈ B we have

E
(B,α)

[g̃(xj , α)] = E
(x,y)∼D

[g(x, y)] .

Proof. Let (x1, y1), . . . , (xk, yk) be a sample drawn i.i.d. from D and let α = 1
k

∑k
i=1 yi be the

label proportion. Fix j and let Sj =
∑
i : i6=j yi. Note that g̃(xj , α) can be rewritten as:

g̃(xj , α) = (1yj=1 + Sj − (k − 1)p)g(xj , 1) + (1yj=0 + ((k − 1)p− Sj))g(xj , 0)

= g(xj , yj) + (Sj − µp)g(xj , 1) + (µp − Si)g(xj , 0)

= g(xj , yj) + (Sj − µp)(g(xj , 1)− g(xj , 0)) ,

where µp = (k − 1)p. We therefore have the following slightly stronger statement about the
unbiasedness of g̃:

E[g̃(xj , α)|xj , yj] = g(xj , yj)
Taking an outer expectation w.r.t. (xj , yj) concludes the proof.

18

B.3 Proof of Theorem 4.3

In this section we prove Theorem 4.3, which we recall now:
Theorem 4.3. Let g : X × Y → Rd be such that supx,y ‖g(x, y)‖2 ≤ M , and denote by g̃ its
associated soft labeled corrected function. Also, set for brevity g0 = g(x, 0) and g1 = g(x, 1) and,
for each j ∈ [k], g̃j = g̃(xj , α). Then, for any size k ≥ 1 and any j ∈ [k],

E[||g̃j ||2] = E[‖g(xj , yj)‖2] + (k − 1)p(1− p)E
[
||g0 − g1||2

]
E

[∣∣∣∣∣∣1
k

k∑
i=1

g̃i

∣∣∣∣∣∣2] ≤ E[||g̃j ||2] . (4)

Moreover, there exists a universal constant C such that

E

[∣∣∣∣∣∣1
k

k∑
i=1

g̃i

∣∣∣∣∣∣2] ≤ C + kp(1− p)
∣∣∣∣∣∣E[g0 − g1]

∣∣∣∣∣∣2 ,
where p = P(x,y)∼D(y = 1).

For simplicity of notation let us define the following quantities:

g̃i = g̃(xi, α) gi0 = g(xi, 0), gi1 = g(xi, 1) .

Let also A = k(α− p) + p. With this notation we have that

g̃i = Agi1 + (1−A)gi0.

The proof of Theorem 4.3 will be a consequence of the following lemmas.
Lemma B.1. Using the above notation, the following inequality holds

E

∥∥∥∥∥1

k

k∑
i=1

g̃i

∥∥∥∥∥
2
 ≤ E[‖g̃1‖2] .

Proof. By simple linear algebra and the fact that the g̃i are equally distributed we have

E

[∣∣∣∣∣∣1
k

k∑
i=1

g̃i

∣∣∣∣∣∣2] =
1

k
E[||g̃1||2] +

k − 1

k
E[〈g̃1, g̃2〉] . (7)

Moreover,
0 ≤ E[||g̃1 − g̃2||2] = 2E[||g̃1||2]− 2E[〈g̃1, g̃2〉]

implies
E[〈g̃1, g̃2〉] ≤ E[||g̃1||2] .

Replacing this inequality in (7) yields

E

[∣∣∣∣∣∣1
k

k∑
i=1

g̃i

∣∣∣∣∣∣2] ≤ E[||g̃1||2] ,

which is the claimed result.

Lemma B.2. Using the previous notation, for every i ≤ k we have

E[‖g̃i‖2] = E[‖g(xi, yi)‖2] + (k − 1)p(1− p)E[‖g(x, 1)− g(x, 0)‖2] (8)

Proof. Fix an index i and rewrite A as

A =

k∑
j=1

yj − (k − 1)p = yi +
∑
j 6=i

yj − (k − 1)p = yi +B

19

where B is a centered binomial random variable of parameters (k − 1, p) independent of xi, yi. This
entails,

E[B] = 0 and E[B2] = (k − 1)p(1− p) . (9)
Setting for brevity gi1 = g(xi, 1), gi0 = g(xi, 0), we thus have

g̃i = (B + yi)gi1 + (1−B − yi)gi0 = yi(gi1 − gi0) + gi0 +B(gi1 − gi0)

Also note that if yi = 1, then yi(gi1 − gi0) + gi0 = g1 and if yi = 0 the previous expression is equal
to g0. Thus we have that yi(gi1 − gi0) + gi0 = g(xi, yi) and

E[‖g̃i‖2] = E[‖g(xi, yi) +B(gi1 − gi0)‖2]

= E[‖g(xi, yi)‖2] + 2E[B〈g(xi, yi), (gi1 − gi0)〉] + E[B2‖gi1 − gi0‖2]

= E[‖g(xi, yi)‖2] + 2E[B]E[〈g(xi, yi), (gi1 − gi0)〉] + E[B2]E[‖gi1 − gi0‖2],

where we have used the fact that g(xi, yi), gi0, gi1 are all functions of xi, yi and B is independent of
of these variables. Using (9) to replace the terms depending on B we obtain the result.

Lemma B.3. Let M = supx,y ‖g(x, y)‖. For any pair of indices i, j the following inequality holds

E[〈g̃i, g̃j〉] ≤ (k − 2)p(1− p)‖E[gi1 − gi0]‖2 + 36M

Proof. Fix i, j. As in the previous lemma, let us rewrite A as

A = yi + yj − p+
∑
r 6=i,j

yr − (k − 2)p (10)

= R+B (11)
where R = yi + yj − p and B is a centered binomial random variable of parameters (k − 2, p).
Moreover B is independent of (xi, xj , yi, yj). We proceed to calculate the desired expectation

E[〈g̃i, g̃j〉] = E[〈A(gi1 − gi0) + gi0, A(gj1 − gj0) + gj0〉]
= E[〈B(gi1 − gi0) +R(gi1 − gi0) + gi0, B(gj1 − gj0) +R((gj1 − gj0) + gj0〉] ,

where, again, gi1 = g(xi, 1), and gi0 = g(xi, 0). Using a similar argument as in the previous lemma,
it is not hard to see that the above expression simplifies to:
E[〈g̃i, g̃j〉] = (k−2)p(1−p)E[〈gi1−gi0, gj1−gj0〉]+E[〈R((gi1−gi0)+gi0, R((gj1−gj0)+gj0〉] .
Using the fact that gi1 − gi0 and gj1 − gg0 are independent and identically distributed as well as
Cauchy-Schwartz inequality for the second term we obtain the following bound
E[〈g̃i, g̃j〉] ≤ (k−2)p(1−p)‖E[gi1−gi0]‖2+E[9MR2] ≤ (k−2)p(1−p)‖E[gi1−gi0]‖2+36M ,

as claimed.

Lemma B.4. Under the same notation as the previous lemma we have

E

∥∥∥∥∥1

k

k∑
i=1

g̃i

∥∥∥∥∥
2
 ≤ 1

k

(
E[‖g(xi, yi)‖2] + (k − 1)p(1− p)E[‖g(x, 1)− g(x, 0)‖]2

)
+

(k − 1)

k

(
36M2 + (k − 2)p(1− p)‖E[g(x, 1)− g(x, 0)]‖2

)
Proof of Theorem 4.3. Using (7) we can write

E

∥∥∥∥∥1

k

k∑
i=1

g̃i

∥∥∥∥∥
2
 =

1

k
E[||g̃1||2] +

k − 1

k
E[〈g̃1, g̃2〉] .

By applying Lemma B.2 and Lemma B.3 we can bound the above expression as

E

∥∥∥∥∥1

k

k∑
i=1

g̃i

∥∥∥∥∥
2
 ≤ 1

k

(
E[‖g(xi, yi)‖2] + (k − 1)p(1− p)E[‖g(x, 1)− g(x, 0)‖]2

)
+

(k − 1)

k

(
36M2 + (k − 2)p(1− p)‖E[g(x, 1)− g(x, 0)]‖2

)
.

We let constantC in the statement of the theorem depend on boundM , and the proof is concluded.

20

B.4 Proof of Theorem 5.2

The proof of the theorem depends on the following proposition.

Proposition B.5. For any η > 0 define c(k, η, p) =
√

log(1/η)
2k . Let

˜̀
η(ŷ, α) = ˜̀(ŷ, α)1|α−p|≤c(k,η).

be a truncation of ˜̀. Let (B, α) be a labeled bag. Let x ∈ B. With probability at least 1− η over the
choice of (B, α), we have ˜̀η(h(x), α) = ˜̀(h(x), α) for all h ∈ H.

Proof. For any h, note that both losses agree unless (α− k) ≥ c(k, η) but by Hoeffding’s inequality
this occurs with probability at most η.

We now proceed to prove Theorem 5.2.
Theorem 5.2. Let δ > 0, S = {(Bi, αi), i ∈ [n]} be a collection of n bags of size k.7 Let

supŷ,y `(ŷ, y) ≤ B, and Ckn = 2
(√

2k log(kn) + 1
)

. Then the following bound holds uniformly
for all h ∈ H with probability at least 1− δ:∣∣∣L(h)− 1

nk

∑
i,j

˜̀(h(xij), αi)
∣∣∣≤ Ckn

(
Rkn(H(1)

`) + Rkn(H(0)
`)
)

+
4B

n
+ 4B

√
k log(2/δ)

2n
,

where H(1)
` = {x→ `(h(x), 1) : h ∈ H} and H(0)

` = {x→ `(h(x), 0) : h ∈ H}.

Proof. For h ∈ H, bag B and label proportion α define

L(h,B, α) =
1

k

∑
x∈B

˜̀(h(x), α).

Let Φ(S) = suph∈H E[`(h(x), y])− 1
n

∑n
i=1 L(h,Bi, αi) .

Let (xij , yij)i∈[n],j∈[k] denote the instance level sample. Let S ′ = (B′i, α′i)i∈[k] denote the sample
obtained by switching a single sample (xij , yij) to (x′ij , y

′
ij). Without loss of generality assume

we switch sample (x11, y11). Then by the subadditive property of the supremum and the fact that
(Bi, αi) = (B′i, α′i) for i 6= 1 we have

Φ(S)− Φ(S ′) ≤ 1

n
sup
h∈H

L(h,B1, α1)− L(h,B′1, α′1).

If we expand the difference inside the supremum for a fixed h we have:

|L(h,B1, α1)− L(h,B′1, α′1)| ≤ 1

k

k∑
j=1

|˜̀(h(x1j , α1)− ˜̀(h(x′1j), α
′
1)| .

Now using the fact that |α1 − α′1| ≤ 1
k — as only one label changed — and ˜̀is 2kB-Lipchitz as a

function of α we must have, for j 6= 1,

|˜̀(h(x1j), α1)− ˜̀(h(x′1j), α
′
1)| = |˜̀(h(x1j), α1)− ˜̀(h(x1j), α

′
1)| ≤ 2B .

On the other hand, using the fact that k|α− p|+ max(p, 1− p) ≤ k + 1, and again the fact that ˜̀is
Lipchitz with respect to α we see that:

|˜̀(h(x11), α1)− ˜̀(h(x′11), α′1)| ≤ (k + 1)B + 2B = B(k + 3).

7Our results can easily be extended to the case where bags have different sizes, provided the items are still
i.i.d. The equal size assumption is made here mainly for notational convenience. If the bag sizes are constant
with the number of bags n, then a rate of the form 1/

√
n can still be obtained. On the contrary, if the bag sizes

scale with n, the actual rate will depend on the interplay between the bag sizes and n itself.

21

We thus have that

|L(h,B1, α1)− L(h,B′1, α
′
1)| ≤ 1

k
(B(k + 3) + 2(k − 1)B) =

(3k + 1)

k
B ≤ 4B

We therefore have

Φ(S)− Φ(S ′) ≤ 4B

n
.

By McDiarmid’s inequality and the fact that we have kn individual samples we thus have that with
probability at least 1− δ:

Φ(S) ≤ E[Φ(S)] + 4B

√
k log(1/δ)

2n

We proceed to bound the expectation of Φ(S):

E[Φ(S)] = E
S

[
sup
h∈H

E[`(h(x), y)]− 1

n

n∑
i=1

L(h,Bi, αi)

]

= E
S

[
sup
h∈H

E
S′

[
1

n

n∑
i=1

L(h,B′i, α′i)

]
− L(h,Bi, αi)

]

≤ 1

n
E
S,S′

[
sup
h∈H

n∑
i=1

L(h,B′i, α′i)− L(h,Bi, αi)

]
,

where S ′ is another i.i.d. sample drawn from the same distribution as S . The second inequality follows
from the fact that E[L(h,B, α)] = E[`(h(x), y)]. Let σij be a random variable uniformly distributed
in {−1, 1} and σ = (σij)i∈[n],j∈[k]. Then by a standard Rademacher complexity argument (e.g.,
[18]), we have

1

n
E
S,S′

[
sup
h∈H

n∑
i=1

L(h,B′iα′i)− L(h,Bi, αi)

]
=

1

kn
E
S,S′

sup
h∈H

∑
i,j

˜̀(h(x′ij , α
′
i)− ˜̀(h(xij), αi)

=

2

kn
E
S,σ

sup
h∈H

∑
i,j

σij ˜̀(h(xij), αi)

 . (12)

Let β > 0 and η = β
kn . By Proposition B.5 we know that we can rewrite ˜̀(h(xij), αi) as˜̀

η(h(xij , αi) + Zijh. Moreover |Zijh| ≤ 2kB and by the union bound, with probability at least
1− β, for all i, j, h we have Zijh = 0. Using this fact we may bound (12) as follows

2

kn
E
S,σ

sup
h∈H

∑
i,j

σij ˜̀(h(xij), αi)

 ≤ 2

kn
E
S,σ

∑
i,j

σij ˜̀η(h(xij), αi)

+
2

kn
E
S,σ

sup
h∈H

∑
i,j

σijZijh

≤ 2

kn
E
S,σ

∑
i,j

σij ˜̀η(h(xij), αi)

+ 4kBβ . (13)

Finally, we use the definition of ˜̀η to bound the above expression:

˜̀
η(h(xij , αi) = (k(αi − p) + p)1|αi−p|<c(k,η)`(h(xij), 1) + (k(p− αi) + (1− p))1|αi−p|<c(k,η)`(h(xij), 0)

= ψ
(1)
i

(
`(h(xij , 1)

)
+ ψ

(0)
i

(
`(h(xij , 1)

)
where ψ(1)

i (z) = (k(αi − p) + p)1|αi−p|<c(k,η) and ψ(0)
i is similarly defined. Notice that due to

the indicator function we must have that ψ(r)
i is (kc(k, η) + 1)-Lipchitz. Define the set of functions

22

H(1)
` = {x→ `(h(x), 1) : h ∈ H} andH(0)

` = {x→ `(h(x), 0) : h ∈ H} we then have that

2

kn
E
S,σ

∑
i,j

σij ˜̀η(h(xij), αi)

≤ 2

kn
E
S,σ

sup
h∈H

∑
i,j

σijψ
(1)
i

(
`(h(xij , 1)

)+
2

kn
E
S,σ

sup
h∈H

∑
i,j

σijψ
(0)
i

(
`(h(xij , 0)

)
=

2

kn
E
S,σ

 sup
g∈H(1)

`

∑
i,j

σijψ
(1)
i ◦ g(xij)

+
2

kn
E
S,σ

 sup
g∈H(0)

`

∑
i,j

σijψ
(0)
i ◦ g(xij)

 .

Finally, we use the fact that all functions ψ(r)
i are (kc(k, η) + 1)-Lipchitz together with Talagrand’s

contraction Lemma [14, 18] to show that the above expression is bounded by

2
(
kc(k, η) + 1

) (
Rkn(H(1)

`) + Rkn(H(0)
`)
)

= 2

(√
k log

1

η
+ 1

)(
Rkn(H(1)

`) + Rkn(H(0)
`)
)

= 2

(√
k log

kn

β
+ 1

)(
Rkn(H(1)

`) + Rkn(H(0)
`)
)
.

Replacing this expression in (13) and setting β = 1
kn we see that

E[Φ(S)] ≤ 2
(√

2k log(kn) + 1
)(

Rkn(H(1)
`) + Rkn(H(0)

`)
)

+
4B

n
.

Putting it all together we see that with probability at least 1− δ over S we have:

Φ(S) ≤ 2
(√

2k log(kn) + 1
)(

Rkn(H(1)
`) + Rkn(H(0)

`)
)

+
4B

n
+ 4B

√
k log(1/δ)

2n
.

The result follows from the definition of Φ.

B.5 Supplementary material to Section 6

Algorithm 1 SGD Using Pick-One from Each Bag
1: Input S = {(Bi, αi), i ∈ [n]}, {ηi : i ∈ [n]}, w0

2: w← w0

3: for t ∈ {1, . . . , n} do
4: Pick j from [k] uniformly at random
5: Update the model parameter wt as

wt+1 ← ΠW
(
wt − ηig̃wt

(xtj , αt)
)

with g̃wt
(xtj , αt) defined in (3)

6: end for
7: Return wn+1

Theorem 6.1. Suppose that F (w) = E[`w(x, y)] is convex, E[‖gwt
(x, y)‖2] ≤ G2 for all t ∈ [n],

and supw,w′∈W ‖w −w′‖ ≤ D. Consider Algorithm 1, run with step size ηt = 1/
√
k · t. Then for

any n > 1 we have

E[F (wn)− F (w∗)] ≤
√
k ·
(
D2 + 5G2

) 2 + log(n)√
n

.

Proof. We focus on the sequence of parameter vectors w0, . . . ,wn, which is a stochastic process,
the filtration of which is defined as

Ft = {(x11, y11), . . . , (xtj , ytj), J1, . . . , Jt−1}

23

such that Ji is a uniform random variable from [k] for any i. We introduce some short-hand notations:
the unbiased gradient based on surrogate labels is denoted by g̃ti = g̃wt(xtj , αt) and g̃t = g̃tJt is the
gradient that is used by Algorithm 1, i.e., the unbiased gradient compute based on a randomly selected
instance from Bt. Furthermore we will denote the instance level gradient as gtj = gwt

(xtj , ytj). We
can rewrite the L2 error as follows:

E
[
‖wt+1 −w‖2|Ft

]
= E

[∥∥∥ΠW

(
wt − ηtg̃t −w

)∥∥∥2 |Ft]
≤ E

[
‖wt − ηtg̃t −w‖2 |Ft

]
≤ E

[
‖wt −w‖2 |Ft

]
− 2ηt E [〈g̃t,wt −w〉|Ft] + η2t E

[
‖g̃t‖2 |Ft

]
= E

[
‖wt −w‖2 |Ft

]
− 2ηt

1

k

k∑
j=1

E [〈gtj ,wt −w〉|Ft] + η2t E
[
‖g̃t‖2 |Ft

]
(14)

where the last step follows from Proposition 4.2 applied to each term of the summation by noting that
wt −w is not a random quantity with respect to filtration Ft. As a next step, we will upper bound
using the assumption that E[‖gwt

(x, y)‖2] ≤ G2 for any t as

E
[
‖g̃t‖2 |Ft

]
= E

[
‖g̃tJt‖

2 |Ft
]

=
1

k

k∑
j=1

E
[
‖g̃i,j‖2 |Ft, Jt = j

]
so we shall focus on E

[∥∥g̃w(x, α)
∥∥2] assuming that w is fixed. Based on Lemma B.2, we can

compute an upper bound E
[∥∥g̃w(x, α)

∥∥2] as

E
[∥∥g̃w(x, α)

∥∥2] = E
[∥∥(k(α− p) + p

)
gw(x, 1) +

(
k(p− α) + (1− p)

)
gw(x, 0)

∥∥2]
= E

[∥∥(k(α− p) + p
)
gw(x, 1)

∥∥2]
+ 2E

[〈(
k(α− p) + p

)
gw(x, 1),

(
k(p− α) + (1− p)

)
gw(x, 0)

〉]
+ E

[∥∥(k(p− α) + (1− p)
)
gw(x, 0)

∥∥2]
≤ 2k2G2 + 2k2 E

[〈
gw(x, 1), gw(x, 0)

〉]
≤ 4k2G2

where the last inequality follows from the Cauchy-Schwartz inequality applied to

|〈gw(x, 1), gw(x, 0)〉| ≤ ‖gw(x, 1)‖ · ‖gw(x, 0)‖ ≤ G2

and the fact that p(1− p) ≤ 1/4. The convexity of the loss and (14) yield that

E [F (wt)− F (w)|Ft] ≤
1

k

k∑
j=1

E
[
〈gtj ,wt −w〉|Ft

]

≤
E
[
‖wt −w‖2 |Ft

]
− E

[
‖wt+1 −w‖2|Ft

]
2ηt

+
ηt
2
E
[
‖g̃t‖2 |Ft

]
≤

E
[
‖wt −w‖2 |Ft

]
− E

[
‖wt+1 −w‖2|Ft

]
2ηt

+
5ηtk

2G2

2

which can be applied recursively as

E

[
n∑

t=n−s
(F (wt)− F (w))

∣∣∣Ft] ≤ 1

2ηn−s
E
[
‖wn−s −w‖2 |Fn−s

]

24

+

n∑
t=n−s+1

E
[
‖wt −w‖2 |Ft

]
2

(
1

ηt
− 1

ηt−1

)
+

5G2k2

2

n∑
t=n−s

ηt .

Now we can follow Theorem 2 of [27] with η = c/(k ·
√
t) where the index t is meant over bags. Let

us upper bound E[‖wt −w‖2] by D2 and pick w = wn−s which yields

E

[
n∑

t=n−s
(F (wt)− F (wn−s))

∣∣∣Ft] ≤ kD2

2c

(√
n−
√
n− s− 1

)
+

5ckG2

2

n∑
t=n−s

1√
t

≤
(
kD2

2c
+ 5ckG2

)(√
n−
√
n− s− 1

)
≤
(
kD2

2c
+ 5ckG2

)
s+ 1(√

n+
√
n− s− 1

)
≤
(
kD2

2c
+ 5ckG2

)
s+ 1√
T

where we used the fact that
∑n
t=n−s 1/

√
t ≤ 2(

√
n−
√
n− s− 1). The rest of the proof is analogous

to the proof of Theorem 2 of [27].

C Extension to Multiclass Classification

In the main body of the paper have restricted our analysis to binary classification problems. This
was mostly done for ease of exposition. We now show that EASYLLPcan easily generalize to the
multi-class scenario. This is in contrast to other methods like that of [8] whose generalization to
multi-class requires solving an optimization problem for every gradient step. For the rest of this
section we let C denote the number of classes and Y = {1, . . . , C} denote the label space. The result
below is a generalization of its binary counterpart.

Theorem C.1. Let k > 0 and (x1, y1), . . . , (x,yk) be a sample from distribution D. For each class
c, let αc = 1

k

∑k
i=1 1yi=c denote the fraction samples with label c. Let B = {x1, . . . , xk} and define

α = (α1, . . . , αk). Finally, let pc = P(y = c). Let g : X × Y → Rd be any (measurable) function
over features and labels. Define the soft label corrected function g̃ as:

g̃(x,α) =

C∑
c=1

(
kαc − (k − 1)pc

)
g(x, c).

For any xi ∈ B, the soft label corrected function satisfies: E[g̃(xi,α)] = Ex,y∼D[g(x, y)] .

Proof. Fix i ∈ [k] and define α(i)
c = αc − 1

k1yi=c so that 1yi=c = k(αc − α(i)
c). Moreover, since

α
(i)
c = 1

k

∑
j 6=i 1yj=c and the samples (x1, y1), . . . , (xk, yk) are independent, we are guaranteed

that α(i)
c is independent of xi. Let xi ∈ B and let yi be its corresponding label we then have

E[g(xi, yi)] =

C∑
c=1

E[1yi=c g(xi, c)] =

C∑
c=1

E[k(αc − α(i)
c)g(xi, c)]

=

C∑
c=1

E[kαc g(xi, c)]−
C∑
c=1

E[kα(i)
c g(xi, c)] .

Now, since α(i)
c is independent of g(xi, c) and E[α

(i)
c] = k−1

k pc, we have that E[kα
(i)
c g(xi, c)] =

(k − 1)pc E[g(xi, c)]. Therefore the above expression can be simplified as

E
x,y∼D

[g(x, y)] = E[g(xi, yi)] =

C∑
c=1

E[kαcg(xi, c)]−
C∑
c=1

(k − 1)pc E[g(xi, c)]

25

= E

[
C∑
c=1

(
kαc − (k − 1)pc

)
g(xi, c)

]
= E[g̃(xi,α)] ,

as claimed.

26

	Experiment Details and Complete Results
	Computing Environment.
	Model Architectures
	DA Details
	=10000EasyLLP Double Hinge Loss
	Complete Experimental Results
	Loss tracking

	Proofs
	Missing proofs from Section 3
	Proof of Proposition 4.2
	Proof of Theorem 4.3
	Proof of Theorem 5.2
	Supplementary material to Section 6

	Extension to Multiclass Classification

