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Abstract

Federated learning (FL) research has made progress in developing algorithms for
distributed learning of global models, as well as algorithms for local personalization
of those common models to the specifics of each client’s local data distribution.
However, different FL problems may require different personalization strategies,
and it may not even be possible to define an effective one-size-fits-all personal-
ization strategy for all clients: depending on how similar each client’s optimal
predictor is to that of the global model, different personalization strategies may
be preferred. In this paper, we consider the federated meta-learning problem
of learning personalization strategies. Specifically, we consider meta-nets that
induce the batch-norm and learning rate parameters for each client given local
data statistics. By learning these meta-nets through FL, we allow the whole FL
network to collaborate in learning a customized personalization strategy for each
client. Empirical results show that this framework improves on a range of standard
hand-crafted personalization baselines in both label and feature shift situations.0

1 Introduction
Federated learning (FL) is an emerging approach to enable privacy-preserving collaborative learning
among clients who hold their own data. A major challenge of FL is to learn from differing degrees of
statistical data heterogeneity among clients. This makes it hard to reliably learn a global model and
also that the global model may perform sub-optimally for each local client. These two issues are often
dealt with respectively by developing robust algorithms for learning the global model [33, 32, 39]
and then offering each client the opportunity to personalize the global model to its own unique local
statistics via fine-tuning. In this paper, we focus on improving the fine-tuning process by learning a
personalization strategy for each client.

A variety of approaches have been proposed for client personalization. Some algorithms directly learn
the personalized models [62, 43], but the majority obtain the personalized model after global model
learning by fine-tuning techniques such as basic fine-tuning [46, 48], regularised fine-tuning [34,
59], and selective parameter fine-tuning [17, 11, 2, 37]. Recent benchmarks [45, 9] showed that
different personalized FL methods suffer from lack of comparable evaluation setups. In particular,
dataset- and experiment-specific personalization strategies are often required to achieve state-of-the-
art performance. Intuitively, different datasets and FL scenarios require different personalization
strategies. For example, scenarios with greater or lesser heterogeneity among clients, would imply
different strengths of personalization are optimal. Furthermore, exactly how that personalization
should be conducted might depend on whether the heterogeneity is primarily in marginal label shift,
marginal feature shift, or conditional shift. None of these facets can be well addressed by a one size
fits all personalization algorithm. Furthermore, we identify a previously understudied issue: even
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for a single federated learning scenario, heterogeneous clients may require different personalization
strategies. For example, the optimal personalization strategy will have client-wise dependence on
whether that client is more or less similar to the global model in either marginal or conditional
data distributions. Existing works that learn personalized strategies through the use of personalized
weights are not scalable to larger setups and models [55, 14]. On the other hand, the few studies
that attempt to optimize hyperparameters for fine-tuning do not sufficiently address this issue as they
either learn a single set of personalization hyperparameters [65, 22] and/or learn a hyperparameter
distribution without taking account of the client’s data distribution [30].

In this paper, we address the issues above by considering the challenge of federated meta-learning of
personalization strategies. Rather than manually defining a personalization strategy as is mainstream
in FL [27, 9], we use hyper-gradient meta-learning strategies to efficiently estimate personalized
hyperparameters. However, apart from standard centralised meta-learning and hyperparameter opti-
mization (HPO) studies which only need to learn a single set of hyperparameters, we learn meta-nets
which inductively map from local client statistics to client-specific personalization hyperparameters.
More specifically, our approach FedL2P introduces meta-nets to estimate the extent in which to
utilize the client-wise BN statistics as opposed to the global model’s BN statistics, as well as to infer
layer-wise learning rates given each client’s metadata.

Our FedL2P thus enables per-dataset/scenario, as well as per-client, personalization strategy learning.
By conducting federated meta-learning of the personalization hyperparameter networks, we simul-
taneously allow each client to benefit from its own personalization strategy, (e.g., learning rapidly,
depending on similarity to the global model), and also enable all the clients to collaborate by learning
the overall hyperparameter networks that map local meta-data to local personalization strategy. Our
FedL2P generalizes many existing frameworks as special cases, such as FedBN [35], which makes a
manual choice to normalize features using the client BN’s statistics, and various selective fine-tuning
approaches [37, 48, 11, 2], which make manual choices on which layers to personalize.

2 Related Work
Existing FL works aim to tackle the statistical heterogeneity of learning personalized models by
either first learning a global model [46, 39, 32, 48, 29] and then fine-tuning it on local data or
directly learning the local models, which can often be further personalized using fine-tuning. Many
personalized FL approaches include the use of transfer learning between global [56] and local
models [44], model regularization [34], Moreau envelopes [59], and meta-learning [15, 10]. Besides
algorithmic changes, many works also proposed model decoupling, in which layers are either shared
or personalized [2, 11, 64, 48, 37, 17, 54] or client clustering, which assumes a local model for each
cluster [42, 44, 53, 7]. These methods often rely on or adopt a fixed personalization policy for local
fine-tuning in order to adapt a global model or further improve personalized performance. Although
there exists numerous FL approaches that propose adaptable personalization policies [55, 40, 14],
these works are memory intensive and do not scale to larger setups and models. On the other hand,
our approach has a low memory footprint (Appendix C) and is directly applicable and complementary
to existing FL approaches as it aims to solely improve the fine-tuning process.

Another line of work involves HPO for FL (or FL for HPO). These methods either learn one set of
hyperparameters for all clients [22, 30, 65] or random sample from learnt hyperparameter categorical
distributions which does not take into account of the client’s meta-data [30]. Moreover, some of these
methods [22, 65] search for a set of hyperparameters based on the local validation loss given the initial
set of weights prior to the federated learning of the model [22, 65], which might be an inaccurate
proxy to the final performance. Unlike previous works which directly learn hyperparameters, we
deploy FL to learn meta-nets that take in, as inputs, the client meta-data to generate personalized
hyperparameters for a given pretrained model. A detailed positioning of our work in comparison with
existing literature can be found in Appendix B.

3 Proposed Method
3.1 Background & Preliminaries
Centralized FL. A typical centralized FL setup using FedAvg [46] involves training a global model
θg from C clients whose data are kept private. At round t, θt−1

g is broadcast to a subset of clients
selected, C̃, using a fraction ratio r. Each selected client, i ∈ C̃, would then update the model using
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Figure 1: FedL2P’s workflow. For each client, the meta-net (parameterized by λ) takes the client meta-data
(e.g., local data profile) and outputs hyperparameters. We update λ by optimizing the meta objective which
is the validation loss of the model finetuned with the hyperparameters returned by the meta-net. The updated
personalization strategies λ∗ from clients are collected/aggregated (via FedAvg) in the server for the next round.

a set of hyperparameters and its own data samples, which are drawn from its local distribution Pi

defined over X ×Y for a compact space X and a label space Y for e epochs. After which, the learned
local models, θt−1

i , are sent back to the server for aggregation θtg =
∑C̃

i
Ni∑
i′ Ni′

θt−1
i where Ni is

the total number of local data samples in client i and the resulting θtg is used for the next round.
The aim of FL is either to minimize the global objective E(x,y)∼PL(θg;x, y) for the global data
distribution P or local objective E(x,y)∼Pi

Li(θi;x, y) for all i ∈ C where Li(θ;x, y) is the loss
given the model parameters θ at data point (x, y). As fine-tuning is the dominant approach to either
personalize from a high-performing θg or to optimize θi further for each client, achieving competitive
or state-of-the-art results in recent benchmarks [45, 9], we focus on the collaborative learning of
meta-nets which generates a personalized set of hyperparameters used during fine-tuning to further
improve personalized performance without compromising global performance.

Non-IID Problem Setup. Unlike many previous works, our method aims to handle both common
label and feature distribution shift across clients. Specifically, given features x and labels y, we can
rewrite the joint probability Pi(x, y) as Pi(x|y)Pi(y) and Pi(y|x)Pi(x) following [28]. We focus on
three data heterogeneity settings found in many realistic settings: both label & distribution skew in
which the marginal distributions Pi(y) & Pi(x) may vary across clients, respectively, and concept
drift in which the conditional distribution Pi(x|y) may vary across clients.

3.2 FedL2P: FL of Personalization Strategies
We now present our proposed method, FedL2P, to tackle collaborative learning of personalization
strategies under data heterogeneity. Our main motivation is that the choice of the hyperparameters for
the personalized fine-tuning, such as the learning rates and feature mean and standard deviations (SD)
statistics of the batch normalization [26] (BN) layers, is very crucial. Although existing FL-HPO
approaches aim to learn these hyperparameters directly2 [22, 65, 30], we aim to do it in a meta
learning or hypernetwork-like fashion: learning a neural network (dubbed meta-net) that takes certain
profiles of client data (e.g., summary statistics of personalized data) as input and outputs near-optimal
hyperparameters. The meta-net is learned collaboratively in an FL manner without sharing local
data. The returned hyperparameters from the meta-net are then deployed in client’s personalized
fine-tuning. The main advantage of this meta-net approach over the direct HPO is that a brand new
client needs not do time-consuming HPO, but just gets their optimal hyperpameters by a single
feed-forward pass through the meta-net. Our idea is visualized in Fig. 1. For each FL round, the
latest meta-net is distributed to the participating clients; each client then performs meta learning to
update the meta-net; the local updated meta-nets are sent to the server for aggregation. Details of our
algorithm are described below.

Hyperparameter Selection. There is a wide range of local training hyperparameters that can be
optimized, some of which were explored in previous FL works [22, 65, 30]. As local training is
often a costly process, we narrowed it down to two main sets of hyperparameters based on previous
works that showed promising results in dealing with non-IID data: BN hyperparameters and selective
update hyperparameters.

Batch Normalization Hyperparameters. The first set of hyperparameters involves BN and explic-
itly deals with feature shift. Notably, FedBN [35] proposed keeping the BN layers local and the other
layers global to better handle feature shift across clients; BN has found success at mitigating domain

2To our knowledge, no previous FL-HPO works learn BN statistics, crucial for dealing with feature shifts.
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shifts in various domain adaptation tasks [36, 8] and can be formulated as follows:

g(x) =
x− µ̂√
σ̂2 + ϵ

∗ γ + δ (1)

where g is a BN layer, x is its input features, (µ̂, σ̂2) are the estimated running mean, variance, and ϵ
is used for numerical stability. During training, the batch statistics E(x) and V ar(x) are used instead,
keeping running estimates of them, µ̂ and σ̂2. During inference, these estimates are used3. Both γ
and δ are learnable parameters used to scale and shift the normalized features.

Although deploying local BN layers is useful to counteract the drawbacks of feature shift, using
global BN layers is often beneficial for local fine-tuning in cases where the feature shift is minimal as
it helps speed-up convergence and reduces overfitting. Hence, we propose learning a hyperparameter
β for each BN layer as follows:

µ̂ = (1− β) ∗ µ̂pt + β ∗ µ̂i, σ̂2 = (1− β) ∗ σ̂2
pt + β ∗ σ̂2

i (2)

where µ̂pt and σ̂2
pt are the estimated running mean and variance by the given pretrained model; µ̂i

and σ̂2
i are the running mean and variance estimated by the client. When β→ 0, the client solely

uses pretrained model’s BN statistics and when β→1, it uses its local statistics to normalize features.
Thus β indicates the degree in which the client should utilize its own BN statistics against pretrained
model’s, to handle the feature shift in its local data distribution.

Algorithm 1 FedL2P: FL of meta-nets for Personaliza-
tion Hyperparameters
Input: Pretrained global model θg with M layers and
B BN layers, each has J input channels. Fraction ratio
r. Total no. of clients C. No. of update iterations K.
Training loss LT and validation loss LV . ζ is the learning
rate for λ.
1: initialize λ = {wbn,wlr, η̃}
2: for round t = 1, . . . , T do
3: C̃ ← Random sample Cr clients
4: for client i ∈ C̃ do
5: send θg, λ to client
6: Forward pass of local dataset to compute

1) E(xm), SD(xm) for 1 ≤ m ≤M − 1
2) µb,j , σ

2
b,j for b = 1, . . . , B and j = 1, . . . , J .

7: Compute ξb for b = 1, . . . , B using Eq. 3
8: for iteration k = 1, . . . ,K do
9: θi ← Finetune θg using LT for e epochs

10: λ← λ− ζ Hypergradient(LV , LT , λ, θi)
11: end for
12: send λ and num of data samples N to server
13: end for
14: λ←

∑C̃
i

Ni∑
Ni
λi

15: end for
Output: λ

Algorithm 2 Hypergradient

Input: Validation Loss LV and training Loss LT .
Learning rate ψ and no. of iterations Q. Fixed point
(λ

′
, θ∗(λ

′
)).

1: p = v = ∂θLV |(λ′
,θ∗(λ′

))

2: for iteration 1, . . . , Q do
3: v ← v − ψ v ∂2

θ∗LT

4: p← p+ v
5: end for

Output: ∂λLV |(λ′
,θ∗(λ′

)) − p ∂λθLT |(λ′
,θ∗(λ′

))

Selective Update Hyperparameters. A va-
riety of recent personalized FL works achieved
promising results by manually selecting and
fine-tuning a sub-module of θg during person-
alization [48, 2, 37], (e.g., the feature extrac-
tor or the classifier layers), while leaving the
remaining modules in θg frozen. It is bene-
ficial because it allows the designer to man-
age over- vs under-fitting in personalization.
e.g., if the per-client dataset is small, then
fine-tuning many parameters can easily lead
to overfitting, and thus better freezing some
layers during personalization. Alternatively, if
the clients differ significantly from the global
model and/or if the per-client dataset is larger,
then more layers could be beneficially person-
alised without underfitting. Clearly the opti-
mal configuration for allowing model updates
depends on the specific scenario and the spe-
cific client. Furthermore, it may be beneficial
to consider a more flexible range of hyper-
parameters that control a continuous degree
of fine-tuning strength, rather than a binary
frozen/updated decision per module.

To automate the search for good personaliza-
tion strategies covering a range of wider and
more challenging non-IID setups, we consider
layer-wise learning rates, η for all learnable
weights and biases. This parameterization
of personalization encompasses all the pre-
vious manual frozen/updated split approaches
as special cases. Furthermore, while these
approaches have primarily considered hetero-
geneity in the marginal label distribution, we
also aim to cover feature distribution shift be-
tween clients. Thus we also include the learn-
ing rates for the BN parameters, γ and δ, allowing us to further tackle feature shift by adjusting the
means and SD of the normalized features.

3When the running mean & variance are not tracked, the batch statistics is used in both training and inference.
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Hyperparameter Inference for Personalization. We aim to estimate a set of local hyperparameters
that can best personalize the pretrained model for each client given a group of clients whose data
might not be used for pretraining. To accomplish this, we learn to estimate hyperparameters based on
the degree of data heterogeneity of the client’s local data with respect to the data that the model is
pretrained on. There are many ways to quantify data heterogeneity, such as utilizing the earth mover’s
distance between the client’s data distribution and the population distribution for label distribution
skew [63] or taking the difference in local covariance among clients for feature shift [35]. In our case,
we aim to distinguish both label and feature data heterogeneity across clients. To this end, we utilize
the client’s local input features to each layer with respect to the given pretrained model. Given a
pretrained model with M layers and B BN layers, we learn η = η1, . . . , η2M

4 and β = β1, . . . , βB ,
using two functions, each of which is parameterized as a multilayer perceptron (MLP), named
meta-net, with one hidden layer due to its ability to theoretically approximate almost any continuous
function [12, 57]. We named the meta-net that estimates β and the meta-net that estimates η as
BNNet and LRNet respectively. Details about the architecture can be found in Appendix. E.

To estimate β, we first perform a forward pass of the local dataset on the given pretrained model,
computing the mean and SD of each channel of each input feature for each BN layer. We then
measure the distance between the local feature distributions and the pretrained model’s running
estimated feature distributions of the b-th BN layer as follows:

ξi,b =
1

J

∑J

j=1

1

2

(
DKL(Pj ||Qj) +DKL(Qj ||Pj)

)
, (3)

where Pj = N (µi,b,j , σ
2
i,b,j), Qj = N (µ̂pt,b,j , σ̂

2
pt,b,j), DKL is the KL divergence and J is the

number of channels of the input feature. ξ is then used as an input to BNNet, which learns to estimate
β as shown in Eq. 4.

Similarly, we compute the mean and SD of each input feature per layer by performing a forward pass
of the local dataset on the pretrained model and use it as an input to LRNet. Following best practices
from previous non-FL hyperparameter optimization works [49, 3], we use a learnable post-multiplier
η̃ = η̃1, . . . , η̃2M to avoid limiting the range of the resulting learning rates (Eq 4).

β = BNNet(wbn; ξ1, ξ2, . . . , ξB−1, ξB)

η = LRNet(wlr;E(x0), SD(x0), E(x1), SD(x1) . . . , E(xM−1), SD(xM−1))⊙ η̃
(4)

where ⊙ is the Hadamard product, xm−1 is the input feature to the m-th layer, and wbn and wlr

are the parameters of BNNet and LRNet respectively. β is used to compute the running mean and
variance in the forward pass for each BN layer as shown in Eq. 2 and η is used as the learning rate for
each weight and bias in the backward pass. We do not restrict η̃ to be positive as the optimal learning
rate might be negative [5].

Federated Hyperparameter Learning. We deploy FedAvg [46] to federatedly learn a set of client-
specific personalization strategies. Specifically, we learn the common meta-net λ = {wbn,wlr, η̃}
that generates client-wise personalization hyperparameters {βi,ηi}, such that a group of clients can
better adapt a pre-trained model θg by fine-tuning to their local data distribution. So we solve:

min
λ

F(λ, θg) =

C∑
i=1

Ni∑
i′ Ni′

Li,V (θ
∗
i (λ), λ)

s.t. θ∗i (λ) = argmin
θi

Li,T (θi, λ) (5)

where θ∗i is the set of optimal personalized model parameters after fine-tuning θg for e epochs on the
local dataset, Li,V (θ, λ) = E(x,y)∼Vi

Li(θ, λ;x, y) and Vi is the validation set (samples from Pi) for
the client i - similarity for Li,T .

For each client i, the validation loss gradient with respect to λ, known as the hypergradient, can be
computed as follows:

dλLV (θ
∗(λ), λ) = ∂λLV (θ

∗(λ), λ) + ∂θ∗(λ)LV (θ
∗(λ), λ) ∂λθ

∗(λ) (6)

To compute ∂λθ∗ in Eq. 6, we use the implicit function theorem (IFT):

4We assume all layers have weights and biases here.
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∂λθ
∗|λ′ = −(∂2θLT (θ, λ))

−1 ∂λθLT (θ, λ)|λ′ ,θ∗(λ′ ) (7)

The full derivation is shown in Appendix A. We use Neumann approximation and efficient vector-
Jacobian product as proposed by Lorraine et al. [38] to approximate the Hessian inverse in Eq. 7
and compute the hypergradient, which is further summarized in Algorithm 2. In practice, θ∗ is
approximated by fine-tuning θg on LT using the client’s dataset. Note that unlike in many previous
works [38, 47] where ∂λLV is often 0 as the hyperparameters often do not directly affect the validation
loss, in our case ∂wbn

LV ̸= 0.

Algorithm 1 summarizes FedL2P. Given a pretrained model and a new group of clients to personalize,
we first initialize λ (line 1). For every FL round, we sample Cr clients and send both the parameters
of the pretrained model and λ to each client (lines 3-5). Each client then performs a forward pass
of their local dataset to compute the mean (E) and standard deviation (SD) of the input features
to each layer and the statistical distance between the local feature distributions and the pretrained
model’s running estimated feature distributions for each BN layer (lines 6-7). λ is then trained for
K iterations; each iteration optimizes the pretrained model on LT for e epochs, applying β and η
computed using Eq. 4 (lines 8-9) at every forward and backward pass respectively. Each client then
computes the hypergradient of λ as per Algorithm. 2 and update λ at the end of every iteration (line
10). Finally, after K iterations, each client sends back the updated λ and its number of data samples,
which is used for aggregation using FedAvg [46] (lines 12-14). The resulting λ is then used for
personalization: each client finetunes the model using its training set and evaluates it using its test set.

3.3 Adapting the Losses for IFT

In the IFT, we solve the following problem:

min
λ

LV (θ
∗(λ), λ) s.t. θ∗(λ) = argmin

θ
LT (θ, λ). (8)

For the current λ, we first find θ∗(λ) in (8) by performing several SGD steps with the training loss
LT . Once θ∗(λ) is obtained, we can compute the hypergradient dλLV (θ

∗(λ), λ) by the IFT, which
is used for updating λ. As described in (6) and (7), this hypergradient requires ∂λLT (θ, λ), implying
that the training loss has to be explicitly dependent on the hyperparameter λ. As alluded in Lorraine
et al. [38], it is usually not straightforward to optimize the learning rate hyperparameter via the IFT,
mainly due to the difficulty of expressing the dependency of the training loss on learning rates. To
address this issue, we define the training loss as follows:

LT (θ, λ) = E(x,y)∼PT
CE(fθ′,β(λ)(x), y) where (9)

θ′ = θ − η(λ)∇θE(x,y)∼PT
CE(fθ,β(λ)(x), y). (10)

Here fθ,β(x) indicates the forward pass with network weights θ and the batch norm statistics β, and
CE() is the cross-entropy loss. Note that in (10), we can take several (not just one) gradient update
steps to obtain θ′. Now, we can see that LT (θ, λ) defined as above has explicit dependency on the
learning rates η(λ). Interestingly, the stationary point θ∗(λ) of LT (θ, λ) coincides with θ′, that is,
θ∗(λ) = θ′, which allows for a single instance of inner-loop iterations as Line 9 in Alg. 1. Finally,
the validation loss is defined as:

LV (θ, λ)=E(x,y)∼PV
CE(fθ,β(λ)(x), y),

showing clear dependency on BNNet parameters through β(λ) as discussed in the previous section.

4 Evaluation
4.1 Experimental Setup

Table 1: FedL2P complements existing FL
methods by improving on the finetuning pro-
cess. Experiments on CIFAR10 (e = 15).

α Approach +FT (BN C) +FedL2P
1000 FedAvg 63.04±0.02 65.13±0.02

(↓ heterogeneity) PerFedAvg(HF) 34.58±0.13 47.58±0.01
FedBABU 65.00±0.07 66.49±0.03

1.0 FedAvg 61.42±0.13 65.76±0.31
PerFedAvg(HF) 44.85±0.28 50.2±1.26

FedBABU 68.92±0.11 70.71±0.28
0.5 FedAvg 62.34±0.14 68.45±0.5

PerFedAvg(HF) 52.43±0.16 55.05±0.53
FedBABU 72.26±0.1 72.87±0.42

0.1 FedAvg 79.15±0.07 80.28±0.07
(↑ heterogeneity) PerFedAvg(HF) 77.31±0.05 77.68±0.13

FedBABU 79.50±0.08 79.58±0.04

Experiments are conducted on image classification
tasks of different complexity. We use ResNet-18 [20]
for all experiments and SGD for all optimizers. All
details of the pretrained models can be found in
Appendix. D. Additionally, the batch size is set to
32 and the number of local epochs, e, is set to 15
unless stated otherwise. The learning rate (ζ) for
λ = {wbn,wlr, η̃} is set to {10−3,10−3,10−4}, re-
spectively. The hypergradient is clipped by value
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Table 2: Experiments on CIFAR-10 using pretrained model trained using FedAvg [46]. Both initial &
personalized accuracies are learnt and personalized on the same set of clients.

α Epochs (e) Global Accuracy +FT (BN C) +FT (BN G) +FT (BN I) +L2P +FedL2P
1000 5 65.13 64.35±0.03 62.14±0.13 56.58±0.08 53.61±0.12 64.53±0.06

(↓ heterogeneity) 15 65.13 63.04±0.02 59.85±0.04 55.72±0.03 58.41±0.38 65.13±0.02
1.0 5 60.19 59.72±0.18 63.45±0.04 50.8±0.06 55.81±0.03 66.05±0.09

15 60.19 61.42±0.13 63.23±0.15 54.94±0.07 61.77±0.25 65.76±0.31
0.5 5 57.12 58.22±0.02 67.16±0.11 50.33±0.01 59.79±0.09 68.96±0.09

15 57.12 62.34±0.14 67.4±0.06 58.12±0.07 65.28±0.23 68.45±0.5
0.1 5 44.86 68.04±0.05 78.73±0.04 61.91±0.06 74.26±0.29 80.33±0.13

(↑ heterogeneity) 15 44.86 79.15±0.07 78.97±0.07 75.94±0.0 78.6±0.21 80.28±0.07

[−1, 1], Q = 3, and ψ = 0.1 in Alg. 2. The maximum number of communication rounds is set to 500,
and over the rounds we save the λ value that leads to the lowest validation loss, averaged over the
participating clients, as the final learned λ. The fraction ratio r=0.1 unless stated otherwise, sampling
10% of the total number of clients per FL round. We focus on non-IID labels and feature shifts
while assuming that each client has an equal number of samples. Finally, to generate heterogeneity
in label distributions, we follow the latent Dirichlet allocation (LDA) partition method [24, 61, 52]:
y ∼ Dir(α) for each client. Hence, the degree of heterogeneity in label distributions is controlled by
α; as α decreases, the label non-IIDness increases, and vice versa.
4.1.1 Datasets

CIFAR10 [31]. A widely-used image classification dataset, also popular as an FL benchmark. The
number of clients C is set to 1000 and 20% of the training data is used for validation.

CIFAR-10-C [21]. The test split of the CIFAR10 dataset is corrupted with common corruptions.
We used 10 corruption types5 with severity level 3 and split each corruption dataset into 80%/20%
training/test sets. A subset (20%) of the train set is further held out to form a validation set. Each
corruption type is partitioned by Dir(α) among 25 clients, hence C = 250.

Office-Caltech-10 [19] & DomainNet [51]. These datasets are specifically designed to contain
several domains that exhibit different feature shifts. We set the no. of samples of each domain to be
the smallest of the domains, random sampling the larger domains. For Caltech-10, we set r = 1.0 and
C = 4, one for each domain and thus partitioned labels are IID. For DomainNet, we set C = 150,
of which each of the 6 domain datasets are partitioned by Dir(α) among 25 clients, resulting in a
challenging setup with both feature & label shifts. Following FedBN [35], we take the top 10 most
commonly used classes in DomainNet.

Speech Commands V2 [60]. We use the 12-class version that is naturally partitioned by speaker,
with one client per speaker. It is naturally imbalanced in skew and frequency, with 2112, 256, 250
clients/speakers for train, validation, and test. We sampled 250 of 2112 training clients with the most
data for our seen pool of clients and sampled 50 out of 256+250 validation and test clients for our
unseen client pool. Each client’s data is then split 80%/20% for train and test sets, with a further 20%
of the resulting train set held out to form a validation set.
4.1.2 Baselines
We run all experiments three times and report the mean and SD of the test accuracy. We consider
three different setups of fine-tuning in our experiments as below. As basic fine-tuning (FT) is used
ubiquitously in FL, our experiments directly compare FT with FedL2P in different non-IID scenarios.
We are agnostic to the FL method used to obtain the global model or to train the meta-nets.

FT (BN C). Client BN Statistics. Equivalent to setting β = 1 in Eq. 2, thus using client statistics to
normalize features during fine-tuning. This is similar to FedBN [35], and is adopted by FL works
such as Ditto [34] and PerFedAvg [15].
FT (BN G). Equivalent to setting β = 0 in Eq. 2. BN layers use the pretrained global model’s BN
statistics to normalize its features during fine-tuning.
FT (BN I). BN layers use the incoming feature batch statistics to normalize its features during
fine-tuning. This setting is adopted by FL works such as FedBABU [48].
L2P. Our proposed method without FL; λ is learnt locally given the same compute budget before
being used for personalization. Hence, L2P does client-wise HPO independently.

4.2 Experiments on Marginal Label Shift
We evaluate our approach based on the conventional setup of personalized FL approaches [9, 45],
where a global model, θg , is first learned federatedly using existing algorithms and then personalized

5brightness, frost, jpeg_compression, contrast, snow, motion_blur, pixelate, speckle_noise, fog, saturate
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Table 3: Personalized test accuracies of CIFAR-10-C, Office-Caltech-10, Domainnet (e = 15).
α Dataset +FT (BN C) +FT (BN G) +FT (BN I) +L2P +FedL2P

1000 CIFAR-10-C 59.58±0.03 57.03±0.08 55.77±0.12 58.80±0.13 59.97±0.22
(↓ heterogeneity) Caltech-10 80.97±0.33 36.02±25.21 81.43±2.16 75.52±3.83 88.85±0.89

DomainNet 52.17±1.55 30.55±1.07 50.47±0.88 45.04±1.56 54.38±0.45
1.0 CIFAR-10-C 67.37±0.08 66.45±0.03 63.56±0.07 66.63±0.09 68.83±0.15

DomainNet 62.27±0.58 44.15±0.11 59.4±0.7 54.75±0.12 63.77±0.44
0.5 CIFAR-10-C 74.92±0.08 75.24±0.17 71.38±0.01 74.48±0.06 76.78±0.22

DomainNet 71.39±0.97 49.81±1.98 68.94±0.71 66.38±0.78 72.64±0.3
0.1 CIFAR-10-C 87.25±0.06 88.5±0.02 83.93±0.04 87.93±0.31 89.23±0.15

(↑ heterogeneity) DomainNet 86.03±0.47 69.41±1.95 85.35±1.14 83.93±1.02 86.36±0.45

to the same set of clients via fine-tuning. To this end, given the CIFAR-10 dataset partitioned among
a group of clients, we pretrained θg following best practices from [23] using FedAvg and finetune
it on the same set of clients. Table 2 shows the personalized accuracy of the various fine-tuning
baselines (Section 4.1.2) and FedL2P using e = 5&15 local epochs on groups of clients with varying
label distribution, Pi(y); α = 1000 represents the IID case and α = 1.0, 0.5, 0.1 represents more
heterogeneous case. As observed in many previous works [48, 27], increasing label heterogeneity
would result in a better initial global model at a expense of personalized performance. Our method
instead retains the initial global performance and focuses on improving personalized performance.

We also show that in many cases, especially for clients with limited local compute budget e = 5,
utilizing the pretrained model’s BN statistics result (BN G) can be more beneficial as CIFAR-10
consists of images from the same natural image domain; in contrast, previous works mainly use
either the client’s BN statistics (BN C) or the incoming feature batch statistics (BN I) to normalize
the features. This strategy is discovered by FedL2P, as illustrated in Fig. 2a where the learned β
is 0 for all BN layers of all clients. For the IID case in particular, FedL2P learns a sparsity6 of 1.0,
learning rate η = 0, for all layers in all clients, forgoing fine-tuning and using the initial global model
as the personalized model. For α = 1.0 and 0.1, FedL2P learns highly sparse models similar to
recent works that proposed fine-tuning only a subset of hand-picked layers [48, 17, 11, 2, 37] to
obtain performance gains. Lastly, L2P performs worse than some standard fine-tuning baselines as it
meta-overfits on each client’s validation set, highlighting the benefits of FL over local HPO.

FedL2P’s Complementability with previous FL works. As our proposed FedL2P learns to improve
the FT process, it is complementary, not competing, with other FL methods that learn shared
model(s). Hence, besides FedAvg, we utilize FedL2P to better personalize θg pretrained using
PerFedAvg(HF) [15] and FedBABU [48] as shown in Table. 1, where we compare FedL2P against
the most commonly used FT approach, BN C. Our results show that applying FedL2P to all three
FL methods can lead to further gains, in most cases outperforming FT in each respective method.
This performance improvement can also bridge the performance gap between different methods. For
instance, while FedAvg+FT has worse performance than FedBABU+FT in all cases, FedAvg+FedL2P
obtained comparable or better performance than FedBABU+FT for α = 1000 & 0.1.
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Figure 2: Locality, spread, and skewness of FedL2P’s learned hyperparameters, β and η, of different
layers across clients and the model’s sparsity of all clients for each personalization scenario.

4.3 Personalizing to Unseen Clients
Unseen during Pretraining. We evaluate the performance of FedL2P on CIFAR-10-C starting from
the pretrained model trained using FedAvg on CIFAR-10 in the IID setting α = 1000 (Section. 4.2) as

6Sparsity refers to the percent of parameters whose learned learning rate for FT is 0.
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Table 4: Experiments on Speech Commands. Both the pretrained model and meta-nets are only
learned on the seen pool of clients.

Client Pool Epochs (e) Global Accuracy +FT (BN C) +FT (BN G) +FT (BN I) +L2P +FedL2P
Seen 5 82.11 70.07±0.63 2.98±0.00 65.97±0.43 64.79±1.84 87.77±0.47

15 82.11 74.15±0.70 2.98±0.0 68.98±0.19 65.80±1.66 84.74±0.38
Unseen 5 81.62 62.76±1.83 2.85±0.00 64.88±0.66 - 87.85±0.18

15 81.62 68.76±3.40 2.85±0.00 67.28±0.46 - 84.60±0.35

shown in Table. 3. These new clients, whose data is partitioned from CIFAR-10-C, did not participate
in the pretraining of the global model and, instead, only participate in the training of the meta-nets.
As added noise would impact the feature shift among clients, Fig. 2b shows FedL2P learns to use
β = 1 as compared to sole use of β = 0 in the CIFAR-10 case (Fig. 2a); some clients benefit more
by using its own BN statistics. Hence, the performance gap for non-IID cases between BN C and BN
G is significantly smaller as compared to CIFAR-10 shown in Table. 2.

Unseen during Learning of Meta-nets. We evaluate the case where some clients are not included in
the learning of the meta-nets through our experiments on the Speech Commands dataset. We first
pretrain the model using FedAvg and then train the meta-nets using our seen pool of clients. The
learned meta-nets are then used to fine-tune and evaluate both our seen and unseen pool of clients as
shown in Table. 4. Note that L2P is not evaluated on the unseen pool of clients as we only evaluate
the meta-nets learned on the seen pool of clients. We see that fine-tuning the pretrained model on
each client’s train set resulted in a significant drop in test set performance. Moreover, as each client
represents a different speaker, fine-tuning using the pretrained model’s BN statistics (BN G) fails
entirely. FedL2P, on the other hand, led to a significant performance boost on both the seen and
unseen client pools, e.g. by utilizing a mix of pretrained model’s BN statistics and the client’s BN
statistics shown in Appendix F.

Table 5: Ablation study for FedL2P with e = 15.
α Dataset +FT (BN C) +FT (BN G) +FedL2P

(BNNet)
+FedL2P

(LRNet) β=1
+FedL2P

(LRNet) β=0 +FedL2P

1000 CIFAR-10 63.04±0.02 59.85±0.04 62.35±0.24 62.62±0.21 65.11±0.02 65.13±0.02
(↓ heterogeneity) CIFAR-10-C 59.58±0.03 57.03±0.08 59.57±0.13 60.09±0.02 59.30±0.11 59.97±0.22

Caltech-10 80.97±0.33 36.02±25.21 88.12±1.18 85.50±5.76 42.59±22.87 88.85±0.89
DomainNet 52.17±1.55 30.55±1.07 53.39±0.85 55.59±2.76 44.43±3.46 54.38±0.45

1.0 CIFAR-10 61.42±0.13 63.23±0.15 63.75±0.04 64.67±0.06 64.61±0.49 65.76±0.31
CIFAR-10-C 67.37±0.08 66.45±0.03 68.1±0.07 68.62±0.07 67.82±0.1 68.83±0.15
DomainNet 62.27±0.58 44.15±0.11 62.73±0.51 63.69±0.43 diverge 63.77±0.44

0.5 CIFAR-10 62.34±0.14 67.4±0.06 67.59±0.15 68.81±0.05 68.01±0.29 68.45±0.50
CIFAR-10-C 74.92±0.08 75.24±0.17 76.36±0.08 76.86±0.06 76.11±0.07 76.82±0.19
DomainNet 71.39±0.97 49.81±1.98 70.99±1.15 72.74±0.51 diverge 72.64±0.30

0.1 CIFAR-10 79.15±0.07 78.97±0.07 79.47±0.2 80.24±0.09 80.39±0.15 80.28±0.07
(↑ heterogeneity) CIFAR-10-C 87.25±0.06 88.5±0.02 88.6±0.1 89.08±0.04 89.14±0.13 89.23±0.15

DomainNet 86.03±0.47 69.41±1.95 85.87±1.31 85.78±0.6 diverge 86.36±0.45

4.4 Personalizing to Different Domains Table 6: ARI values between the clustering of
clients by their domains and inputs/outputs of
the BNNet and LRNet.

Dataset α
BNNet LRNet

Input (ξ) Output (β) Input (x) Output (η)
Caltech-10 1000 1.0 1.0 1.0 1.0

DomainNet

1000 0.65 0.64 0.76 0.77
1.0 0.70 0.59 0.77 0.74
0.5 0.52 0.53 0.72 0.63
0.1 0.27 0.52 0.65 0.59

We evaluate our method on Office-Caltech-10 and
DomainNet datasets commonly used in domain gen-
eralization/adaptation, which exhibit both marginal
and conditional feature shifts. Differing from the con-
ventional FL setup, we adopted a pretrained model
trained using ImageNet [13] and attached a prediction
head as our global model. Similar to CIFAR-10-C
experiments, we compare our method with the base-
lines in Table. 3. Unlike CIFAR-10/10-C, Office-Caltech-10 and DomainNet consist of images from
distinct domains and adapting to these domain result in a model sparsity of 0 as shown in Fig. 2c
and Fig. 2d. Hence, a better personalization performance is achieved using the client’s own local BN
statistics (BN C) or the incoming batch statistics (BN I) than the pretrained model’s (BN G). Lastly,
each client’s personalized model uses an extent of the pretrained natural image statistics as well as its
own domain statistics, for both datasets.

Further Analysis To further investigate how well the hyperparameters returned by our FedL2P-
trained meta-nets capture the domain-specific information, we analyze the clustering of local features,
namely ξ = (ξ1, . . . , ξB) and x = (E(x0), SD(x0), . . . , E(xM−1), SD(xM−1)) (i.e., the inputs
to the meta-nets), and the resulting respective hyperparameters, β and η (i.e., outputs of the meta-
nets), among clients. Specifically, we compute the similarity matrix using the Euclidean distance
between the features/hyperparameters of any two clients and perform spectral clustering7, using the

7We use the default parameters for spectral clustering from scikit-learn [50].
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Figure 3: Cluster distance maps. Each block represents normalized distance, where the distance of
the block (j, k) is measured as the average of the Euclidean distances between all pairs of clients’ β
that belong to domain j and domain k (similarly for η’s), normalized by the within-domain distance
(see text). An off-diagonal block > 0 indicates that the corresponding clusters are better aligned with
the true domains.

discretization approach proposed in [58] to assign labels on the normalized Laplacian embedding.
We then compute the Adjusted Rand Index (ARI) [25] between the estimated clusters and the clusters
partitioned by the different data domains as shown in Table. 6. We also visualize the alignment
between the estimated clusters and the true domains in Fig. 3, where each block (j, k) represents the
normalized average Euclidean distance between all pairs of clients in domain j and k. Specifically,
we divide the mean distance between domain j and k by the within-domain mean distances and
take the log scale for better visualization: log( d(j,k)√

d(j,j)
√

d(k,k)
) where d(j, k) is the mean Euclidean

distance between j and k. Thus, a random clustering has distance close to 0 and > 0 indicates better
alignment between the clustering and the true domains.

As shown, for DomainNet, both BNNet and LRNet consistently preserve the cluster information
found in their inputs, ξ & x, respectively. However, perfect clustering is not achieved due to the
inherent difficulty. For instance, the real and painting domains share similar features, resulting in
similar hyperparameters; the cross-domain distance between real and painting is ∼ 0 in log-scale
in Fig. 3 and hence indistinguishable from their true domains. In contrast, the clients’ features
and resulting hyperparameters of the Office-Caltech-10 dataset are perfectly clustered (ARI=1) as
visualized in Fig. 3a and Appendix. F.

4.5 Ablation Study
To elucidate the individual impact of BNNet & LRNet, we run an ablation study of all of the datasets
used in our experiments and present the results in Table. 5, where CIFAR10 adopts the pretrained
model trained using FedAvg. As BNNet learns to weight between client’s BN statistics (BN C) and
pretrained model’s BN statistics (BN G), running FedL2P with BNNet alone leads to either better or
similar performance to the better performing baseline. Running LRNet as a standalone, on the other
hand, can result in further gains, surpassing the use of both BNNet and LRNet on some benchmarks.
Nonetheless, it requires prior knowledge of the data feature distribution of the client in order to set a
suitable β, of which β = 1 uses BN C and β = 0 uses BN G. Our approach assumes no knowledge
of the client’s data and learns an estimated β per-scenario and per-client using BNNet.

5 Conclusion
In this paper, we propose FedL2P, a framework for federated learning of personalization strategies
specific to individual FL scenarios and datasets as well as individual clients. We learned meta-nets
that use clients’ local data statistics relative to the pretrained model, to generate hyperparameters that
explicitly target the normalization, scaling, and shifting of features as well as layer-wise parameter se-
lection to mitigate the detrimental impacts of both marginal and conditional feature shift and marginal
label shift, significantly boosting personalized performance. This framework is complementary to ex-
isting FL works that learn shared model(s) and can discover many previous hand-designed heuristics
for sparse layer updates and BN parameter selection as special cases, and learns to apply them where
appropriate according to the specific scenario for each specific client. As a future work, our approach
can be extended to include other hyperparameters and model other forms of heterogeneity, e.g. using
the number of samples as an expert input feature to a meta-net.
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Appendix
A Derivation of Equation (7)

From Eq (5), we know that:

dLi,T (θ
∗
i , λ)

dθ
= 0 (11)

Based on the implicit functional theorem (IFT), we get that if we have a function F (x, y) = c, we
can derive that y′(x) = −Fx/Fy . Therefore, plus the Eq (11) into the theorem, we can get:

dθ∗

dλ
= −

∂θ(
dLi,T (θ∗

i ,λ)
dθ )

∂λ
dLi,T (θ∗

i ,λ)

dθ

= −(∂2θLT (θ, λ))
−1 ∂λθLT (θ, λ) (12)

B Positioning of FedL2P.

Table 7 shows the positioning of FedL2P against existing literature. Note that this list is by no means
exhaustive but representative to highlight the position of our work. Most existing approaches obtained
personalized models using a personalized policy and local data, often through a finetuning-based
approach. This personalized policy can either 1) be fixed, e.g. hand-crafting hyperparameters, layers
to freeze, selecting number of mixture components, number of clusters or 2) learned, e.g. learning
a hypernetwork to generate weights or meta-nets to generate hyperparameters. These approaches
are also grouped based on whether this personalized policy is dependent on the local data during
inference, e.g. meta-nets require local client meta-data to generate hyperparameters.

In order to adapt to per-dataset per-client scenarios, many works rely on storing per-client personalized
layers, which are trained only on each client’s local data. Unfortunately, the memory cost of
storing these models scales with the number of clients, C, restricting previous works to small scale
experiments. We show that these works are impractical in our CIFAR-10 setup of 1000 clients in
Appendix. C. Moreover, most existing methods rely on a fixed personalized policy, such as deriving
shared global hyperparameters for all clients in FLoRA, or they do not dependent on local data, such
as FedEx which randomly samples per-client hyperparameters from learned categorical distributions.
Hence, these methods do not adapt as well to per-dataset per-client scenarios and are ineffective at
targeting both label and feature shifts. Lastly, although pFedHN and pFedLA target both label and
feature shift cases, they do not scale well to our experiments as shown in Appendix. C.

Table 7: Positioning of FedL2P with existing FL approaches. C is the total number of clients, M is
the number of layers in the model, B is the number of BN layers in the model, D is the number of
data domains, H is the number of hidden layers in the hypernetwork.

FL
Approach

Learns
Shared

Model(s)

Personalized
Layers

Personalized
Policy

Obtained by?

Personalized
Policy

Data Dependent?

Targets
Label Shift

Targets
Feature Shift

Memory
Cost

Scale to
Large Networks

FedProx [33]
PerFedAvg [15]

pFedMe [59]
Ditto [34]

MOON [32]
FedBABU [48]

Yes No Fixed No Yes No O(M) ✓

PerFedMask [54] Yes No Fixed No Yes No O(M) ✓
FedBN [35] Yes Yes Fixed No No Yes O(CB) ✓
FedPer [2]

FedRep [11]
APFL [14]

LG-FedAvg [37]
IFCA [17]

Yes Yes Fixed No Yes No O(CM) ✗

FedDAR [64] Yes Yes Fixed No Yes Yes O(DM) ✗
FLoRA [65] Yes No Fixed No Yes No O(M) ✓
FedEx [30] Yes Supported Learned No Yes No O(M) ✓
FedEM [43] Yes No Fixed No Yes No O(M) ✓

FedFOMO [62]
FedMe [44] No Yes Fixed No Yes No O(CM) ✗

pFedHN [55]
pFedLA [40] No Yes Learned Yes Yes Yes O(CMH) ✗

FedL2P (Ours) No Supported Learned Yes Yes Yes O(M) ✓
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Most importantly, all existing FL approaches shown in Table 7 can use finetuning either to personalize
shared global model(s) or as a complementary personalization strategy to further adapt their personal-
ized models. Since our proposed FedL2P focus on better personalizing shared global model(s) by
learning better a personalized policy which leverages the clients’ local data statistics relative to the
given pretrain model(s), our approach is complementary to all existing FL solutions that learn shared
model(s); we showed improvements over a few of these works in Table 1.

Use Cases of FedL2P Mainstream FL focuses on training from scratch, but we focus on federated
learning of a strategy to adapt an existing pre-trained model (whether obtained by FL or not) on an
unseen group of clients with heterogeneous data. There are several scenarios where this setup and
our solution would be useful:

1. Scenarios where it’s expensive to train from scratch for a new group of clients, e.g. adopting
FedEx [30] from scratch for a new group of clients would require thousands of rounds to
retrain the model and HP while our method takes hundreds to learn two tiny meta-nets
(Appendix. C).

2. Scenarios where there is a publicly available pre-trained foundation model that can be
exploited. This is illustrated in Section 4.4 where we adapt a publicly available pretrained
model trained using ImageNet on domain generalization datasets.

3. Scenarios where it’s important to also maintain a global model with high initial accuracy -
often neglected by previous personalized FL works.

Note that our approach also does not critically depend on the global model’s performance. Even in
the worst case where the input statistics derived from the global model are junk (e.g., they degenerate
to a constant vector, or are simply a random noise vector), then it just means the hyperparameters
learned are no longer input-dependent. In this case, FedL2P would effectively learn a constant
vector of layer-wise learning rates + BN mixing ratio, as opposed to a function that predicts them.
Thus, in this worst case we would lose the ability to customize the hyperparameters differently to
different heterogeneous clients, but we would still be better off than the standard approach where
these optimization hyperparameters are not learned. In the case where our global-model derived input
features are better than this degenerate worst case, FedL2P’s meta-nets will improve on this already
strong starting point.

C Cost of FedL2P

Computational Cost of Hessian Approximation. We compare with hessian-free approaches, namely
first-order (FO) MAML and hessian-free (HF) MAML, both of which are used by PerFedAvg, and
measure the time it took to compute the meta-gradient after fine-tuning. Specifically, we run 100
iterations of each algorithm and report the mean of the walltime. Our proposed method takes 0.24
seconds to compute the hypergradient, 0.12 seconds of which is used to approximate the Hessian. In
comparison, FO-MAML took 0.08 seconds and HF-MAML took 0.16 seconds to compute the meta-
gradient. Hence, our proposed method is not a significant overhead relative to simpler non-Hessian
methods. It is also worth noting that the number of fine-tuning epochs would not impact the cost of
computing the hypergradient.

Memory Cost. In our CIFAR10 experiments, the meta-update of FedL2P has a peak memory usage
of 1.3GB. In contrast, existing FL methods that generate personalized policies require an order(s) of
magnitude more memory and hence only evaluated in relatively small setups with smaller networks.
For instance, pFedHN [55] requires in a peak memory usage of 17.93GB in our CIFAR10 setup as its
user embeddings and hypernetwork scale up with the number of clients and model size. Moreover,
they fail to generate reasonable client weights as these techniques do not scale to larger ResNets used
in our experiments. APFL [14], on the other hand, requires each client to maintain three models:
local, global, and mixed personalized. Adopting APFL in our CIFAR10 setup of 1000 clients requires
over 134GB of memory just to store the models per experiment, which is infeasible.

Communication Cost. For each FL round, we transmit the parameters of the meta-nets, which
are lightweight MLP networks to from server to client and vice versa. Note that transmitting the
global pretrained model to each new client is a one-time cost. Office-Caltech-10, DomainNet, and
Speech Commands setups take a maximum of 100 communication rounds, 0.24% of the pretraining
cost, to learn the meta-nets. CIFAR-10 and CIFAR-10-C, on the other hand, can take hundreds of
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rounds up to a maximum of 500 rounds, 0.38% of the pretraining cost. In contrast, joint model and
hyperparameter optimization typically takes thousands of rounds [30], having to transmit both the
model and the hyperparameter distribution across the network. In summary, FedL2P incurs <1%
additional costs on top of pretraining and forgoes the cost of federatedly learning a model from
scratch, which can be advantageous in certain scenarios as listed in Section. B.

Inference Cost. During the fine-tuning stage, given the learned meta-nets, FedL2P requires 2 forward
pass of the model per image and one forward pass of each meta-net to compute the personalized
hyperparameters. This equates to 0.55GFLOPs per image and would incur a minor additional cost of
4.4% more than the regular finetuning process of 15 finetune epochs.

D Pretrained Model and Setup Details

We use the Flower federated learning framework [6] and 8 NVIDIA GeForce RTX 2080 Ti GPUs for
all experiments. ResNet-18 [20] is adopted with minor differences in the various setups:

CIFAR-10. We replaced the first convolution with a smaller convolution 3× 3 kernel with stride= 1
and padding= 1 instead of the regular 7 × 7 kernel. We also replaced the max pooling operation
with the identity operation and set the number of output features of the last fully connected layer to
10. The model is pretrained in a federated manner using FedAvg [46] or FedBABU [48] or PerFe-
dAvg(HF) [15] with a starting learning rate of 0.1 for 500 communication rounds. For PerFedAvg, we
adopted the recommended hyperparameters used by the authors to meta-train the model. The fraction
ratio is set to r = 0.1; 100 clients, each of who perform a single epoch update on its own local dataset
before sending the updated model back to the server, participate per round. We dropped the learning
rate by a factor of 0.1 at round 250 and 375. This process is repeated for each α = 1000, 1.0, 0.5, 0.1,
resulting in a pretrained model for each group of clients. We experiment with various fine-tuning
learning rates {1.0, 0.1, 0.01, 1e− 3, 1e− 4, 1e− 5} and pick the best-performing one, 1e− 3 for
all experiments; the initial value of η̃ in FedL2P is also set at 1e− 3.

CIFAR-10-C. We adopted the pretrained model trained in CIFAR-10 for α = 1000 and used the
same fine-tuning learning rate for all experiments.

Office-Caltech-10 & DomainNet. We adopted a Resnet-18 model that was pretrained on Ima-
geNet [13] and provided by torchvision [41]. We replaced the number of output features of the last
fully connected layer to 10. Similar to CIFAR-10 setup, we experiment with the same set of learning
rates and pick the best-performing one, 1e− 2 for our experiments.

Speech Commands. We adopted the setup and hyperparameters from ZeroFL [52]; a Resnet-18
model is trained using FedAvg for 500 rounds using a starting learning rate of 0.1 and an exponential
learning rate decay schedule with a base learning rate of 0.01. We use the base learning rate for
fine-tuning for all experiments.

E Architecture & Initialization Details

We present the architecture of our proposed meta-nets, BNNet and LRNet. Both networks are 3-layer
MLP models with 100 hidden layer neurons and ReLU [1] activations in-between layers. BNNet
and LRNet clamp the output to a value of [0, 1] and [0, 1000] respectively and use a straight-through
estimator [4] (STE) to propagate gradients. We also tried using a sigmoid function for BNNet which
converges to the same solution but at a much slower pace. We initialize the weights of BNNet and
LRNet with Xavier initialization [18] using the normal distribution with a gain value of 0.1. To
control the starting initial value of BNNet and LRNet, we initialize the biases of BNNet and LRNet
with constants 0.5 and 1.0, resulting in initial values of ∼ 0.5 and ∼ 1.0 respectively. We also tried
experimenting BNNet with different initializations by setting the biases to [0.2, 0.5, 0.8] and got
similar results.

F Additional Results

Relative Clustered Distance Maps. We present an extension of Fig. 3 for both the inputs, ξ & x,
and outputs, β & η, of the meta-nets in Fig. 5.
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Table 8: Comparison between using FOMAML+ and IFT in FedL2P for Office-Caltech-10 and
Domainnet (e = 15).

α Dataset +FT (BN C) +FedL2P (FOMAML+) +FedL2P (IFT)
1000 Caltech-10 80.97±0.33 83.20±1.92 88.85±0.89

DomainNet 52.17±1.55 52.70±0.17 54.38±0.45
1.0 DomainNet 62.27±0.58 63.14±0.38 63.77±0.44
0.5 DomainNet 71.39±0.97 71.37±0.79 72.64±0.3
0.1 DomainNet 86.03±0.47 86.22±0.16 86.36±0.45
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0.0
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0.2
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0.4

0.5

1000 1.0 0.5 0.1
0.000

0.005

0.010

0.015

1000 1.0 0.5 0.1

0.2

0.4

0.6

0.8

Sparsity

(a) CIFAR10 (e = 5)
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Figure 4: Locality, spread, and skewness of FedL2P’s learned hyperparameters, β and η, of different
layers across clients and the model’s sparsity of all clients for each personalization scenario.

Learned Personalized Hyperparameters. We present the learned hyperparameters for the other
client groups not shown in Fig. 2 in Fig. 4.

Comparison with FOMAML. We remark that off-the-shelf FOMAML [16] (as an initial condition
learner) is not a meaningful point of comparison because our problem is to fine-tune/personalize
pre-trained models. Therefore, to compare with FOMAML, we focus on learning our FedL2P
meta-nets with FOMAML style meta-gradients instead of IFT meta-gradients. In order to apply
FOMAML to learning rate optimization, this also required extending FOMAML with the same
trick as we did for our IFT approach as shown in Eq. 9 & 10. However, FOMAML ignores the
learning trajectory except the last step, which may result in performance degradation over longer
horizons. We term this baseline FOMAML+. Table. 8 reports results on the multi-domain datasets
as described in Section. 4.4, keeping the same initial condition and meta representation (LRNet
and BNNet meta-nets), and varying only the optimization algorithm. Our approach of using IFT
to compute the best response Jacobian, outperforms FOMAML+ for α = 1000, 1.0, 0.5 and has
comparable performance for α = 0.1.
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(d) DomainNet (α = 0.5)
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Figure 5: Cluster distance maps. Each block represents normalized distance between two domains
(e.g., Caltech vs. DSLR), where the distance of the block (j, k) is measured as the average of the
Euclidean distances between all pairs of clients’ β that belong to domain j and domain k (similarly
for η’s). We normalize distance by the within-domain distances (see text), and take log for better
visualization. Hence, an off-diagonal block greater than 0 indicates that the corresponding clusters
are better aligned with the true domains.
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