
Appendix
A Derivation of Equation (7)561

From Eq (5), we know that:562

dLi,T (θ
∗
i , λ)

dθ
= 0 (11)

Based on the implicit functional theorem (IFT), we get that if we have a function F (x, y) = c, we563

can derive that y′(x) = −Fx/Fy . Therefore, plus the Eq (11) into the theorem, we can get:564

dθ∗

dλ
= −

∂θ(
dLi,T (θ∗

i ,λ)
dθ )

∂λ
dLi,T (θ∗

i ,λ)

dθ

= −(∂2θLT (θ, λ))
−1 ∂λθLT (θ, λ) (12)

B Positioning of FedL2P.565

Table 5 shows the positioning of FedL2P against existing literature. Note that this list is by no means566

exhaustive but representative to highlight the position of our work. All existing approaches obtained567

personalized models using a personalized policy and local data, often through a finetuning-based568

approach. This personalized policy can either 1) be fixed, e.g. hand-crafting hyperparameters, layers569

to freeze, selecting number of mixture components, number of clusters or 2) learned, e.g. learning570

a hypernetwork to generate weights or meta-nets to generate hyperparameters. These approaches571

are also grouped based on whether this personalized policy is dependent on the local data during572

inference, e.g. meta-nets require local client meta-data to generate hyperparameters.573

In order to adapt to per-dataset per-client scenarios, many works rely on storing per-client personalized574

layers, which are trained only on each client’s local data. Unfortunately, the memory cost of575

storing these models scales with the number of clients, C, restricting previous works to small scale576

experiments. We show that these works are impractical in our CIFAR-10 setup of 1000 clients in577

Appendix. C. Moreover, most of existing methods rely on a fixed personalized policy, such as deriving578

shared global hyperparameters for all clients in FLoRA, or do not dependent on local data, such as579

FedEx which randomly samples per-client hyperparameters from learned categorical distributions.580

Hence, these methods do not adapt as well to per-dataset per-client scenarios and are ineffective at581

targeting both label and feature shifts. Lastly, although pFedHN targets both label and feature shift582

cases, it does not scale well to our experiments as shown in Appendix. C.583

Table 5: Positioning of FedL2P with existing FL approaches. C is the total number of clients, M is
the number of layers in the model, B is the number of BN layers in the model, H is the number of
hidden layers in the hypernetwork.

FL
Approach

Learns
Shared

Model(s)

Personalized
Layers

Personalized
Policy

Obtained by?

Personalized
Policy

Data Dependent?

Targets
Label Shift

Targets
Feature Shift

Memory
Cost

Scale to
Large Networks

FedProx [32]
PerFedAvg [15]

pFedMe [57]
Ditto [33]

MOON [31]
FedBABU [46]

Yes No Fixed No Yes No O(M) ✓

PerFedMask [52] Yes No Fixed No Yes No O(M) ✓
FedBN [34] Yes Yes Fixed No No Yes O(CB) ✓
FedPer [2]

FedRep [11]
APFL [14]

LG-FedAvg [36]
IFCA [16]

Yes Yes Fixed No Yes No O(CM) ✗

FLoRA [61] Yes No Fixed No Yes No O(M) ✓
FedEx [29] Yes Supported Learned No Yes No O(M) ✓
FedEM [41] Yes No Fixed No Yes No O(M) ✓

FedFOMO [59]
FedMe [42] No Yes Fixed No Yes No O(CM) ✗

pFedHN [53] No Yes Learned Yes Yes Yes O(CMH) ✗
FedL2P (Ours) No Supported Learned Yes Yes Yes O(M) ✓
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Most importantly, all existing FL approaches shown in Table 5 can use finetuning either to personalize584

shared global model(s) or as a complementary personalization strategy to further adapt their personal-585

ized models. Since our proposed FedL2P focus on better personalizing shared global model(s) by586

learning better a personalized policy which leverages the clients’ local data statistics relative to the587

given pretrain model(s), our approach is complementary to all existing FL solutions that learn shared588

model(s); we showed improvements over a few of these works in Table 1.589

Use Cases of FedL2P Mainstream FL focuses on training from scratch, but we focus on federated590

learning of a strategy to adapt an existing pre-trained model (whether obtained by FL or not) on an591

unseen group of clients with heterogeneous data. There are several scenarios where this setup and592

our solution would be useful:593

1. Scenarios where it’s expensive to train from scratch for a new group of clients, e.g. adopting594

FedEx [29] from scratch for a new group of clients would require thousands of rounds to595

retrain the model and HP while our method takes hundreds to learn two tiny meta-nets596

(Appendix. C).597

2. Scenarios where there is a publicly available pre-trained foundation model that can be598

exploited. This is illustrated in Section 4.4 where we adapt a publicly available pretrained599

model trained using ImageNet on domain generalization datasets.600

3. Scenarios where it’s important to also maintain a global model with high initial accuracy -601

often neglected by previous personalized FL works.602

Note that our approach also does not critically depend on the global model’s performance. Even in603

the worst case where the input statistics derived from the global model are junk (e.g., they degenerate604

to a constant vector, or are simply a random noise vector), then it just means the hyperparameters605

learned are no longer input-dependent. In this case, FedL2P would effectively learn a constant606

vector of layer-wise learning rates + BN mixing ratio, as opposed to a function that predicts them.607

Thus, in this worst case we would lose the ability to customize the hyperparameters differently to608

different heterogeneous clients, but we would still be better off than the standard approach where609

these optimization hyperparameters are not learned. In the case where our global-model derived input610

features are better than this degenerate worst case, FedL2P’s meta-nets will improve on this already611

strong starting point.612

C Cost of FedL2P613

Computational Cost of Hessian Approximation. We compare with hessian-free approaches, namely614

first-order (FO) MAML and hessian-free (HF) MAML, both of which are used by PerFedAvg, and615

measure the time it took to compute the meta-gradient after fine-tuning. Specifically, we run 100616

iterations of each algorithm and report the mean of the walltime. Our proposed method takes 0.24617

seconds to compute the hypergradient, 0.12 seconds of which is used to approximate the Hessian. In618

comparison, FO-MAML took 0.08 seconds and HF-MAML took 0.16 seconds to compute the meta-619

gradient. Hence, our proposed method is not a significant overhead relative to simpler non-Hessian620

methods. It is also worth noting that the number of fine-tuning epochs would not impact the cost of621

computing the hypergradient.622

Memory Cost. In our CIFAR10 experiments, the meta-update of FedL2P has a peak memory usage623

of 1.3GB. In contrast, existing FL methods that generate personalized policies require an order(s) of624

magnitude more memory and hence only evaluated in relatively small setups with smaller networks.625

For instance, pFedHN [53] requires in a peak memory usage of 17.93GB in our CIFAR10 setup as its626

user embeddings and hypernetwork scale up with the number of clients and model size. Moreover,627

they fail to generate reasonable client weights as these techniques do not scale to larger ResNets used628

in our experiments. APFL [14], on the other hand, requires each client to maintain three models:629

local, global, and mixed personalized. Adopting APFL in our CIFAR10 setup of 1000 clients requires630

over 134GB of memory just to store the models per experiment, which is infeasible.631

Communication Cost. For each FL round, we transmit the parameters of the meta-nets, which are632

lightweight MLP networks to from server to client and vice versa. Note that transmitting the global633

pretrained model to each new client is a one-time cost. Office-Caltech-10 and DomainNet setup634

typically takes less than 100 communication rounds to obtain a learned λ that leads to the lowest635

validation loss. CIFAR-10 and CIFAR-10-C, on the other hand, can take hundreds of rounds up to a636

15



maximum of 500 rounds. In contrast, joint model and hyperparameter optimization typically takes637

thousands of rounds [29], having to transmit both the model and the hyperparameter distribution638

across the network. Although FedL2P incurs additional costs on top of conventional fine-tuning,639

FedL2P forgoes the cost of federatedly learning a model from scratch and can be advantageous in640

certain scenarios as listed in Section. B.641

Inference Cost. During the fine-tuning stage, given the learned meta-nets, FedL2P requires 2 forward642

pass of the model per image and one forward pass of each meta-net to compute the personalized643

hyperparameters. This equates to 0.55GFLOPs per image and would incur a minor additional cost of644

4.4% more than the regular finetuning process of 15 finetune epochs.645

D Ablation Study646

To elucidate the individual impact of BNNet & LRNet, we run an ablation study of all of the datasets647

used in our experiments and present the results in Table. 6, where CIFAR10 adopts the pretrained648

model trained using FedAvg. As BNNet learns to weight between client’s BN statistics (BN C) and649

pretrained model’s BN statistics (BN G), running FedL2P with BNNet alone leads to either better or650

similar performance to the better performing baseline. Running LRNet as a standalone, on the other651

hand, can result in further gains, surpassing the use of both BNNet and LRNet on some benchmarks.652

Nonetheless, it requires prior knowledge of the data feature distribution of the client in order to set a653

suitable β, of which β = 1 uses BN C and β = 0 uses BN G. Our approach assumes no knowledge654

of the client’s data and learns an estimated β per-scenario and per-client using BNNet.655

E Pretrained Model and Setup Details656

We use the Flower federated learning framework [6] and 8 NVIDIA GeForce RTX 2080 Ti GPUs for657

all experiments. ResNet-18 [19] is adopted with minor differences in the various setups:658

CIFAR-10. We replaced the first convolution with a smaller convolution 3× 3 kernel with stride= 1659

and padding= 1 instead of the regular 7 × 7 kernel. We also replaced the max pooling operation660

with the identity operation and set the number of output features of the last fully connected layer to661

10. The model is pretrained in a federated manner using FedAvg [44] or FedBABU [46] or PerFe-662

dAvg(HF) [15] with a starting learning rate of 0.1 for 500 communication rounds. For PerFedAvg, we663

adopted the recommended hyperparameters used by the authors to meta-train the model. The fraction664

ratio is set to r = 0.1; 100 clients, each of who perform a single epoch update on its own local dataset665

before sending the updated model back to the server, participate per round. We dropped the learning666

rate by a factor of 0.1 at round 250 and 375. This process is repeated for each α = 1000, 1.0, 0.5, 0.1,667

resulting in a pretrained model for each group of clients. We experiment with various fine-tuning668

learning rates {1.0, 0.1, 0.01, 1e− 3, 1e− 4, 1e− 5} and pick the best-performing one, 1e− 3 for669

all experiments; the initial value of η̃ in FedL2P is also set at 1e− 3.670

CIFAR-10-C. We adopted the pretrained model trained in CIFAR-10 for α = 1000 and used the671

same fine-tuning learning rate for all experiments.672

Table 6: Ablation study for FedL2P with e = 15.

α Dataset +FT (BN C) +FT (BN G) +FedL2P
(BNNet)

+FedL2P
(LRNet) β=1

+FedL2P
(LRNet) β=0 +FedL2P

1000 CIFAR-10 63.04±0.02 59.85±0.04 62.35±0.24 62.62±0.21 65.11±0.02 65.13±0.02
(↓ heterogeneity) CIFAR-10-C 59.58±0.03 57.03±0.08 59.57±0.13 60.09±0.02 59.30±0.11 59.97±0.22

Caltech-10 80.97±0.33 36.02±25.21 88.12±1.18 85.50±5.76 42.59±22.87 88.85±0.89
DomainNet 52.17±1.55 30.55±1.07 53.39±0.85 55.59±2.76 44.43±3.46 54.38±0.45

1.0 CIFAR-10 61.42±0.13 63.23±0.15 63.75±0.04 64.67±0.06 64.61±0.49 65.76±0.31
CIFAR-10-C 67.37±0.08 66.45±0.03 68.1±0.07 68.62±0.07 67.82±0.1 68.83±0.15
DomainNet 62.27±0.58 44.15±0.11 62.73±0.51 63.69±0.43 diverge 63.77±0.44

0.5 CIFAR-10 62.34±0.14 67.4±0.06 67.59±0.15 68.81±0.05 68.01±0.29 68.45±0.50
CIFAR-10-C 74.92±0.08 75.24±0.17 76.36±0.08 76.86±0.06 76.11±0.07 76.82±0.19
DomainNet 71.39±0.97 49.81±1.98 70.99±1.15 72.74±0.51 diverge 72.64±0.30

0.1 CIFAR-10 79.15±0.07 78.97±0.07 79.47±0.2 80.24±0.09 80.39±0.15 80.28±0.07
(↑ heterogeneity) CIFAR-10-C 87.25±0.06 88.5±0.02 88.6±0.1 89.08±0.04 89.14±0.13 89.23±0.15

DomainNet 86.03±0.47 69.41±1.95 85.87±1.31 85.78±0.6 diverge 86.36±0.45
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Figure 4: Locality, spread, and skewness of FedL2P’s learned hyperparameters, β and η, of different
layers across clients and the model’s sparsity of all clients for each personalization scenario.

Office-Caltech-10 & DomainNet. We adopted a Resnet-18 model that was pretrained on Ima-673

geNet [13] and provided by torchvision [39]. We replaced the number of output features of the last674

fully connected layer to 10. Similar to CIFAR-10 setup, we experiment with the same set of learning675

rates and pick the best-performing one, 1e− 2 for our experiments.676

F Architecture & Initialization Details677

We present the architecture of our proposed meta-nets, BNNet and LRNet. Both networks are 3-layer678

MLP models with 100 hidden layer neurons and ReLU [1] activations in-between layers. BNNet679

and LRNet clamp the output to a value of [0, 1] and [0, 1000] respectively and use a straight-through680

estimator [4] (STE) to propagate gradients. We also tried using a sigmoid function for BNNet which681

converges to the same solution but at a much slower pace. We initialize the weights of BNNet and682

LRNet with Xavier initialization [17] using the normal distribution with a gain value of 0.1. To683

control the starting initial value of BNNet and LRNet, we initialize the biases of BNNet and LRNet684

with constants 0.5 and 1.0, resulting in initial values of ∼ 0.5 and ∼ 1.0 respectively. We also tried685

experimenting BNNet with different initializations by setting the biases to [0.2, 0.5, 0.8] and got686

similar results.687

G Additional Results688

Relative Clustered Distance Maps. We present an extension of Fig. 3 for both the inputs, ξ & x,689

and outputs, β & η, of the meta-nets in Fig. 5.690

Learned Personalized Hyperparameters. We present the learned hyperparameters for the other691

client groups not shown in Fig. 2 in Fig. 4.692
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