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Abstract

We consider the problem of Learning from Label Proportions (LLP), a weakly
supervised classification setup where instances are grouped into i.i.d. “bags”, and
only the frequency of class labels at each bag is available. Albeit, the objective
of the learner is to achieve low task loss at an individual instance level. Here
we propose EASYLLP, a flexible and simple-to-implement debiasing approach
based on aggregate labels, which operates on arbitrary loss functions. Our tech-
nique allows us to accurately estimate the expected loss of an arbitrary model at
an individual level. We elucidate the differences between our method and stan-
dard methods based on label proportion matching, in terms of applicability and
optimality conditions. We showcase the flexibility of our approach compared to
alternatives by applying our method to popular learning frameworks, like Empirical
Risk Minimization (ERM) and Stochastic Gradient Descent (SGD) with provable
guarantees on instance level performance. Finally, we validate our theoretical
results on multiple datasets, empirically illustrating the conditions under which our
algorithm is expected to perform better or worse than previous LLP approaches.

1 Introduction

In traditional supervised learning problems, a learner has access to a sample of labeled examples. This
collection of labeled examples is used to fit a model – to name a few, decision trees, neural networks,
random forests – by minimizing a loss over the observed sample. By contrast, in the problem of
Learning from Label Proportions (LLP), the learner only observes collections of unlabeled feature
vectors called bags, together with the proportion of positive examples in each bag. The LLP problem
is motivated by a number of applications where access to individual examples is too expensive or
impossible to achieve, or available at aggregate level for privacy-preserving reasons. Examples
include e-commerce, fraud detection, medical databases [20], high energy physics [6], election
prediction [30], medical image analysis [4], remote sensing [7].

As a weakly supervised learning paradigm, LLP traces back to at least [5, 19, 22, 23, 32], and was
motivated there by learning scenarios where access to individual examples is often not available. A
paradigmatic example is perhaps a political campaign trying to predict the preference of the electorate.
Since voting is anonymous, a political analyst may not be able to observe individual votes, yet, they
have access to aggregate voting preferences at the district level.

The problem has received renewed interest more recently (e.g., [8, 17, 26, 24, 25, 31, 16, 34]), driven
by the desire to provide more privacy to user information. For instance the ad conversion reporting
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system proposed by Apple, SKAN, allows an ad tech provider to receive information about the
conversions (e.g., purchases) from customers only aggregated across multiple impressions. This
aggregation is intended to obfuscate the individual customer’s activity. A similar API has also been
proposed by Google Chrome and Android to report aggregate conversion information (e.g., [1]).
Given the importance of conversion modeling for online advertising, learning how to train a model
using only these aggregates has become a crucial task for many data-intensive online businesses.

Research in LLP can be coarsely divided into two types of goals: Learning a bag classifier that
correctly predicts label proportions, and learning an individual classifier that can correctly predict
instance labels. The former has been the focus of most of the literature in this area. Representative
papers include [5, 19, 32, 33]. While training classifiers to match label proportions is an obvious
heuristic, little work has been done in trying to understand under which conditions these classifiers
would be accurate when generating event level predictions. Yu et al. [33] provide guarantees that
suggest that, under the absolute loss, predicting label predictions to very high accuracy can result
in good predictions at event level. On the other side of this research area, finding a good instance
level predictor using only label proportions has so far remained elusive and under-explored in its
generality. The solutions introduced so far require either making some assumptions on the data
generation process [26, 34] or on the model class [22]. Other solutions involve solving complex
combinatorial problems [8] or require that an example belongs to multiple bags [24, 25].

In this work we provide a two pronged approach towards making LLP on randomly generated bags
seamless. First, we contribute to a better theoretical understanding of a well-known label proportion
prediction algorithm. This algorithm simply trains a model whose average prediction on a bag is as
close as possible to the label proportion in that bag. This straightforward algorithm is referenced
(either explicitly or implicitly) in multiple past works (e.g., [19, 23, 2]), yet is hardly analyzed
theoretically, or even considered as a baseline for experimental comparisons. Here, we show under
what conditions this folklore algorithm can produce good event level predictions. Moreover, we
show through extensive experimentation that when those conditions are met this algorithm seems to
outperform previous baselines tailored to generating event level predictions. On the flip side, when
such conditions are not met, we also show that the quality of this algorithm quickly deteriorates as
the bag size increases.

A more robust and flexible approach to LLP that operates at the instance level is EASYLLP, a
reduction method virtually applicable to any machine learning task. Unlike many algorithmic
proposals in this space, the implementation of EASYLLP requires trivial modifications to current
machine learning training pipelines. We elucidate the flexibility of our approach by applying it to
two widely interesting algorithmic techniques, Empirical Risk Minimization (ERM) and Stochastic
Gradient Descent (SGD). Our findings are complemented by an extensive experimental investigation
on a diverse suite of benchmark datasets.

Main contributions. The contribution of our paper can be summarized as follows.

1. We provide a theoretical analysis of a popular label proportion matching algorithm, that
is suggestive of the conditions under which this algorithm is expected to work in practical
scenarios. Despite its relative simplicity, the scope of this analysis is broad and, to the best
of our knowledge, original.

2. We provide a general debiasing technique for estimating the expected instance loss (or loss
gradient) of an arbitrary model using only label proportions, and thoroughly quantify the
variance of this estimator.

3. We provide a reduction of ERM with label proportions to ERM with individual labels, and
show that when the learner observes bags of size k, the sample complexity of ERM with
label proportions increases only by a factor of k. Likewise, we provide an analysis of SGD
using only label proportions and show that for bags of size k, its regret increases by only a
factor of k.

4. We carry out an extensive set of experiments comparing the proportion matching method and
EASYLLP to known methods available in the LLP literature. The experiments are designed
to encompass diverse combinations of datasets and learning models. We identify general
trends in the relative performance of the tested methods when evaluated at the instance
level. To the best of our knowledge, in spite of its folklore status, this is the first thorough
investigation that involves the proportion matching algorithm and its comparison to event
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level classifiers. We believe the latter is by itself an important contribution on its own, as
proportion matching turns out to be a strong baseline in a number of cases.

Related work. Interest in LLP traces back to at least [5, 19, 22, 23, 29, 32, 20]. The literature in
recent years has become quite voluminous, so we can hardly do justice of it here. In what follows,
we comment on and contrast to the references from which we learned about LLP problems.

In [5] the authors consider a hierarchical model that generates labels according to the given label
proportions and proposed an MCMC-based inference scheme which, however, is not scalable to large
training sets. [19] shows how standard supervised learning algorithms (like SVM and k-Nearest
Neighbors) can be adapted to LLP by a reformulation of their objective function via label proportion
matching. Yet, no experiments are reported on classification tasks. In [22], the authors propose a
theoretically-grounded way of estimating the mean of each class through the sample average of each
bag, along with the associated label proportion. The authors make similar assumptions to ours, in that
the class-conditional distribution of data is independent of the bags. However, their estimators rely on
very strong assumptions, like conditional exponential models, which are not a good fit to nowadays
Deep Neural Network (DNN) models. Similar limitations are contained in [20]. [23] proposes an
adaptation of SVM to the LLP setting through a scheme which can be seen as calibration on top
of proportion matching. Yet, this turns out to be restricted to linear models in some feature space.
Similar limitations are in the α-SVM method proposed in [32], the non-parallel SVM formulation
of [21], and the pinball loss SVM in [28]. The original α-SVM formulation was extended to other
classifiers; e.g., [15] extends the formulation to CNNs with a generative model whose associated
maximum likelihood estimator is computed via Expectation Maximization, which turns out not to
be scalable to sizeable DNN architectures. [29] proposes a method based on k-means to identify a
clustering of the data which is compatible with the label proportions, but their method suffers from
an extremely high computational complexity.

Many of these papers are in fact purely experimental in nature, and their main goal is to adapt the
standard supervised learning formulation to an LLP formulation so as to obtain a bag level predictor.

On the learning theory side, besides the already mentioned [22, 20], are the efforts contained in
[24, 25], the task of learning from multiple unlabeled datasets considered in [17, 16], and the statistical
learning agenda pursued in [26, 34] (and references therein from the same authors). In [24, 25] the
author is essentially restricting to linear-threshold functions and heavily relies on the fact that an
example can be part of multiple bags, while we are working with non-overlapping i.i.d. bags and
general model classes. In [17, 16] the authors consider a problem akin to LLP. Similar to our paper,
the authors propose a debiasing procedure via linear transformations. Yet, the way they solve the
debiasing problem forces them to impose further restrictions on the bags, like the separation of the
class prior distributions across different bags. It is this diversity that allows the authors to construct
unbiased estimates and then derive consistency results. On the contrary, the bags proposed in our
setup are drawn i.i.d. from the same prior distribution, a scenario where many of these algorithms
would fail. Hence, we work under the assumption that we cannot handcraft diverse bags out of
our samples, as the aggregation into bags is done without having access to the class conditional
distributions (which [17, 16] and related papers heavily rely upon). Moreover, the convergence results
to the event level performance are only proven in those papers with specific families of loss function
(e.g., proper loss functions). See Section 5 for further in-context discussion.

The work [26] introduced a principled approach to LLP based on a reduction to learning with label
noise. As in [17], their basic strategy is to pair bags, and view each pair as a task of learning with label
noise, where label proportions are related to label flipping probabilities. The authors also established
generalization error guarantees at the event level, as we do here. [34] extend their results to LLP for
multiclass classification. From a technical standpoint, these two papers have similar limitations as
[17, 16]. Besides, the risk measure they focus on is balanced risk rather than classification risk, as we
do here.

In our experiments (Section 7), we empirically compare EASYLLP to a folklore label proportion
matching method, to the MeanMap method from [22], and to a label generation approach from [8],
the latter viewed as representative of recent applications of DNNs to LLP.
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2 Setup and Notation

Let X denote a feature (or instance) space and Y = {0, 1} be a binary2 label space. We assume the
existence of a joint distribution D on X × Y , and let p = P(x,y)∼D(y = 1) denote the probability
of drawing a sample (x, y) ∈ X × Y from D with label y = 1. For a natural number n, let
[n] = {i ∈ N : i ≤ n}.
A labeled bag of size k is a sample B = {x1, . . . , xk}, together with the associated label proportion
α(B) = 1

k

∑k
j=1 yj , where (x1, y1), . . . , (xk, yk) are drawn i.i.d. according to D. We assume

the learner has access to a collection S = {(Bi, αi), i ∈ [n]} of n labeled bags of size k, where
Bi = {xij : j ∈ [k]}, αi = α(Bi) = 1

k

∑k
j=1 yij is the label proportion of the i-th bag, and all

the involved samples (xij , yij) are drawn i.i.d. from D. In words, the learner receives information
about the nk labels yij of the nk instances xij only in the aggregate form determined by the n label
proportions αi associated with the n labeled bags (Bi, αi) in collection S . Notice, however, that the
instances xij are individually observed.

Given a hypothesis set H of functions h mapping X to a prediction space Ŷ , and a loss function
` : Ŷ × Y → R+, the learner receives a collection S , and tries to find a hypothesis h ∈ H with the
smallest population loss (or risk) L(h) = E(x,y)∼D[`(h(x), y)] with high probability over the random
draw of S. When clear from the surrounding context, we will omit subscripts like “(x, y) ∼ D" or
“D" from probabilities and expectations.

We shall consider two broadly used learning methods for solving the above learning problem,
Empirical Risk Minimization (ERM, Section 5), or regularized versions thereof, and Stochastic
Gradient Descent (SGD, Section 6). In this latter context, we will consider a parameter spaceW and
consider a learner that tries to optimize a loss ` : W ×X × Y → R iteratively over a collection of
bags. Before that, we find it instructive to delve into the theoretical properties of an approach to LLP
which is by now belonging to folklore.

3 Proportion Matching Algorithm

We now introduce a simple and very well known algorithm for learning from label proportions. Yu
et al. [33] refers to this algorithm as Empirical Proportion Risk Minimization but different versions
of the algorithm are discussed in the LLP literature without a clear reference to its origin.
Definition 3.1. Given a loss function ` : R × R → R+, a hypothesis set of functions H, and a
collection S = {(Bi, αi), i ∈ [n]} of n labeled bags of size k, the PROPMATCH algorithm minimizes
the empirical proportion matching loss, i.e. it solves the following optimization problem

min
h∈H

n∑
i=1

`

(
1

k

k∑
j=1

h(xij), αi

)
. (1)

That is, the PROPMATCH algorithm creates a bag level prediction by simply averaging the predictions
of a model on the bag’s individual examples. Yu et al. [33] prove a uniform convergence guarantee
implying that, given enough data, the minimizer of the empirical proportion matching loss is an
approximate minimizer of the population level proportion matching loss:

min
h∈H

E
B,α

[
`

(
1

k

∑
x∈B

h(x), α

)]
. (2)

In general, the minimizer of the population level proportion matching loss may not produce accurate
event-level predictions. However, Yu et al. [33] further show that when ` is the absolute loss, achieving
small population level proportion matching loss also leads to a classifier with small population level
event loss.

We now strengthen those results and show that under some general conditions on the loss function,
and if the function classH is expressive enough, minimizing the population level proportion matching
loss is equivalent to minimizing the population level event loss.3

2A multiclass extension of all our results is also possible – see Appendix C.
3Due to lack of space, all proofs are given in the appendix.
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Theorem 3.2. AssumeH is such that the function h∗ : x 7→ P(y = 1|x) is inH. Let ` : R×R→ R+

be such that, for any random variable Z, q = E[Z] is the unique solution of minr∈R EZ [`(r, Z)].
Then, h∗ is a minimizer of (2). Moreover, every other minimizer h satisfies P(h(x)=h∗(x)) = 1.

Corollary 3.3. LetH satisfy the conditions of Theorem 3.2. Then h∗ as defined above is the unique
minimizer for the proportion matching loss when ` is the square loss or the binary cross-entropy loss.

The above corollary provides us with conditions for the proportion matching loss minimizer to also
minimize the event level loss. It is natural to ask ourselves, what the behavior of the proportion
matching loss would be when those conditions are violated. To our knowledge, this remains an open
problem. However, the following example shows that if the model classH is not expressive enough,
then using the proportion matching loss can in fact lead to an arbitrarily bad event level predictor.
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Figure 1: Left: Training loss for different
learning approaches. PROPMATCH (using (1)),
EASYLLP (using (3), Section 4), and event
level using regular cross-entropy loss. Right:
Test loss using event level labels to measure
cross-entropy loss for all methods. Notice how
the PROPMATCH training loss decreases but
the test loss continues to increase. EASYLLP
tracks the event level loss as suggested by the-
ory.

Let X = R2 and Y = {0, 1}. We define a latent
variable η uniformly distributed in {−1, 1}. We gen-
erate a distribution D over pairs (x, y) as follows:
first sample a latent variable η, then sample x accord-
ing to the Gaussian distribution N((η, η), I), where
I ∈ R2×2 is the identity matrix. Finally, sample
y such that P(y = 1) = e

e+1 if η = −1 and e4

e4+1
if η = 1. Using SGD, we attempt to fit a logistic
regression model parametrized by w ∈ R2 where
p̂w(y = 1|x) = ew·x

1+ew·x . Crucially the hypothesis
class used to model D does not include the true con-
ditional probability distribution. For the experiment
we generate 100000 examples from distribution D,
and group them randomly into bags of size 500. Fig-
ure 1 shows the effect of training a model using
proportion matching loss vs. event level loss. Note
that even though the empirical proportion matching
loss is decreasing, the test loss (on events) increases.

To summarize, we have shown that PROPMATCH can, for the most popular classification and
regression losses and under some assumptions on H, recover a very good instance level classifier.
Nonetheless, when those assumptions are violated the performance of PROPMATCH can drastically
degrade. We believe these observations pave the way for new exciting research in fully understanding
this simple algorithm.

4 Easy LLP

Based on the results of the previous section, we are interested in defining a robust, theoretically
founded algorithm for learning from label proportions. We now introduce the main tool for our
approach.
Definition 4.1. Let g : X ×Y → Rd be any (measurable) function, for some output dimension d ≥ 1.
Let also p = E[y] be the probability of observing a positive label. We define g̃ : X × [0, 1] → Rd,
the soft-label corrected function associated with g, as

g̃(x, α) =
(
k(α− p) + p

)
g(x, 1) +

(
k(p− α) + (1− p)

)
g(x, 0) . (3)

The main property of g̃, which is relevant to LLP, is that it is as unbiased estimator of
E(x,y)∼D[g(x, y)], as we next show.
Proposition 4.2. Given a sample (x1, y1), . . . , (xk, yk) drawn i.i.d. according to D, let (B, α) be
the corresponding labeled bag of size k, for some k ≥ 1. Let g : X × Y → Rd be any (measurable)
function, for some output dimension d ≥ 1, and g̃ : X × [0, 1] → Rd be its associated soft-label
corrected function. Then for every element xj ∈ B we have

E
(B,α)

[g̃(xj , α)] = E
(x,y)∼D

[g(x, y)] .

For empirical risk minimization (ERM), we shall apply Proposition 4.2 with the function g that
computes the per-example loss of a given model, so that we obtain unbiased estimates of the model’s
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population level loss. Similarly, for gradient-based optimization, we take g to be the function that
computes the per-example gradient of the loss w.r.t. the model parameters so that we obtain an
unbiased gradient estimate. More details of our application of Proposition 4.2 are given at the end of
this section.

Proposition 4.2 shows that we can easily obtain an unbiased estimate of the expectation of any
function g by applying a simple linear transformation to the output of g(x, y), for y = 0, 1. We would
like to highlight the importance of this simple proposition. Whereas there has been a lot of research
in LLP, to our knowledge this is the first expression that shows that one can recover an unbiased
estimate of an arbitrary function g using only information from label proportions.

While the above result provides us with a straightforward way to estimate the expectation of a function
g (which can for instance be specialized to a loss function), note that the variance of g̃ increases as the
number of elements in each bag grows. Indeed, since all terms in the definition of g̃ have a factor of k,
we might expect the variance of the estimator to grow as k2, which could be prohibitively large even
for moderate values of k. Notice however that because α = 1

k

∑k
j=1 yj , and each yj ∼ Bernoulli(p),

we expect by standard concentration arguments that k(α− p) ∈ O(
√
k) which should imply that the

variance scales like k. The following theorem shows that indeed, the variance of these estimates is of
order k and not k2. In addition, since g̃(xj , α) is unbiased for all j ∈ [k], so is 1

k

∑k
j=1 g̃(xj , α). The

same theorem also shows that the variance of the latter estimator is always smaller than the variance
of the former. That is, using all k samples in a bag is always better (in terms of variance) than using
any single sample.
Theorem 4.3. Let g : X × Y → Rd be such that supx,y ‖g(x, y)‖2 ≤ M , and denote by g̃ its
associated soft labeled corrected function. Also, set for brevity g0 = g(x, 0) and g1 = g(x, 1) and,
for each j ∈ [k], g̃j = g̃(xj , α). Then, for any size k ≥ 1 and any j ∈ [k],

E[||g̃j ||2] = E[‖g(xj , yj)‖2] + (k − 1)p(1− p)E
[
||g0 − g1||2

]
E

[∣∣∣∣∣∣1
k

k∑
i=1

g̃i

∣∣∣∣∣∣2] ≤ E[||g̃j ||2] . (4)

Moreover, there exists a universal constant C such that

E

[∣∣∣∣∣∣1
k

k∑
i=1

g̃i

∣∣∣∣∣∣2] ≤ C + kp(1− p)
∣∣∣∣∣∣E[g0 − g1]

∣∣∣∣∣∣2 ,
where p = P(x,y)∼D(y = 1).

The bound in the above theorem confirms our intuition. Moreover, it shows that the variance grows
slower for datasets where p is close to 1 or 0. This is intuitively clear, for very skewed datasets, we
expect label proportions to provide a better description of the true labels. In the extreme cases where
p = 0 or p = 1, LLP becomes equivalent to learning from individual examples.

The results of this section have demonstrated that for any function g, one can obtain an estimator of
its expectation using only label proportions. More importantly the variance of this estimator only
scales linearly with the bag size.

Note about knowledge of population level positive rate. At this point the reader is aware that
the definition of the soft label corrected function requires knowledge of the population level positive
rate p. While the exact value of p is unknown, one can easily estimate it from the label proportions
itself. Indeed, using the fact that the generated bags are i.i.d. it is easy to see that p̂ = 1

n

∑n
i=1 αi =

1
nk

∑
i,j yij is a very good estimator for p.

EASYLLP. We now have all elements to introduce the EASYLLP framework for learning from
label proportions. The framework consists of specializing the function g for particular learning
tasks. Two notable instantiations of EASYLLP which we will analyze in further sections are ERM
and stochastic gradient descent (SGD). For ERM, given a hypothesis h and a loss function, we
let gh(x, y) = `(h(x), y) and the corresponding soft label corrected loss ˜̀(h(x), α) = g̃h(x, α).
To provide regret guarantees using SGD over bags in a parameter space W and loss function
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` : W ×X × Y → R, we use EASYLLP to estimate the gradient of the loss function with respect to
a parameter w ∈ W by letting gw(x, y) = ∇w`(w, x, y) and its corresponding soft label corrected
function g̃w(x, α) = ∇˜̀(w, x, α).

5 ERM with Label Proportions

Given a hypothesis space H, let ` be a loss function as defined in Section 2. Given a collection of
bags S = {(Bi, αi), i ∈ [n]} of size k, our learning algorithm simply finds h ∈ H that minimizes
the empirical risk constructed via the soft label corrected loss from Eq. (3):

n∑
i=1

k∑
j=1

˜̀(h(xij), αi) . (5)

The main advantage of our algorithm lies in its simplicity and generality. Indeed, our algorithm can
be used for any loss function and any hypothesis set. This is in stark contrast, e.g., to the works of
[22, 20], whose framework is only applicable to the logistic loss and (generalized) linear models.
From a practical standpoint, our approach can also leverage existing learning infrastructures, as
the only thing that needs to be specified is a different loss function — which in frameworks like
Tensorflow, JAX and PyTorch requires only minimal coding. This differs from other approaches
to assigning surrogate labels which may require solving combinatorial optimization problems (or
relaxations thereof) like, e.g., [32, 8].

The following theorem provides learning guarantees for minimizing the above empirical loss. Our
guarantees are given in terms of the well-known Rademacher complexity of a class of functions.
Definition 5.1. Let Z be an arbitrary input space and let G ⊂ {g : Z → R} be a collection of
functions over Z . Let D be a distribution over Z and S = {z1, . . . , zm} be an i.i.d. sample.
The Rademacher complexity of G is given by Rn(G) = 1

n ES,σ
[
supg∈G

∑n
i=1 g(zi)σi

]
, where

σ = (σ1, . . . , σn) ∈ {−1, 1}n is uniformly distributed.

Theorem 5.2. Let δ > 0, S = {(Bi, αi), i ∈ [n]} be a collection of n bags of size k.4 Let

supŷ,y `(ŷ, y) ≤ B, and Ckn = 2
(√

2k log(kn) + 1
)

. Then the following bound holds uniformly
for all h ∈ H with probability at least 1− δ:∣∣∣L(h)− 1

nk

∑
i,j

˜̀(h(xij), αi)
∣∣∣≤ Ckn

(
Rkn(H(1)

` ) + Rkn(H(0)
` )
)

+
4B

n
+ 4B

√
k log(2/δ)

2n
,

where H(1)
` = {x→ `(h(x), 1) : h ∈ H} and H(0)

` = {x→ `(h(x), 0) : h ∈ H}.

Corollary 5.3. With the notation of the previous theorem, let ĥ denote the minimizer of (5). Then
with probability at least 1− δ over the sampling process we have

L(ĥ) ≤ min
h∈H
L(h) + 2

(
Ckn

(
Rkn(H

(1)
` ) + Rkn(H

(0)
` )
)

+
4B

n
+ 4B

√
k log(2/δ)

2n

)
.

Comparison to event level learning. We can now compare the bound from Theorem 5.2 to
standard learning bounds for instance level learning like that of [18]. Assuming we had access to a
labeled i.i.d. sample (xij , yij) of size kn, Theorem 3.3 in [18] ensures that with probability at least
1− δ the following bounds holds for all h ∈ H:∣∣∣∣L(h)− 1

nk

∑
i,j

`(h(xij , yij))

∣∣∣∣ ≤ 2Rnk(H`) +B

√
log(2/δ)

2nk
, (6)

where H` = {(x, y) → `(h(x), y) : h ∈ H}. Note that under the weak assumption that the
Rademacher complexities Rkn(H(r)

` ), r ∈ {0, 1}, are of the same order as Rkn(H`), the main

4Our results can easily be extended to the case where bags have different sizes, provided the items are still
i.i.d. The equal size assumption is made here mainly for notational convenience. If the bag sizes are constant
with the number of bags n, then a rate of the form 1/

√
n can still be obtained. On the contrary, if the bag sizes

scale with n, the actual rate will depend on the interplay between the bag sizes and n itself.
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difference between the bound in Theorem 5.2 and (6) is simply an extra factor Ckn ∈ Õ(
√
k) in

the complexity term and a factor k multiplying the confidence term. That is, we achieve similar
guarantees to event level learning by increasing the sample size by a factor of roughly k.

It is worth stressing the difference in flavor of the consistency result contained in Theorem 5.2 above
and those in [17, 16]. For instance, in [16] (even with m = 2 bags) the consistency limit has to be
interpreted “as the bag size ntr = n1 + n2 goes to infinity”. In our case, the bag size k has to remain
constant, and it is the number of bags n that goes to infinity. This further strengthens our claim that
the stream of literature that those papers are representative of are by no means subsuming our results.
Moreover, unlike our paper, all results in these previous works, as presented, make assumptions
about the loss function (e.g., square loss or cross entropy for [16], margin-based losses for [17]).
The fact that we make no assumptions allows us to apply our debiasing procedure to any function
g(x, y) of two variables, hence we can debias, e.g., also the gradient of a loss function, enabling the
principled usage of stochastic gradient descent procedures with only label proportion information.
This is illustrated in the next section.

6 SGD with Label Proportions

We now focus on understanding the effect of label proportions on another very popular learning
algorithm: stochastic gradient descent (SGD).

Proposition 4.2 delivers an unbiased estimate of the gradient which can be naturally plugged into any
SGD algorithm (e.g., [27]), and one would hope for an upper bound on the excess risk if the learning
task at hand leads to a convex optimization problem. The difficulty is that, even if each gradient
in a given bag is individually unbiased, the gradients are correlated since they depend on the label
proportion computed on the bag. A simple way around it is to pick a single item uniformly at random
from the bag to update the model parameters. This is a slight departure from what we considered for
ERM, but it both makes our SGD analysis easier and does not affect asymptotic performance.

In order to devise an SGD algorithm that can handle bagged data, first note that the debiasing
technique introduced in Proposition 4.2 is very general and it applies to any measurable function,
including the gradient of any loss function. Let us denote the gradient of the loss on example (x, y)
by gw(x, y) where w is the parameter vector of the model and let its soft-label corrected version be
g̃w. We study a version of projected SGD that picks one example per bag and uses the soft-label
corrected gradient estimates (pseudocode is given in in Algorithm 1 in the Appendix). The excess
risk of this algorithm depends on the squared norm of the debiased gradients, which is at most k
times larger than the variance of the original instance-level gradient based on Theorem 4.3. This
observation results in the following risk bound.
Theorem 6.1. Suppose that F (w) = E[`w(x, y)] is convex, E[‖gwt(x, y)‖2] ≤ G2 for all t ∈ [n],
and supw,w′∈W ‖w −w′‖ ≤ D. Consider Algorithm 1, run with step size ηt = 1/

√
k · t. Then for

any n > 1 we have

E[F (wn)− F (w∗)] ≤
√
k ·
(
D2 + 5G2

) 2 + log(n)√
n

.

This theorem quantifies the deterioration in the excess of the risk in terms of bag size when the
algorithm is applied with LLP data. Recall that the error of SGD with kn individually labeled samples
decreases like O

(
1/
√
kn
)
. Compared with the above bound, and similar to the ERM case, the regret

bound increases by a factor of k.

The most predominant learning frameworks used today fit deep models to data using SGD-like
methods. Even though these problems are typically non-convex, we remark that Proposition 4.2
guarantees that the expected gradient steps of Algorithm 1 are equal to the expected steps of SGD
using an instance-level loss. Moreover, Theorem 4.3 guarantees that the variance of the gradient
estimates used by Algorithm 1 is not much larger than that of the instance-level case. In particular, it
follows that whenever SGD is an effective algorithm for learning from instance-level data, Algorithm 1
should also be effective at learning from LLP data, provided that we have enough data to overcome
the increased variance. This is thoroughly demonstrated in the next section. Finally, the only required
modifications to any gradient-based training infrastructure to use EASYLLP are to replace the original
labels yik by label proportions and to implement the soft-label corrected loss. Taken together, these
properties of EASYLLP make it especially well suited to modern machine learning pipelines.

8



7 Experiments

In this section we empirically evaluate EASYLLP, PROPMATCH, and two baseline methods to
characterize how their performance depends on the bag size for a range of different learning tasks
and underlying learning models.

LLP Methods. We evaluate EASYLLP, PROPMATCH, and two baselines.5 The first baseline is
MEANMAP [22], which is a method specialized for learning linear logistic regression models from
label proportions. We also compare against the method described in Section 3.2 of [8], which we
denote by DA. The DA method computes a loss for each bag by creating synthetic labels for the
examples that optimize a combination of the model’s loss on the synthetic labels, and a divergence
between the label proportion of the synthetic labels and the bag’s label proportion. The DA method
has an additional hyperparemeter, α, which controls the weights on these two objectives. Full details
of our DA implementation are in Appendix A.3.

Datasets. We carry out experiments on four (binary classification) datasets: Binarized versions of
MNIST [13] and CIFAR-10 [12], as well as the Higgs [3] and UCI adult datasets [11]. The labels in
MNIST are replaced by labels indicating whether the digit is even or odd, and the CIFAR-10 labels
are replaced by whether the original class is an animal or a machine. The MNIST images are resized
to have shape 32× 32× 3 to match CIFAR-10. For both image datasets, we normalize the images to
have `2 norm equal to one. No preprocessing is performed on the Higgs dataset. Finally, on UCI
Adult, we rescale numerical features to the range [0, 1] and one-hot encode categorical features.

Models. We evaluate each LLP method on every dataset using a linear model. Additionally, for
the image datasets we also evaluate using a small ConvNet, a large ConvNet, and Resnet-11 [9].
On Higgs we also use the DNN proposed by [3], which has 4 hidden layers, each with 300 units.
Finally, on UCI Adult, we also use a NN with one hidden layer. Since the MEANMAP baseline is
only applicable to learning linear models, we do not include it in the neural network experiments.
Full details of the architectures are provided in Appendix A.2.

Experimental Setup. For each combination of LLP method, dataset, model, and bag size, we
train the model 10 times with different seeds and report the average test accuracy. To generate the
label proportion data, on each run we shuffle the training data, partition it into consecutive bags of
the desired size, and replace the original labels with label proportions computed from the bags. To
tune the learning rate for each method, we report the highest accuracy achieved for learning rates in
{0.00001, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. For DA, we tune the learning rate and α using
a grid search with the same learning rates and α ∈ {0.0, 0.0001, 0.001, 0.01, 0.1, 0.5}. Note that DA
is sensitive to the choice of α, and it is unclear how to tune α without access to event-level data. In
all cases we use the Adam [10] optimizer, binary crossentropy loss, minibatches of size 512, and 20
training passes through the data. Finally, for the two image datasets, we decay the learning rate after
40%, 60%, 80%, and 90% of the training passes by factors 10, 100, 1000, and 5000, respectively.

Results. Figure 2 depicts the accuracy achieved by each method on a selection of datasets and
models for a range of bag sizes. The selected dataset and model combinations are representative of
the full set of experimental results, which are included in Appendix A.5. Across all datasets, either
EASYLLP or PROPMATCH achieves the highest test accuracy for large bag sizes. In agreement
with our theory, the performance of EASYLLP decreases predictably with the bag size (due to the
increased variance of gradient estimates). On the other hand, we find that DA often performs very
well for small bag sizes, but accuracy drops rapidly at a dataset-dependent threshold. PROPMATCH
is a competitive baseline, specifically when the underlying learning model is well specified for the
task, which is in line with our finding in Section 3. For instance, when using the Resnet-11 model,
PROPMATCH has a higher performance than EASYLLP on both MNIST and CIFAR-10. A partial
explanation is due to Theorem 4.3. Indeed, it is well known that models trained under logistic
regression become overconfident on their predictions. However, our theory suggests that the variance
of the gradient increases proportional to ‖g(x, 0)− g(x, 1)‖ which rapidly becomes unbounded as

5Due to the differences in problem setup between our work and that of other papers, like [17, 16], it is
unclear how a fair experimental comparison to those papers should be performed. For this very reason, we have
deliberately avoided to experimentally compare to the algorithms in those papers.
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Figure 2: Average test accuracy for each LLP method on selected datasets and models. Error bars
show one standard error in the mean.

the model becomes more confident. To test this hypothesis, we trained a model using a double-sided
hinge loss, labeled “EASYLLP DHL” (details in Appendix A). This loss induces a small variance
term in Theorem 4.3 and indeed we see that this partially closes the gap to PROPMATCH. On the
other hand, PROPMATCH’s performance degrades more rapidly than EASYLLP’s as the bag size
increases in the presence of model mis-specification or higher noise in the data (first three plots in
Figure 2).

Loss tracking. Another strength of EASYLLP is that the loss estimates computed during training
are unbiased estimates of the true training loss. In comparison, the losses minimized by all other
methods we consider do not have clear connections to the true training loss and it is unclear how to
monitor training performance. In Appendix A.6 we demonstrate this empirically.

8 Conclusions and Limitations

We have studied the problem of learning from label proportions in the case where bags are drawn
i.i.d. We have introduced EASYLLP, a novel and flexible approach to LLP for classification that is
widely applicable and has well-developed theory. In particular, we have shown how to use EASYLLP
to estimate the expected value of any function of (x, y) pairs from labeled data, and applied these
results to proving ERM sample complexity guarantees and convergence guarantees for SGD. In
both cases, we have shown that the LLP performance of EASYLLP is only a factor k worse than
when learning from event-level data. We have also elucidated important theoretical properties of the
folklore PROPMATCH algorithm which are suggestive of the practical scenarios where it is advisable
to make use of it. Finally, we have carried out an extensive empirical evaluation of EASYLLP,
PROPMATCH, and two baseline methods on diverse tasks and learning models, and identified relative
performance trends.

The results in this work are limited to the special case of LLP where the examples in each bag are
drawn i.i.d. from an underlying distribution. While this is a common and important special case,
in future work we would like to extend our results to handle cases where the bags need not be i.i.d.
Similarly, we hope to study the theoretical properties of EASYLLP more fully in the multiclass
case, and to have a complete characterization of when PROPMATCH is consistent. We also believe
that it may be possible to further decrease the variance of EASYLLP estimates by replacing the
label marginal p in (3) with bag-specific predictions. Finally, while the LLP framework provides an
intuitive form of privacy protection, we would like to explore connections with differential privacy
where, for example, each bag’s label proportion is computed by a differentially private mechanism.
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